xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision 609e478b)
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/context_tracking.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/kvm_para.h>
27 #include <linux/cpu.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/hardirq.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/hash.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/kprobes.h>
37 #include <linux/debugfs.h>
38 #include <linux/nmi.h>
39 #include <asm/timer.h>
40 #include <asm/cpu.h>
41 #include <asm/traps.h>
42 #include <asm/desc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/idle.h>
45 #include <asm/apic.h>
46 #include <asm/apicdef.h>
47 #include <asm/hypervisor.h>
48 #include <asm/kvm_guest.h>
49 
50 static int kvmapf = 1;
51 
52 static int parse_no_kvmapf(char *arg)
53 {
54         kvmapf = 0;
55         return 0;
56 }
57 
58 early_param("no-kvmapf", parse_no_kvmapf);
59 
60 static int steal_acc = 1;
61 static int parse_no_stealacc(char *arg)
62 {
63         steal_acc = 0;
64         return 0;
65 }
66 
67 early_param("no-steal-acc", parse_no_stealacc);
68 
69 static int kvmclock_vsyscall = 1;
70 static int parse_no_kvmclock_vsyscall(char *arg)
71 {
72         kvmclock_vsyscall = 0;
73         return 0;
74 }
75 
76 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
77 
78 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
79 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
80 static int has_steal_clock = 0;
81 
82 /*
83  * No need for any "IO delay" on KVM
84  */
85 static void kvm_io_delay(void)
86 {
87 }
88 
89 #define KVM_TASK_SLEEP_HASHBITS 8
90 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
91 
92 struct kvm_task_sleep_node {
93 	struct hlist_node link;
94 	wait_queue_head_t wq;
95 	u32 token;
96 	int cpu;
97 	bool halted;
98 };
99 
100 static struct kvm_task_sleep_head {
101 	spinlock_t lock;
102 	struct hlist_head list;
103 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
104 
105 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
106 						  u32 token)
107 {
108 	struct hlist_node *p;
109 
110 	hlist_for_each(p, &b->list) {
111 		struct kvm_task_sleep_node *n =
112 			hlist_entry(p, typeof(*n), link);
113 		if (n->token == token)
114 			return n;
115 	}
116 
117 	return NULL;
118 }
119 
120 void kvm_async_pf_task_wait(u32 token)
121 {
122 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
123 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
124 	struct kvm_task_sleep_node n, *e;
125 	DEFINE_WAIT(wait);
126 
127 	rcu_irq_enter();
128 
129 	spin_lock(&b->lock);
130 	e = _find_apf_task(b, token);
131 	if (e) {
132 		/* dummy entry exist -> wake up was delivered ahead of PF */
133 		hlist_del(&e->link);
134 		kfree(e);
135 		spin_unlock(&b->lock);
136 
137 		rcu_irq_exit();
138 		return;
139 	}
140 
141 	n.token = token;
142 	n.cpu = smp_processor_id();
143 	n.halted = is_idle_task(current) || preempt_count() > 1;
144 	init_waitqueue_head(&n.wq);
145 	hlist_add_head(&n.link, &b->list);
146 	spin_unlock(&b->lock);
147 
148 	for (;;) {
149 		if (!n.halted)
150 			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151 		if (hlist_unhashed(&n.link))
152 			break;
153 
154 		if (!n.halted) {
155 			local_irq_enable();
156 			schedule();
157 			local_irq_disable();
158 		} else {
159 			/*
160 			 * We cannot reschedule. So halt.
161 			 */
162 			rcu_irq_exit();
163 			native_safe_halt();
164 			rcu_irq_enter();
165 			local_irq_disable();
166 		}
167 	}
168 	if (!n.halted)
169 		finish_wait(&n.wq, &wait);
170 
171 	rcu_irq_exit();
172 	return;
173 }
174 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
175 
176 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
177 {
178 	hlist_del_init(&n->link);
179 	if (n->halted)
180 		smp_send_reschedule(n->cpu);
181 	else if (waitqueue_active(&n->wq))
182 		wake_up(&n->wq);
183 }
184 
185 static void apf_task_wake_all(void)
186 {
187 	int i;
188 
189 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190 		struct hlist_node *p, *next;
191 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192 		spin_lock(&b->lock);
193 		hlist_for_each_safe(p, next, &b->list) {
194 			struct kvm_task_sleep_node *n =
195 				hlist_entry(p, typeof(*n), link);
196 			if (n->cpu == smp_processor_id())
197 				apf_task_wake_one(n);
198 		}
199 		spin_unlock(&b->lock);
200 	}
201 }
202 
203 void kvm_async_pf_task_wake(u32 token)
204 {
205 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207 	struct kvm_task_sleep_node *n;
208 
209 	if (token == ~0) {
210 		apf_task_wake_all();
211 		return;
212 	}
213 
214 again:
215 	spin_lock(&b->lock);
216 	n = _find_apf_task(b, token);
217 	if (!n) {
218 		/*
219 		 * async PF was not yet handled.
220 		 * Add dummy entry for the token.
221 		 */
222 		n = kzalloc(sizeof(*n), GFP_ATOMIC);
223 		if (!n) {
224 			/*
225 			 * Allocation failed! Busy wait while other cpu
226 			 * handles async PF.
227 			 */
228 			spin_unlock(&b->lock);
229 			cpu_relax();
230 			goto again;
231 		}
232 		n->token = token;
233 		n->cpu = smp_processor_id();
234 		init_waitqueue_head(&n->wq);
235 		hlist_add_head(&n->link, &b->list);
236 	} else
237 		apf_task_wake_one(n);
238 	spin_unlock(&b->lock);
239 	return;
240 }
241 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
242 
243 u32 kvm_read_and_reset_pf_reason(void)
244 {
245 	u32 reason = 0;
246 
247 	if (__this_cpu_read(apf_reason.enabled)) {
248 		reason = __this_cpu_read(apf_reason.reason);
249 		__this_cpu_write(apf_reason.reason, 0);
250 	}
251 
252 	return reason;
253 }
254 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
255 NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
256 
257 dotraplinkage void
258 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259 {
260 	enum ctx_state prev_state;
261 
262 	switch (kvm_read_and_reset_pf_reason()) {
263 	default:
264 		trace_do_page_fault(regs, error_code);
265 		break;
266 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
267 		/* page is swapped out by the host. */
268 		prev_state = exception_enter();
269 		exit_idle();
270 		kvm_async_pf_task_wait((u32)read_cr2());
271 		exception_exit(prev_state);
272 		break;
273 	case KVM_PV_REASON_PAGE_READY:
274 		rcu_irq_enter();
275 		exit_idle();
276 		kvm_async_pf_task_wake((u32)read_cr2());
277 		rcu_irq_exit();
278 		break;
279 	}
280 }
281 NOKPROBE_SYMBOL(do_async_page_fault);
282 
283 static void __init paravirt_ops_setup(void)
284 {
285 	pv_info.name = "KVM";
286 	pv_info.paravirt_enabled = 1;
287 
288 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
289 		pv_cpu_ops.io_delay = kvm_io_delay;
290 
291 #ifdef CONFIG_X86_IO_APIC
292 	no_timer_check = 1;
293 #endif
294 }
295 
296 static void kvm_register_steal_time(void)
297 {
298 	int cpu = smp_processor_id();
299 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
300 
301 	if (!has_steal_clock)
302 		return;
303 
304 	memset(st, 0, sizeof(*st));
305 
306 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
307 	pr_info("kvm-stealtime: cpu %d, msr %llx\n",
308 		cpu, (unsigned long long) slow_virt_to_phys(st));
309 }
310 
311 static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
312 
313 static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
314 {
315 	/**
316 	 * This relies on __test_and_clear_bit to modify the memory
317 	 * in a way that is atomic with respect to the local CPU.
318 	 * The hypervisor only accesses this memory from the local CPU so
319 	 * there's no need for lock or memory barriers.
320 	 * An optimization barrier is implied in apic write.
321 	 */
322 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
323 		return;
324 	apic_write(APIC_EOI, APIC_EOI_ACK);
325 }
326 
327 void kvm_guest_cpu_init(void)
328 {
329 	if (!kvm_para_available())
330 		return;
331 
332 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
333 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
334 
335 #ifdef CONFIG_PREEMPT
336 		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
337 #endif
338 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
339 		__this_cpu_write(apf_reason.enabled, 1);
340 		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
341 		       smp_processor_id());
342 	}
343 
344 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
345 		unsigned long pa;
346 		/* Size alignment is implied but just to make it explicit. */
347 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
348 		__this_cpu_write(kvm_apic_eoi, 0);
349 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
350 			| KVM_MSR_ENABLED;
351 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
352 	}
353 
354 	if (has_steal_clock)
355 		kvm_register_steal_time();
356 }
357 
358 static void kvm_pv_disable_apf(void)
359 {
360 	if (!__this_cpu_read(apf_reason.enabled))
361 		return;
362 
363 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
364 	__this_cpu_write(apf_reason.enabled, 0);
365 
366 	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
367 	       smp_processor_id());
368 }
369 
370 static void kvm_pv_guest_cpu_reboot(void *unused)
371 {
372 	/*
373 	 * We disable PV EOI before we load a new kernel by kexec,
374 	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
375 	 * New kernel can re-enable when it boots.
376 	 */
377 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
378 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
379 	kvm_pv_disable_apf();
380 	kvm_disable_steal_time();
381 }
382 
383 static int kvm_pv_reboot_notify(struct notifier_block *nb,
384 				unsigned long code, void *unused)
385 {
386 	if (code == SYS_RESTART)
387 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
388 	return NOTIFY_DONE;
389 }
390 
391 static struct notifier_block kvm_pv_reboot_nb = {
392 	.notifier_call = kvm_pv_reboot_notify,
393 };
394 
395 static u64 kvm_steal_clock(int cpu)
396 {
397 	u64 steal;
398 	struct kvm_steal_time *src;
399 	int version;
400 
401 	src = &per_cpu(steal_time, cpu);
402 	do {
403 		version = src->version;
404 		rmb();
405 		steal = src->steal;
406 		rmb();
407 	} while ((version & 1) || (version != src->version));
408 
409 	return steal;
410 }
411 
412 void kvm_disable_steal_time(void)
413 {
414 	if (!has_steal_clock)
415 		return;
416 
417 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
418 }
419 
420 #ifdef CONFIG_SMP
421 static void __init kvm_smp_prepare_boot_cpu(void)
422 {
423 	kvm_guest_cpu_init();
424 	native_smp_prepare_boot_cpu();
425 	kvm_spinlock_init();
426 }
427 
428 static void kvm_guest_cpu_online(void *dummy)
429 {
430 	kvm_guest_cpu_init();
431 }
432 
433 static void kvm_guest_cpu_offline(void *dummy)
434 {
435 	kvm_disable_steal_time();
436 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
437 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
438 	kvm_pv_disable_apf();
439 	apf_task_wake_all();
440 }
441 
442 static int kvm_cpu_notify(struct notifier_block *self, unsigned long action,
443 			  void *hcpu)
444 {
445 	int cpu = (unsigned long)hcpu;
446 	switch (action) {
447 	case CPU_ONLINE:
448 	case CPU_DOWN_FAILED:
449 	case CPU_ONLINE_FROZEN:
450 		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
451 		break;
452 	case CPU_DOWN_PREPARE:
453 	case CPU_DOWN_PREPARE_FROZEN:
454 		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
455 		break;
456 	default:
457 		break;
458 	}
459 	return NOTIFY_OK;
460 }
461 
462 static struct notifier_block kvm_cpu_notifier = {
463         .notifier_call  = kvm_cpu_notify,
464 };
465 #endif
466 
467 static void __init kvm_apf_trap_init(void)
468 {
469 	set_intr_gate(14, async_page_fault);
470 }
471 
472 void __init kvm_guest_init(void)
473 {
474 	int i;
475 
476 	if (!kvm_para_available())
477 		return;
478 
479 	paravirt_ops_setup();
480 	register_reboot_notifier(&kvm_pv_reboot_nb);
481 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
482 		spin_lock_init(&async_pf_sleepers[i].lock);
483 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
484 		x86_init.irqs.trap_init = kvm_apf_trap_init;
485 
486 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
487 		has_steal_clock = 1;
488 		pv_time_ops.steal_clock = kvm_steal_clock;
489 	}
490 
491 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
492 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
493 
494 	if (kvmclock_vsyscall)
495 		kvm_setup_vsyscall_timeinfo();
496 
497 #ifdef CONFIG_SMP
498 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
499 	register_cpu_notifier(&kvm_cpu_notifier);
500 #else
501 	kvm_guest_cpu_init();
502 #endif
503 
504 	/*
505 	 * Hard lockup detection is enabled by default. Disable it, as guests
506 	 * can get false positives too easily, for example if the host is
507 	 * overcommitted.
508 	 */
509 	watchdog_enable_hardlockup_detector(false);
510 }
511 
512 static noinline uint32_t __kvm_cpuid_base(void)
513 {
514 	if (boot_cpu_data.cpuid_level < 0)
515 		return 0;	/* So we don't blow up on old processors */
516 
517 	if (cpu_has_hypervisor)
518 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
519 
520 	return 0;
521 }
522 
523 static inline uint32_t kvm_cpuid_base(void)
524 {
525 	static int kvm_cpuid_base = -1;
526 
527 	if (kvm_cpuid_base == -1)
528 		kvm_cpuid_base = __kvm_cpuid_base();
529 
530 	return kvm_cpuid_base;
531 }
532 
533 bool kvm_para_available(void)
534 {
535 	return kvm_cpuid_base() != 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_para_available);
538 
539 unsigned int kvm_arch_para_features(void)
540 {
541 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
542 }
543 
544 static uint32_t __init kvm_detect(void)
545 {
546 	return kvm_cpuid_base();
547 }
548 
549 const struct hypervisor_x86 x86_hyper_kvm __refconst = {
550 	.name			= "KVM",
551 	.detect			= kvm_detect,
552 	.x2apic_available	= kvm_para_available,
553 };
554 EXPORT_SYMBOL_GPL(x86_hyper_kvm);
555 
556 static __init int activate_jump_labels(void)
557 {
558 	if (has_steal_clock) {
559 		static_key_slow_inc(&paravirt_steal_enabled);
560 		if (steal_acc)
561 			static_key_slow_inc(&paravirt_steal_rq_enabled);
562 	}
563 
564 	return 0;
565 }
566 arch_initcall(activate_jump_labels);
567 
568 #ifdef CONFIG_PARAVIRT_SPINLOCKS
569 
570 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
571 static void kvm_kick_cpu(int cpu)
572 {
573 	int apicid;
574 	unsigned long flags = 0;
575 
576 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
577 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
578 }
579 
580 enum kvm_contention_stat {
581 	TAKEN_SLOW,
582 	TAKEN_SLOW_PICKUP,
583 	RELEASED_SLOW,
584 	RELEASED_SLOW_KICKED,
585 	NR_CONTENTION_STATS
586 };
587 
588 #ifdef CONFIG_KVM_DEBUG_FS
589 #define HISTO_BUCKETS	30
590 
591 static struct kvm_spinlock_stats
592 {
593 	u32 contention_stats[NR_CONTENTION_STATS];
594 	u32 histo_spin_blocked[HISTO_BUCKETS+1];
595 	u64 time_blocked;
596 } spinlock_stats;
597 
598 static u8 zero_stats;
599 
600 static inline void check_zero(void)
601 {
602 	u8 ret;
603 	u8 old;
604 
605 	old = ACCESS_ONCE(zero_stats);
606 	if (unlikely(old)) {
607 		ret = cmpxchg(&zero_stats, old, 0);
608 		/* This ensures only one fellow resets the stat */
609 		if (ret == old)
610 			memset(&spinlock_stats, 0, sizeof(spinlock_stats));
611 	}
612 }
613 
614 static inline void add_stats(enum kvm_contention_stat var, u32 val)
615 {
616 	check_zero();
617 	spinlock_stats.contention_stats[var] += val;
618 }
619 
620 
621 static inline u64 spin_time_start(void)
622 {
623 	return sched_clock();
624 }
625 
626 static void __spin_time_accum(u64 delta, u32 *array)
627 {
628 	unsigned index;
629 
630 	index = ilog2(delta);
631 	check_zero();
632 
633 	if (index < HISTO_BUCKETS)
634 		array[index]++;
635 	else
636 		array[HISTO_BUCKETS]++;
637 }
638 
639 static inline void spin_time_accum_blocked(u64 start)
640 {
641 	u32 delta;
642 
643 	delta = sched_clock() - start;
644 	__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
645 	spinlock_stats.time_blocked += delta;
646 }
647 
648 static struct dentry *d_spin_debug;
649 static struct dentry *d_kvm_debug;
650 
651 struct dentry *kvm_init_debugfs(void)
652 {
653 	d_kvm_debug = debugfs_create_dir("kvm-guest", NULL);
654 	if (!d_kvm_debug)
655 		printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n");
656 
657 	return d_kvm_debug;
658 }
659 
660 static int __init kvm_spinlock_debugfs(void)
661 {
662 	struct dentry *d_kvm;
663 
664 	d_kvm = kvm_init_debugfs();
665 	if (d_kvm == NULL)
666 		return -ENOMEM;
667 
668 	d_spin_debug = debugfs_create_dir("spinlocks", d_kvm);
669 
670 	debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
671 
672 	debugfs_create_u32("taken_slow", 0444, d_spin_debug,
673 		   &spinlock_stats.contention_stats[TAKEN_SLOW]);
674 	debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
675 		   &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
676 
677 	debugfs_create_u32("released_slow", 0444, d_spin_debug,
678 		   &spinlock_stats.contention_stats[RELEASED_SLOW]);
679 	debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
680 		   &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
681 
682 	debugfs_create_u64("time_blocked", 0444, d_spin_debug,
683 			   &spinlock_stats.time_blocked);
684 
685 	debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
686 		     spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
687 
688 	return 0;
689 }
690 fs_initcall(kvm_spinlock_debugfs);
691 #else  /* !CONFIG_KVM_DEBUG_FS */
692 static inline void add_stats(enum kvm_contention_stat var, u32 val)
693 {
694 }
695 
696 static inline u64 spin_time_start(void)
697 {
698 	return 0;
699 }
700 
701 static inline void spin_time_accum_blocked(u64 start)
702 {
703 }
704 #endif  /* CONFIG_KVM_DEBUG_FS */
705 
706 struct kvm_lock_waiting {
707 	struct arch_spinlock *lock;
708 	__ticket_t want;
709 };
710 
711 /* cpus 'waiting' on a spinlock to become available */
712 static cpumask_t waiting_cpus;
713 
714 /* Track spinlock on which a cpu is waiting */
715 static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting);
716 
717 __visible void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
718 {
719 	struct kvm_lock_waiting *w;
720 	int cpu;
721 	u64 start;
722 	unsigned long flags;
723 
724 	if (in_nmi())
725 		return;
726 
727 	w = this_cpu_ptr(&klock_waiting);
728 	cpu = smp_processor_id();
729 	start = spin_time_start();
730 
731 	/*
732 	 * Make sure an interrupt handler can't upset things in a
733 	 * partially setup state.
734 	 */
735 	local_irq_save(flags);
736 
737 	/*
738 	 * The ordering protocol on this is that the "lock" pointer
739 	 * may only be set non-NULL if the "want" ticket is correct.
740 	 * If we're updating "want", we must first clear "lock".
741 	 */
742 	w->lock = NULL;
743 	smp_wmb();
744 	w->want = want;
745 	smp_wmb();
746 	w->lock = lock;
747 
748 	add_stats(TAKEN_SLOW, 1);
749 
750 	/*
751 	 * This uses set_bit, which is atomic but we should not rely on its
752 	 * reordering gurantees. So barrier is needed after this call.
753 	 */
754 	cpumask_set_cpu(cpu, &waiting_cpus);
755 
756 	barrier();
757 
758 	/*
759 	 * Mark entry to slowpath before doing the pickup test to make
760 	 * sure we don't deadlock with an unlocker.
761 	 */
762 	__ticket_enter_slowpath(lock);
763 
764 	/*
765 	 * check again make sure it didn't become free while
766 	 * we weren't looking.
767 	 */
768 	if (ACCESS_ONCE(lock->tickets.head) == want) {
769 		add_stats(TAKEN_SLOW_PICKUP, 1);
770 		goto out;
771 	}
772 
773 	/*
774 	 * halt until it's our turn and kicked. Note that we do safe halt
775 	 * for irq enabled case to avoid hang when lock info is overwritten
776 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
777 	 */
778 	if (arch_irqs_disabled_flags(flags))
779 		halt();
780 	else
781 		safe_halt();
782 
783 out:
784 	cpumask_clear_cpu(cpu, &waiting_cpus);
785 	w->lock = NULL;
786 	local_irq_restore(flags);
787 	spin_time_accum_blocked(start);
788 }
789 PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning);
790 
791 /* Kick vcpu waiting on @lock->head to reach value @ticket */
792 static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket)
793 {
794 	int cpu;
795 
796 	add_stats(RELEASED_SLOW, 1);
797 	for_each_cpu(cpu, &waiting_cpus) {
798 		const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu);
799 		if (ACCESS_ONCE(w->lock) == lock &&
800 		    ACCESS_ONCE(w->want) == ticket) {
801 			add_stats(RELEASED_SLOW_KICKED, 1);
802 			kvm_kick_cpu(cpu);
803 			break;
804 		}
805 	}
806 }
807 
808 /*
809  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
810  */
811 void __init kvm_spinlock_init(void)
812 {
813 	if (!kvm_para_available())
814 		return;
815 	/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
816 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
817 		return;
818 
819 	pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning);
820 	pv_lock_ops.unlock_kick = kvm_unlock_kick;
821 }
822 
823 static __init int kvm_spinlock_init_jump(void)
824 {
825 	if (!kvm_para_available())
826 		return 0;
827 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
828 		return 0;
829 
830 	static_key_slow_inc(&paravirt_ticketlocks_enabled);
831 	printk(KERN_INFO "KVM setup paravirtual spinlock\n");
832 
833 	return 0;
834 }
835 early_initcall(kvm_spinlock_init_jump);
836 
837 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
838