xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision 56d06fa2)
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/context_tracking.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/kvm_para.h>
27 #include <linux/cpu.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/hardirq.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/hash.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/kprobes.h>
37 #include <linux/debugfs.h>
38 #include <linux/nmi.h>
39 #include <linux/swait.h>
40 #include <asm/timer.h>
41 #include <asm/cpu.h>
42 #include <asm/traps.h>
43 #include <asm/desc.h>
44 #include <asm/tlbflush.h>
45 #include <asm/idle.h>
46 #include <asm/apic.h>
47 #include <asm/apicdef.h>
48 #include <asm/hypervisor.h>
49 #include <asm/kvm_guest.h>
50 
51 static int kvmapf = 1;
52 
53 static int parse_no_kvmapf(char *arg)
54 {
55         kvmapf = 0;
56         return 0;
57 }
58 
59 early_param("no-kvmapf", parse_no_kvmapf);
60 
61 static int steal_acc = 1;
62 static int parse_no_stealacc(char *arg)
63 {
64         steal_acc = 0;
65         return 0;
66 }
67 
68 early_param("no-steal-acc", parse_no_stealacc);
69 
70 static int kvmclock_vsyscall = 1;
71 static int parse_no_kvmclock_vsyscall(char *arg)
72 {
73         kvmclock_vsyscall = 0;
74         return 0;
75 }
76 
77 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
78 
79 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
80 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
81 static int has_steal_clock = 0;
82 
83 /*
84  * No need for any "IO delay" on KVM
85  */
86 static void kvm_io_delay(void)
87 {
88 }
89 
90 #define KVM_TASK_SLEEP_HASHBITS 8
91 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
92 
93 struct kvm_task_sleep_node {
94 	struct hlist_node link;
95 	struct swait_queue_head wq;
96 	u32 token;
97 	int cpu;
98 	bool halted;
99 };
100 
101 static struct kvm_task_sleep_head {
102 	raw_spinlock_t lock;
103 	struct hlist_head list;
104 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
105 
106 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
107 						  u32 token)
108 {
109 	struct hlist_node *p;
110 
111 	hlist_for_each(p, &b->list) {
112 		struct kvm_task_sleep_node *n =
113 			hlist_entry(p, typeof(*n), link);
114 		if (n->token == token)
115 			return n;
116 	}
117 
118 	return NULL;
119 }
120 
121 void kvm_async_pf_task_wait(u32 token)
122 {
123 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
124 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
125 	struct kvm_task_sleep_node n, *e;
126 	DECLARE_SWAITQUEUE(wait);
127 
128 	rcu_irq_enter();
129 
130 	raw_spin_lock(&b->lock);
131 	e = _find_apf_task(b, token);
132 	if (e) {
133 		/* dummy entry exist -> wake up was delivered ahead of PF */
134 		hlist_del(&e->link);
135 		kfree(e);
136 		raw_spin_unlock(&b->lock);
137 
138 		rcu_irq_exit();
139 		return;
140 	}
141 
142 	n.token = token;
143 	n.cpu = smp_processor_id();
144 	n.halted = is_idle_task(current) || preempt_count() > 1;
145 	init_swait_queue_head(&n.wq);
146 	hlist_add_head(&n.link, &b->list);
147 	raw_spin_unlock(&b->lock);
148 
149 	for (;;) {
150 		if (!n.halted)
151 			prepare_to_swait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
152 		if (hlist_unhashed(&n.link))
153 			break;
154 
155 		if (!n.halted) {
156 			local_irq_enable();
157 			schedule();
158 			local_irq_disable();
159 		} else {
160 			/*
161 			 * We cannot reschedule. So halt.
162 			 */
163 			rcu_irq_exit();
164 			native_safe_halt();
165 			rcu_irq_enter();
166 			local_irq_disable();
167 		}
168 	}
169 	if (!n.halted)
170 		finish_swait(&n.wq, &wait);
171 
172 	rcu_irq_exit();
173 	return;
174 }
175 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
176 
177 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
178 {
179 	hlist_del_init(&n->link);
180 	if (n->halted)
181 		smp_send_reschedule(n->cpu);
182 	else if (swait_active(&n->wq))
183 		swake_up(&n->wq);
184 }
185 
186 static void apf_task_wake_all(void)
187 {
188 	int i;
189 
190 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
191 		struct hlist_node *p, *next;
192 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
193 		raw_spin_lock(&b->lock);
194 		hlist_for_each_safe(p, next, &b->list) {
195 			struct kvm_task_sleep_node *n =
196 				hlist_entry(p, typeof(*n), link);
197 			if (n->cpu == smp_processor_id())
198 				apf_task_wake_one(n);
199 		}
200 		raw_spin_unlock(&b->lock);
201 	}
202 }
203 
204 void kvm_async_pf_task_wake(u32 token)
205 {
206 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
207 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
208 	struct kvm_task_sleep_node *n;
209 
210 	if (token == ~0) {
211 		apf_task_wake_all();
212 		return;
213 	}
214 
215 again:
216 	raw_spin_lock(&b->lock);
217 	n = _find_apf_task(b, token);
218 	if (!n) {
219 		/*
220 		 * async PF was not yet handled.
221 		 * Add dummy entry for the token.
222 		 */
223 		n = kzalloc(sizeof(*n), GFP_ATOMIC);
224 		if (!n) {
225 			/*
226 			 * Allocation failed! Busy wait while other cpu
227 			 * handles async PF.
228 			 */
229 			raw_spin_unlock(&b->lock);
230 			cpu_relax();
231 			goto again;
232 		}
233 		n->token = token;
234 		n->cpu = smp_processor_id();
235 		init_swait_queue_head(&n->wq);
236 		hlist_add_head(&n->link, &b->list);
237 	} else
238 		apf_task_wake_one(n);
239 	raw_spin_unlock(&b->lock);
240 	return;
241 }
242 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243 
244 u32 kvm_read_and_reset_pf_reason(void)
245 {
246 	u32 reason = 0;
247 
248 	if (__this_cpu_read(apf_reason.enabled)) {
249 		reason = __this_cpu_read(apf_reason.reason);
250 		__this_cpu_write(apf_reason.reason, 0);
251 	}
252 
253 	return reason;
254 }
255 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256 NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
257 
258 dotraplinkage void
259 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
260 {
261 	enum ctx_state prev_state;
262 
263 	switch (kvm_read_and_reset_pf_reason()) {
264 	default:
265 		trace_do_page_fault(regs, error_code);
266 		break;
267 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
268 		/* page is swapped out by the host. */
269 		prev_state = exception_enter();
270 		exit_idle();
271 		kvm_async_pf_task_wait((u32)read_cr2());
272 		exception_exit(prev_state);
273 		break;
274 	case KVM_PV_REASON_PAGE_READY:
275 		rcu_irq_enter();
276 		exit_idle();
277 		kvm_async_pf_task_wake((u32)read_cr2());
278 		rcu_irq_exit();
279 		break;
280 	}
281 }
282 NOKPROBE_SYMBOL(do_async_page_fault);
283 
284 static void __init paravirt_ops_setup(void)
285 {
286 	pv_info.name = "KVM";
287 
288 	/*
289 	 * KVM isn't paravirt in the sense of paravirt_enabled.  A KVM
290 	 * guest kernel works like a bare metal kernel with additional
291 	 * features, and paravirt_enabled is about features that are
292 	 * missing.
293 	 */
294 	pv_info.paravirt_enabled = 0;
295 
296 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
297 		pv_cpu_ops.io_delay = kvm_io_delay;
298 
299 #ifdef CONFIG_X86_IO_APIC
300 	no_timer_check = 1;
301 #endif
302 }
303 
304 static void kvm_register_steal_time(void)
305 {
306 	int cpu = smp_processor_id();
307 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
308 
309 	if (!has_steal_clock)
310 		return;
311 
312 	memset(st, 0, sizeof(*st));
313 
314 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
315 	pr_info("kvm-stealtime: cpu %d, msr %llx\n",
316 		cpu, (unsigned long long) slow_virt_to_phys(st));
317 }
318 
319 static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
320 
321 static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
322 {
323 	/**
324 	 * This relies on __test_and_clear_bit to modify the memory
325 	 * in a way that is atomic with respect to the local CPU.
326 	 * The hypervisor only accesses this memory from the local CPU so
327 	 * there's no need for lock or memory barriers.
328 	 * An optimization barrier is implied in apic write.
329 	 */
330 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
331 		return;
332 	apic_write(APIC_EOI, APIC_EOI_ACK);
333 }
334 
335 static void kvm_guest_cpu_init(void)
336 {
337 	if (!kvm_para_available())
338 		return;
339 
340 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
341 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
342 
343 #ifdef CONFIG_PREEMPT
344 		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
345 #endif
346 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
347 		__this_cpu_write(apf_reason.enabled, 1);
348 		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
349 		       smp_processor_id());
350 	}
351 
352 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
353 		unsigned long pa;
354 		/* Size alignment is implied but just to make it explicit. */
355 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
356 		__this_cpu_write(kvm_apic_eoi, 0);
357 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
358 			| KVM_MSR_ENABLED;
359 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
360 	}
361 
362 	if (has_steal_clock)
363 		kvm_register_steal_time();
364 }
365 
366 static void kvm_pv_disable_apf(void)
367 {
368 	if (!__this_cpu_read(apf_reason.enabled))
369 		return;
370 
371 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
372 	__this_cpu_write(apf_reason.enabled, 0);
373 
374 	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
375 	       smp_processor_id());
376 }
377 
378 static void kvm_pv_guest_cpu_reboot(void *unused)
379 {
380 	/*
381 	 * We disable PV EOI before we load a new kernel by kexec,
382 	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
383 	 * New kernel can re-enable when it boots.
384 	 */
385 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
386 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
387 	kvm_pv_disable_apf();
388 	kvm_disable_steal_time();
389 }
390 
391 static int kvm_pv_reboot_notify(struct notifier_block *nb,
392 				unsigned long code, void *unused)
393 {
394 	if (code == SYS_RESTART)
395 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
396 	return NOTIFY_DONE;
397 }
398 
399 static struct notifier_block kvm_pv_reboot_nb = {
400 	.notifier_call = kvm_pv_reboot_notify,
401 };
402 
403 static u64 kvm_steal_clock(int cpu)
404 {
405 	u64 steal;
406 	struct kvm_steal_time *src;
407 	int version;
408 
409 	src = &per_cpu(steal_time, cpu);
410 	do {
411 		version = src->version;
412 		rmb();
413 		steal = src->steal;
414 		rmb();
415 	} while ((version & 1) || (version != src->version));
416 
417 	return steal;
418 }
419 
420 void kvm_disable_steal_time(void)
421 {
422 	if (!has_steal_clock)
423 		return;
424 
425 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
426 }
427 
428 #ifdef CONFIG_SMP
429 static void __init kvm_smp_prepare_boot_cpu(void)
430 {
431 	kvm_guest_cpu_init();
432 	native_smp_prepare_boot_cpu();
433 	kvm_spinlock_init();
434 }
435 
436 static void kvm_guest_cpu_online(void *dummy)
437 {
438 	kvm_guest_cpu_init();
439 }
440 
441 static void kvm_guest_cpu_offline(void *dummy)
442 {
443 	kvm_disable_steal_time();
444 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
445 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
446 	kvm_pv_disable_apf();
447 	apf_task_wake_all();
448 }
449 
450 static int kvm_cpu_notify(struct notifier_block *self, unsigned long action,
451 			  void *hcpu)
452 {
453 	int cpu = (unsigned long)hcpu;
454 	switch (action) {
455 	case CPU_ONLINE:
456 	case CPU_DOWN_FAILED:
457 	case CPU_ONLINE_FROZEN:
458 		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
459 		break;
460 	case CPU_DOWN_PREPARE:
461 	case CPU_DOWN_PREPARE_FROZEN:
462 		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
463 		break;
464 	default:
465 		break;
466 	}
467 	return NOTIFY_OK;
468 }
469 
470 static struct notifier_block kvm_cpu_notifier = {
471         .notifier_call  = kvm_cpu_notify,
472 };
473 #endif
474 
475 static void __init kvm_apf_trap_init(void)
476 {
477 	set_intr_gate(14, async_page_fault);
478 }
479 
480 void __init kvm_guest_init(void)
481 {
482 	int i;
483 
484 	if (!kvm_para_available())
485 		return;
486 
487 	paravirt_ops_setup();
488 	register_reboot_notifier(&kvm_pv_reboot_nb);
489 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
490 		raw_spin_lock_init(&async_pf_sleepers[i].lock);
491 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
492 		x86_init.irqs.trap_init = kvm_apf_trap_init;
493 
494 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
495 		has_steal_clock = 1;
496 		pv_time_ops.steal_clock = kvm_steal_clock;
497 	}
498 
499 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
500 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
501 
502 	if (kvmclock_vsyscall)
503 		kvm_setup_vsyscall_timeinfo();
504 
505 #ifdef CONFIG_SMP
506 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
507 	register_cpu_notifier(&kvm_cpu_notifier);
508 #else
509 	kvm_guest_cpu_init();
510 #endif
511 
512 	/*
513 	 * Hard lockup detection is enabled by default. Disable it, as guests
514 	 * can get false positives too easily, for example if the host is
515 	 * overcommitted.
516 	 */
517 	hardlockup_detector_disable();
518 }
519 
520 static noinline uint32_t __kvm_cpuid_base(void)
521 {
522 	if (boot_cpu_data.cpuid_level < 0)
523 		return 0;	/* So we don't blow up on old processors */
524 
525 	if (cpu_has_hypervisor)
526 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
527 
528 	return 0;
529 }
530 
531 static inline uint32_t kvm_cpuid_base(void)
532 {
533 	static int kvm_cpuid_base = -1;
534 
535 	if (kvm_cpuid_base == -1)
536 		kvm_cpuid_base = __kvm_cpuid_base();
537 
538 	return kvm_cpuid_base;
539 }
540 
541 bool kvm_para_available(void)
542 {
543 	return kvm_cpuid_base() != 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_para_available);
546 
547 unsigned int kvm_arch_para_features(void)
548 {
549 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
550 }
551 
552 static uint32_t __init kvm_detect(void)
553 {
554 	return kvm_cpuid_base();
555 }
556 
557 const struct hypervisor_x86 x86_hyper_kvm __refconst = {
558 	.name			= "KVM",
559 	.detect			= kvm_detect,
560 	.x2apic_available	= kvm_para_available,
561 };
562 EXPORT_SYMBOL_GPL(x86_hyper_kvm);
563 
564 static __init int activate_jump_labels(void)
565 {
566 	if (has_steal_clock) {
567 		static_key_slow_inc(&paravirt_steal_enabled);
568 		if (steal_acc)
569 			static_key_slow_inc(&paravirt_steal_rq_enabled);
570 	}
571 
572 	return 0;
573 }
574 arch_initcall(activate_jump_labels);
575 
576 #ifdef CONFIG_PARAVIRT_SPINLOCKS
577 
578 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
579 static void kvm_kick_cpu(int cpu)
580 {
581 	int apicid;
582 	unsigned long flags = 0;
583 
584 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
585 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
586 }
587 
588 
589 #ifdef CONFIG_QUEUED_SPINLOCKS
590 
591 #include <asm/qspinlock.h>
592 
593 static void kvm_wait(u8 *ptr, u8 val)
594 {
595 	unsigned long flags;
596 
597 	if (in_nmi())
598 		return;
599 
600 	local_irq_save(flags);
601 
602 	if (READ_ONCE(*ptr) != val)
603 		goto out;
604 
605 	/*
606 	 * halt until it's our turn and kicked. Note that we do safe halt
607 	 * for irq enabled case to avoid hang when lock info is overwritten
608 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
609 	 */
610 	if (arch_irqs_disabled_flags(flags))
611 		halt();
612 	else
613 		safe_halt();
614 
615 out:
616 	local_irq_restore(flags);
617 }
618 
619 #else /* !CONFIG_QUEUED_SPINLOCKS */
620 
621 enum kvm_contention_stat {
622 	TAKEN_SLOW,
623 	TAKEN_SLOW_PICKUP,
624 	RELEASED_SLOW,
625 	RELEASED_SLOW_KICKED,
626 	NR_CONTENTION_STATS
627 };
628 
629 #ifdef CONFIG_KVM_DEBUG_FS
630 #define HISTO_BUCKETS	30
631 
632 static struct kvm_spinlock_stats
633 {
634 	u32 contention_stats[NR_CONTENTION_STATS];
635 	u32 histo_spin_blocked[HISTO_BUCKETS+1];
636 	u64 time_blocked;
637 } spinlock_stats;
638 
639 static u8 zero_stats;
640 
641 static inline void check_zero(void)
642 {
643 	u8 ret;
644 	u8 old;
645 
646 	old = READ_ONCE(zero_stats);
647 	if (unlikely(old)) {
648 		ret = cmpxchg(&zero_stats, old, 0);
649 		/* This ensures only one fellow resets the stat */
650 		if (ret == old)
651 			memset(&spinlock_stats, 0, sizeof(spinlock_stats));
652 	}
653 }
654 
655 static inline void add_stats(enum kvm_contention_stat var, u32 val)
656 {
657 	check_zero();
658 	spinlock_stats.contention_stats[var] += val;
659 }
660 
661 
662 static inline u64 spin_time_start(void)
663 {
664 	return sched_clock();
665 }
666 
667 static void __spin_time_accum(u64 delta, u32 *array)
668 {
669 	unsigned index;
670 
671 	index = ilog2(delta);
672 	check_zero();
673 
674 	if (index < HISTO_BUCKETS)
675 		array[index]++;
676 	else
677 		array[HISTO_BUCKETS]++;
678 }
679 
680 static inline void spin_time_accum_blocked(u64 start)
681 {
682 	u32 delta;
683 
684 	delta = sched_clock() - start;
685 	__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
686 	spinlock_stats.time_blocked += delta;
687 }
688 
689 static struct dentry *d_spin_debug;
690 static struct dentry *d_kvm_debug;
691 
692 static struct dentry *kvm_init_debugfs(void)
693 {
694 	d_kvm_debug = debugfs_create_dir("kvm-guest", NULL);
695 	if (!d_kvm_debug)
696 		printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n");
697 
698 	return d_kvm_debug;
699 }
700 
701 static int __init kvm_spinlock_debugfs(void)
702 {
703 	struct dentry *d_kvm;
704 
705 	d_kvm = kvm_init_debugfs();
706 	if (d_kvm == NULL)
707 		return -ENOMEM;
708 
709 	d_spin_debug = debugfs_create_dir("spinlocks", d_kvm);
710 
711 	debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
712 
713 	debugfs_create_u32("taken_slow", 0444, d_spin_debug,
714 		   &spinlock_stats.contention_stats[TAKEN_SLOW]);
715 	debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
716 		   &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
717 
718 	debugfs_create_u32("released_slow", 0444, d_spin_debug,
719 		   &spinlock_stats.contention_stats[RELEASED_SLOW]);
720 	debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
721 		   &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
722 
723 	debugfs_create_u64("time_blocked", 0444, d_spin_debug,
724 			   &spinlock_stats.time_blocked);
725 
726 	debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
727 		     spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
728 
729 	return 0;
730 }
731 fs_initcall(kvm_spinlock_debugfs);
732 #else  /* !CONFIG_KVM_DEBUG_FS */
733 static inline void add_stats(enum kvm_contention_stat var, u32 val)
734 {
735 }
736 
737 static inline u64 spin_time_start(void)
738 {
739 	return 0;
740 }
741 
742 static inline void spin_time_accum_blocked(u64 start)
743 {
744 }
745 #endif  /* CONFIG_KVM_DEBUG_FS */
746 
747 struct kvm_lock_waiting {
748 	struct arch_spinlock *lock;
749 	__ticket_t want;
750 };
751 
752 /* cpus 'waiting' on a spinlock to become available */
753 static cpumask_t waiting_cpus;
754 
755 /* Track spinlock on which a cpu is waiting */
756 static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting);
757 
758 __visible void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
759 {
760 	struct kvm_lock_waiting *w;
761 	int cpu;
762 	u64 start;
763 	unsigned long flags;
764 	__ticket_t head;
765 
766 	if (in_nmi())
767 		return;
768 
769 	w = this_cpu_ptr(&klock_waiting);
770 	cpu = smp_processor_id();
771 	start = spin_time_start();
772 
773 	/*
774 	 * Make sure an interrupt handler can't upset things in a
775 	 * partially setup state.
776 	 */
777 	local_irq_save(flags);
778 
779 	/*
780 	 * The ordering protocol on this is that the "lock" pointer
781 	 * may only be set non-NULL if the "want" ticket is correct.
782 	 * If we're updating "want", we must first clear "lock".
783 	 */
784 	w->lock = NULL;
785 	smp_wmb();
786 	w->want = want;
787 	smp_wmb();
788 	w->lock = lock;
789 
790 	add_stats(TAKEN_SLOW, 1);
791 
792 	/*
793 	 * This uses set_bit, which is atomic but we should not rely on its
794 	 * reordering gurantees. So barrier is needed after this call.
795 	 */
796 	cpumask_set_cpu(cpu, &waiting_cpus);
797 
798 	barrier();
799 
800 	/*
801 	 * Mark entry to slowpath before doing the pickup test to make
802 	 * sure we don't deadlock with an unlocker.
803 	 */
804 	__ticket_enter_slowpath(lock);
805 
806 	/* make sure enter_slowpath, which is atomic does not cross the read */
807 	smp_mb__after_atomic();
808 
809 	/*
810 	 * check again make sure it didn't become free while
811 	 * we weren't looking.
812 	 */
813 	head = READ_ONCE(lock->tickets.head);
814 	if (__tickets_equal(head, want)) {
815 		add_stats(TAKEN_SLOW_PICKUP, 1);
816 		goto out;
817 	}
818 
819 	/*
820 	 * halt until it's our turn and kicked. Note that we do safe halt
821 	 * for irq enabled case to avoid hang when lock info is overwritten
822 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
823 	 */
824 	if (arch_irqs_disabled_flags(flags))
825 		halt();
826 	else
827 		safe_halt();
828 
829 out:
830 	cpumask_clear_cpu(cpu, &waiting_cpus);
831 	w->lock = NULL;
832 	local_irq_restore(flags);
833 	spin_time_accum_blocked(start);
834 }
835 PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning);
836 
837 /* Kick vcpu waiting on @lock->head to reach value @ticket */
838 static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket)
839 {
840 	int cpu;
841 
842 	add_stats(RELEASED_SLOW, 1);
843 	for_each_cpu(cpu, &waiting_cpus) {
844 		const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu);
845 		if (READ_ONCE(w->lock) == lock &&
846 		    READ_ONCE(w->want) == ticket) {
847 			add_stats(RELEASED_SLOW_KICKED, 1);
848 			kvm_kick_cpu(cpu);
849 			break;
850 		}
851 	}
852 }
853 
854 #endif /* !CONFIG_QUEUED_SPINLOCKS */
855 
856 /*
857  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
858  */
859 void __init kvm_spinlock_init(void)
860 {
861 	if (!kvm_para_available())
862 		return;
863 	/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
864 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
865 		return;
866 
867 #ifdef CONFIG_QUEUED_SPINLOCKS
868 	__pv_init_lock_hash();
869 	pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
870 	pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
871 	pv_lock_ops.wait = kvm_wait;
872 	pv_lock_ops.kick = kvm_kick_cpu;
873 #else /* !CONFIG_QUEUED_SPINLOCKS */
874 	pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning);
875 	pv_lock_ops.unlock_kick = kvm_unlock_kick;
876 #endif
877 }
878 
879 static __init int kvm_spinlock_init_jump(void)
880 {
881 	if (!kvm_para_available())
882 		return 0;
883 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
884 		return 0;
885 
886 	static_key_slow_inc(&paravirt_ticketlocks_enabled);
887 	printk(KERN_INFO "KVM setup paravirtual spinlock\n");
888 
889 	return 0;
890 }
891 early_initcall(kvm_spinlock_init_jump);
892 
893 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
894