xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision 565d76cb)
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/hash.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/kprobes.h>
36 #include <asm/timer.h>
37 #include <asm/cpu.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
41 
42 #define MMU_QUEUE_SIZE 1024
43 
44 static int kvmapf = 1;
45 
46 static int parse_no_kvmapf(char *arg)
47 {
48         kvmapf = 0;
49         return 0;
50 }
51 
52 early_param("no-kvmapf", parse_no_kvmapf);
53 
54 struct kvm_para_state {
55 	u8 mmu_queue[MMU_QUEUE_SIZE];
56 	int mmu_queue_len;
57 };
58 
59 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
60 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
61 
62 static struct kvm_para_state *kvm_para_state(void)
63 {
64 	return &per_cpu(para_state, raw_smp_processor_id());
65 }
66 
67 /*
68  * No need for any "IO delay" on KVM
69  */
70 static void kvm_io_delay(void)
71 {
72 }
73 
74 #define KVM_TASK_SLEEP_HASHBITS 8
75 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
76 
77 struct kvm_task_sleep_node {
78 	struct hlist_node link;
79 	wait_queue_head_t wq;
80 	u32 token;
81 	int cpu;
82 	bool halted;
83 	struct mm_struct *mm;
84 };
85 
86 static struct kvm_task_sleep_head {
87 	spinlock_t lock;
88 	struct hlist_head list;
89 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
90 
91 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
92 						  u32 token)
93 {
94 	struct hlist_node *p;
95 
96 	hlist_for_each(p, &b->list) {
97 		struct kvm_task_sleep_node *n =
98 			hlist_entry(p, typeof(*n), link);
99 		if (n->token == token)
100 			return n;
101 	}
102 
103 	return NULL;
104 }
105 
106 void kvm_async_pf_task_wait(u32 token)
107 {
108 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
109 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
110 	struct kvm_task_sleep_node n, *e;
111 	DEFINE_WAIT(wait);
112 	int cpu, idle;
113 
114 	cpu = get_cpu();
115 	idle = idle_cpu(cpu);
116 	put_cpu();
117 
118 	spin_lock(&b->lock);
119 	e = _find_apf_task(b, token);
120 	if (e) {
121 		/* dummy entry exist -> wake up was delivered ahead of PF */
122 		hlist_del(&e->link);
123 		kfree(e);
124 		spin_unlock(&b->lock);
125 		return;
126 	}
127 
128 	n.token = token;
129 	n.cpu = smp_processor_id();
130 	n.mm = current->active_mm;
131 	n.halted = idle || preempt_count() > 1;
132 	atomic_inc(&n.mm->mm_count);
133 	init_waitqueue_head(&n.wq);
134 	hlist_add_head(&n.link, &b->list);
135 	spin_unlock(&b->lock);
136 
137 	for (;;) {
138 		if (!n.halted)
139 			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
140 		if (hlist_unhashed(&n.link))
141 			break;
142 
143 		if (!n.halted) {
144 			local_irq_enable();
145 			schedule();
146 			local_irq_disable();
147 		} else {
148 			/*
149 			 * We cannot reschedule. So halt.
150 			 */
151 			native_safe_halt();
152 			local_irq_disable();
153 		}
154 	}
155 	if (!n.halted)
156 		finish_wait(&n.wq, &wait);
157 
158 	return;
159 }
160 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
161 
162 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
163 {
164 	hlist_del_init(&n->link);
165 	if (!n->mm)
166 		return;
167 	mmdrop(n->mm);
168 	if (n->halted)
169 		smp_send_reschedule(n->cpu);
170 	else if (waitqueue_active(&n->wq))
171 		wake_up(&n->wq);
172 }
173 
174 static void apf_task_wake_all(void)
175 {
176 	int i;
177 
178 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
179 		struct hlist_node *p, *next;
180 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
181 		spin_lock(&b->lock);
182 		hlist_for_each_safe(p, next, &b->list) {
183 			struct kvm_task_sleep_node *n =
184 				hlist_entry(p, typeof(*n), link);
185 			if (n->cpu == smp_processor_id())
186 				apf_task_wake_one(n);
187 		}
188 		spin_unlock(&b->lock);
189 	}
190 }
191 
192 void kvm_async_pf_task_wake(u32 token)
193 {
194 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
195 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
196 	struct kvm_task_sleep_node *n;
197 
198 	if (token == ~0) {
199 		apf_task_wake_all();
200 		return;
201 	}
202 
203 again:
204 	spin_lock(&b->lock);
205 	n = _find_apf_task(b, token);
206 	if (!n) {
207 		/*
208 		 * async PF was not yet handled.
209 		 * Add dummy entry for the token.
210 		 */
211 		n = kmalloc(sizeof(*n), GFP_ATOMIC);
212 		if (!n) {
213 			/*
214 			 * Allocation failed! Busy wait while other cpu
215 			 * handles async PF.
216 			 */
217 			spin_unlock(&b->lock);
218 			cpu_relax();
219 			goto again;
220 		}
221 		n->token = token;
222 		n->cpu = smp_processor_id();
223 		n->mm = NULL;
224 		init_waitqueue_head(&n->wq);
225 		hlist_add_head(&n->link, &b->list);
226 	} else
227 		apf_task_wake_one(n);
228 	spin_unlock(&b->lock);
229 	return;
230 }
231 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
232 
233 u32 kvm_read_and_reset_pf_reason(void)
234 {
235 	u32 reason = 0;
236 
237 	if (__get_cpu_var(apf_reason).enabled) {
238 		reason = __get_cpu_var(apf_reason).reason;
239 		__get_cpu_var(apf_reason).reason = 0;
240 	}
241 
242 	return reason;
243 }
244 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
245 
246 dotraplinkage void __kprobes
247 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
248 {
249 	switch (kvm_read_and_reset_pf_reason()) {
250 	default:
251 		do_page_fault(regs, error_code);
252 		break;
253 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
254 		/* page is swapped out by the host. */
255 		kvm_async_pf_task_wait((u32)read_cr2());
256 		break;
257 	case KVM_PV_REASON_PAGE_READY:
258 		kvm_async_pf_task_wake((u32)read_cr2());
259 		break;
260 	}
261 }
262 
263 static void kvm_mmu_op(void *buffer, unsigned len)
264 {
265 	int r;
266 	unsigned long a1, a2;
267 
268 	do {
269 		a1 = __pa(buffer);
270 		a2 = 0;   /* on i386 __pa() always returns <4G */
271 		r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
272 		buffer += r;
273 		len -= r;
274 	} while (len);
275 }
276 
277 static void mmu_queue_flush(struct kvm_para_state *state)
278 {
279 	if (state->mmu_queue_len) {
280 		kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
281 		state->mmu_queue_len = 0;
282 	}
283 }
284 
285 static void kvm_deferred_mmu_op(void *buffer, int len)
286 {
287 	struct kvm_para_state *state = kvm_para_state();
288 
289 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
290 		kvm_mmu_op(buffer, len);
291 		return;
292 	}
293 	if (state->mmu_queue_len + len > sizeof state->mmu_queue)
294 		mmu_queue_flush(state);
295 	memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
296 	state->mmu_queue_len += len;
297 }
298 
299 static void kvm_mmu_write(void *dest, u64 val)
300 {
301 	__u64 pte_phys;
302 	struct kvm_mmu_op_write_pte wpte;
303 
304 #ifdef CONFIG_HIGHPTE
305 	struct page *page;
306 	unsigned long dst = (unsigned long) dest;
307 
308 	page = kmap_atomic_to_page(dest);
309 	pte_phys = page_to_pfn(page);
310 	pte_phys <<= PAGE_SHIFT;
311 	pte_phys += (dst & ~(PAGE_MASK));
312 #else
313 	pte_phys = (unsigned long)__pa(dest);
314 #endif
315 	wpte.header.op = KVM_MMU_OP_WRITE_PTE;
316 	wpte.pte_val = val;
317 	wpte.pte_phys = pte_phys;
318 
319 	kvm_deferred_mmu_op(&wpte, sizeof wpte);
320 }
321 
322 /*
323  * We only need to hook operations that are MMU writes.  We hook these so that
324  * we can use lazy MMU mode to batch these operations.  We could probably
325  * improve the performance of the host code if we used some of the information
326  * here to simplify processing of batched writes.
327  */
328 static void kvm_set_pte(pte_t *ptep, pte_t pte)
329 {
330 	kvm_mmu_write(ptep, pte_val(pte));
331 }
332 
333 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
334 			   pte_t *ptep, pte_t pte)
335 {
336 	kvm_mmu_write(ptep, pte_val(pte));
337 }
338 
339 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
340 {
341 	kvm_mmu_write(pmdp, pmd_val(pmd));
342 }
343 
344 #if PAGETABLE_LEVELS >= 3
345 #ifdef CONFIG_X86_PAE
346 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
347 {
348 	kvm_mmu_write(ptep, pte_val(pte));
349 }
350 
351 static void kvm_pte_clear(struct mm_struct *mm,
352 			  unsigned long addr, pte_t *ptep)
353 {
354 	kvm_mmu_write(ptep, 0);
355 }
356 
357 static void kvm_pmd_clear(pmd_t *pmdp)
358 {
359 	kvm_mmu_write(pmdp, 0);
360 }
361 #endif
362 
363 static void kvm_set_pud(pud_t *pudp, pud_t pud)
364 {
365 	kvm_mmu_write(pudp, pud_val(pud));
366 }
367 
368 #if PAGETABLE_LEVELS == 4
369 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
370 {
371 	kvm_mmu_write(pgdp, pgd_val(pgd));
372 }
373 #endif
374 #endif /* PAGETABLE_LEVELS >= 3 */
375 
376 static void kvm_flush_tlb(void)
377 {
378 	struct kvm_mmu_op_flush_tlb ftlb = {
379 		.header.op = KVM_MMU_OP_FLUSH_TLB,
380 	};
381 
382 	kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
383 }
384 
385 static void kvm_release_pt(unsigned long pfn)
386 {
387 	struct kvm_mmu_op_release_pt rpt = {
388 		.header.op = KVM_MMU_OP_RELEASE_PT,
389 		.pt_phys = (u64)pfn << PAGE_SHIFT,
390 	};
391 
392 	kvm_mmu_op(&rpt, sizeof rpt);
393 }
394 
395 static void kvm_enter_lazy_mmu(void)
396 {
397 	paravirt_enter_lazy_mmu();
398 }
399 
400 static void kvm_leave_lazy_mmu(void)
401 {
402 	struct kvm_para_state *state = kvm_para_state();
403 
404 	mmu_queue_flush(state);
405 	paravirt_leave_lazy_mmu();
406 }
407 
408 static void __init paravirt_ops_setup(void)
409 {
410 	pv_info.name = "KVM";
411 	pv_info.paravirt_enabled = 1;
412 
413 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
414 		pv_cpu_ops.io_delay = kvm_io_delay;
415 
416 	if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
417 		pv_mmu_ops.set_pte = kvm_set_pte;
418 		pv_mmu_ops.set_pte_at = kvm_set_pte_at;
419 		pv_mmu_ops.set_pmd = kvm_set_pmd;
420 #if PAGETABLE_LEVELS >= 3
421 #ifdef CONFIG_X86_PAE
422 		pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
423 		pv_mmu_ops.pte_clear = kvm_pte_clear;
424 		pv_mmu_ops.pmd_clear = kvm_pmd_clear;
425 #endif
426 		pv_mmu_ops.set_pud = kvm_set_pud;
427 #if PAGETABLE_LEVELS == 4
428 		pv_mmu_ops.set_pgd = kvm_set_pgd;
429 #endif
430 #endif
431 		pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
432 		pv_mmu_ops.release_pte = kvm_release_pt;
433 		pv_mmu_ops.release_pmd = kvm_release_pt;
434 		pv_mmu_ops.release_pud = kvm_release_pt;
435 
436 		pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
437 		pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
438 	}
439 #ifdef CONFIG_X86_IO_APIC
440 	no_timer_check = 1;
441 #endif
442 }
443 
444 void __cpuinit kvm_guest_cpu_init(void)
445 {
446 	if (!kvm_para_available())
447 		return;
448 
449 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
450 		u64 pa = __pa(&__get_cpu_var(apf_reason));
451 
452 #ifdef CONFIG_PREEMPT
453 		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
454 #endif
455 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
456 		__get_cpu_var(apf_reason).enabled = 1;
457 		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
458 		       smp_processor_id());
459 	}
460 }
461 
462 static void kvm_pv_disable_apf(void *unused)
463 {
464 	if (!__get_cpu_var(apf_reason).enabled)
465 		return;
466 
467 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
468 	__get_cpu_var(apf_reason).enabled = 0;
469 
470 	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
471 	       smp_processor_id());
472 }
473 
474 static int kvm_pv_reboot_notify(struct notifier_block *nb,
475 				unsigned long code, void *unused)
476 {
477 	if (code == SYS_RESTART)
478 		on_each_cpu(kvm_pv_disable_apf, NULL, 1);
479 	return NOTIFY_DONE;
480 }
481 
482 static struct notifier_block kvm_pv_reboot_nb = {
483 	.notifier_call = kvm_pv_reboot_notify,
484 };
485 
486 #ifdef CONFIG_SMP
487 static void __init kvm_smp_prepare_boot_cpu(void)
488 {
489 #ifdef CONFIG_KVM_CLOCK
490 	WARN_ON(kvm_register_clock("primary cpu clock"));
491 #endif
492 	kvm_guest_cpu_init();
493 	native_smp_prepare_boot_cpu();
494 }
495 
496 static void __cpuinit kvm_guest_cpu_online(void *dummy)
497 {
498 	kvm_guest_cpu_init();
499 }
500 
501 static void kvm_guest_cpu_offline(void *dummy)
502 {
503 	kvm_pv_disable_apf(NULL);
504 	apf_task_wake_all();
505 }
506 
507 static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
508 				    unsigned long action, void *hcpu)
509 {
510 	int cpu = (unsigned long)hcpu;
511 	switch (action) {
512 	case CPU_ONLINE:
513 	case CPU_DOWN_FAILED:
514 	case CPU_ONLINE_FROZEN:
515 		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
516 		break;
517 	case CPU_DOWN_PREPARE:
518 	case CPU_DOWN_PREPARE_FROZEN:
519 		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
520 		break;
521 	default:
522 		break;
523 	}
524 	return NOTIFY_OK;
525 }
526 
527 static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
528         .notifier_call  = kvm_cpu_notify,
529 };
530 #endif
531 
532 static void __init kvm_apf_trap_init(void)
533 {
534 	set_intr_gate(14, &async_page_fault);
535 }
536 
537 void __init kvm_guest_init(void)
538 {
539 	int i;
540 
541 	if (!kvm_para_available())
542 		return;
543 
544 	paravirt_ops_setup();
545 	register_reboot_notifier(&kvm_pv_reboot_nb);
546 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
547 		spin_lock_init(&async_pf_sleepers[i].lock);
548 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
549 		x86_init.irqs.trap_init = kvm_apf_trap_init;
550 
551 #ifdef CONFIG_SMP
552 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
553 	register_cpu_notifier(&kvm_cpu_notifier);
554 #else
555 	kvm_guest_cpu_init();
556 #endif
557 }
558