xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision 37be287c)
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/context_tracking.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/kvm_para.h>
27 #include <linux/cpu.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/hardirq.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/hash.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/kprobes.h>
37 #include <linux/debugfs.h>
38 #include <asm/timer.h>
39 #include <asm/cpu.h>
40 #include <asm/traps.h>
41 #include <asm/desc.h>
42 #include <asm/tlbflush.h>
43 #include <asm/idle.h>
44 #include <asm/apic.h>
45 #include <asm/apicdef.h>
46 #include <asm/hypervisor.h>
47 #include <asm/kvm_guest.h>
48 
49 static int kvmapf = 1;
50 
51 static int parse_no_kvmapf(char *arg)
52 {
53         kvmapf = 0;
54         return 0;
55 }
56 
57 early_param("no-kvmapf", parse_no_kvmapf);
58 
59 static int steal_acc = 1;
60 static int parse_no_stealacc(char *arg)
61 {
62         steal_acc = 0;
63         return 0;
64 }
65 
66 early_param("no-steal-acc", parse_no_stealacc);
67 
68 static int kvmclock_vsyscall = 1;
69 static int parse_no_kvmclock_vsyscall(char *arg)
70 {
71         kvmclock_vsyscall = 0;
72         return 0;
73 }
74 
75 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
76 
77 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
78 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
79 static int has_steal_clock = 0;
80 
81 /*
82  * No need for any "IO delay" on KVM
83  */
84 static void kvm_io_delay(void)
85 {
86 }
87 
88 #define KVM_TASK_SLEEP_HASHBITS 8
89 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
90 
91 struct kvm_task_sleep_node {
92 	struct hlist_node link;
93 	wait_queue_head_t wq;
94 	u32 token;
95 	int cpu;
96 	bool halted;
97 };
98 
99 static struct kvm_task_sleep_head {
100 	spinlock_t lock;
101 	struct hlist_head list;
102 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
103 
104 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
105 						  u32 token)
106 {
107 	struct hlist_node *p;
108 
109 	hlist_for_each(p, &b->list) {
110 		struct kvm_task_sleep_node *n =
111 			hlist_entry(p, typeof(*n), link);
112 		if (n->token == token)
113 			return n;
114 	}
115 
116 	return NULL;
117 }
118 
119 void kvm_async_pf_task_wait(u32 token)
120 {
121 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
122 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
123 	struct kvm_task_sleep_node n, *e;
124 	DEFINE_WAIT(wait);
125 
126 	rcu_irq_enter();
127 
128 	spin_lock(&b->lock);
129 	e = _find_apf_task(b, token);
130 	if (e) {
131 		/* dummy entry exist -> wake up was delivered ahead of PF */
132 		hlist_del(&e->link);
133 		kfree(e);
134 		spin_unlock(&b->lock);
135 
136 		rcu_irq_exit();
137 		return;
138 	}
139 
140 	n.token = token;
141 	n.cpu = smp_processor_id();
142 	n.halted = is_idle_task(current) || preempt_count() > 1;
143 	init_waitqueue_head(&n.wq);
144 	hlist_add_head(&n.link, &b->list);
145 	spin_unlock(&b->lock);
146 
147 	for (;;) {
148 		if (!n.halted)
149 			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
150 		if (hlist_unhashed(&n.link))
151 			break;
152 
153 		if (!n.halted) {
154 			local_irq_enable();
155 			schedule();
156 			local_irq_disable();
157 		} else {
158 			/*
159 			 * We cannot reschedule. So halt.
160 			 */
161 			rcu_irq_exit();
162 			native_safe_halt();
163 			rcu_irq_enter();
164 			local_irq_disable();
165 		}
166 	}
167 	if (!n.halted)
168 		finish_wait(&n.wq, &wait);
169 
170 	rcu_irq_exit();
171 	return;
172 }
173 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
174 
175 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
176 {
177 	hlist_del_init(&n->link);
178 	if (n->halted)
179 		smp_send_reschedule(n->cpu);
180 	else if (waitqueue_active(&n->wq))
181 		wake_up(&n->wq);
182 }
183 
184 static void apf_task_wake_all(void)
185 {
186 	int i;
187 
188 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
189 		struct hlist_node *p, *next;
190 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
191 		spin_lock(&b->lock);
192 		hlist_for_each_safe(p, next, &b->list) {
193 			struct kvm_task_sleep_node *n =
194 				hlist_entry(p, typeof(*n), link);
195 			if (n->cpu == smp_processor_id())
196 				apf_task_wake_one(n);
197 		}
198 		spin_unlock(&b->lock);
199 	}
200 }
201 
202 void kvm_async_pf_task_wake(u32 token)
203 {
204 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
205 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
206 	struct kvm_task_sleep_node *n;
207 
208 	if (token == ~0) {
209 		apf_task_wake_all();
210 		return;
211 	}
212 
213 again:
214 	spin_lock(&b->lock);
215 	n = _find_apf_task(b, token);
216 	if (!n) {
217 		/*
218 		 * async PF was not yet handled.
219 		 * Add dummy entry for the token.
220 		 */
221 		n = kzalloc(sizeof(*n), GFP_ATOMIC);
222 		if (!n) {
223 			/*
224 			 * Allocation failed! Busy wait while other cpu
225 			 * handles async PF.
226 			 */
227 			spin_unlock(&b->lock);
228 			cpu_relax();
229 			goto again;
230 		}
231 		n->token = token;
232 		n->cpu = smp_processor_id();
233 		init_waitqueue_head(&n->wq);
234 		hlist_add_head(&n->link, &b->list);
235 	} else
236 		apf_task_wake_one(n);
237 	spin_unlock(&b->lock);
238 	return;
239 }
240 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
241 
242 u32 kvm_read_and_reset_pf_reason(void)
243 {
244 	u32 reason = 0;
245 
246 	if (__get_cpu_var(apf_reason).enabled) {
247 		reason = __get_cpu_var(apf_reason).reason;
248 		__get_cpu_var(apf_reason).reason = 0;
249 	}
250 
251 	return reason;
252 }
253 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
254 
255 dotraplinkage void __kprobes
256 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
257 {
258 	enum ctx_state prev_state;
259 
260 	switch (kvm_read_and_reset_pf_reason()) {
261 	default:
262 		do_page_fault(regs, error_code);
263 		break;
264 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
265 		/* page is swapped out by the host. */
266 		prev_state = exception_enter();
267 		exit_idle();
268 		kvm_async_pf_task_wait((u32)read_cr2());
269 		exception_exit(prev_state);
270 		break;
271 	case KVM_PV_REASON_PAGE_READY:
272 		rcu_irq_enter();
273 		exit_idle();
274 		kvm_async_pf_task_wake((u32)read_cr2());
275 		rcu_irq_exit();
276 		break;
277 	}
278 }
279 
280 static void __init paravirt_ops_setup(void)
281 {
282 	pv_info.name = "KVM";
283 	pv_info.paravirt_enabled = 1;
284 
285 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
286 		pv_cpu_ops.io_delay = kvm_io_delay;
287 
288 #ifdef CONFIG_X86_IO_APIC
289 	no_timer_check = 1;
290 #endif
291 }
292 
293 static void kvm_register_steal_time(void)
294 {
295 	int cpu = smp_processor_id();
296 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
297 
298 	if (!has_steal_clock)
299 		return;
300 
301 	memset(st, 0, sizeof(*st));
302 
303 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
304 	pr_info("kvm-stealtime: cpu %d, msr %llx\n",
305 		cpu, (unsigned long long) slow_virt_to_phys(st));
306 }
307 
308 static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
309 
310 static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
311 {
312 	/**
313 	 * This relies on __test_and_clear_bit to modify the memory
314 	 * in a way that is atomic with respect to the local CPU.
315 	 * The hypervisor only accesses this memory from the local CPU so
316 	 * there's no need for lock or memory barriers.
317 	 * An optimization barrier is implied in apic write.
318 	 */
319 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, &__get_cpu_var(kvm_apic_eoi)))
320 		return;
321 	apic_write(APIC_EOI, APIC_EOI_ACK);
322 }
323 
324 void kvm_guest_cpu_init(void)
325 {
326 	if (!kvm_para_available())
327 		return;
328 
329 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
330 		u64 pa = slow_virt_to_phys(&__get_cpu_var(apf_reason));
331 
332 #ifdef CONFIG_PREEMPT
333 		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
334 #endif
335 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
336 		__get_cpu_var(apf_reason).enabled = 1;
337 		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
338 		       smp_processor_id());
339 	}
340 
341 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
342 		unsigned long pa;
343 		/* Size alignment is implied but just to make it explicit. */
344 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
345 		__get_cpu_var(kvm_apic_eoi) = 0;
346 		pa = slow_virt_to_phys(&__get_cpu_var(kvm_apic_eoi))
347 			| KVM_MSR_ENABLED;
348 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
349 	}
350 
351 	if (has_steal_clock)
352 		kvm_register_steal_time();
353 }
354 
355 static void kvm_pv_disable_apf(void)
356 {
357 	if (!__get_cpu_var(apf_reason).enabled)
358 		return;
359 
360 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
361 	__get_cpu_var(apf_reason).enabled = 0;
362 
363 	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
364 	       smp_processor_id());
365 }
366 
367 static void kvm_pv_guest_cpu_reboot(void *unused)
368 {
369 	/*
370 	 * We disable PV EOI before we load a new kernel by kexec,
371 	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
372 	 * New kernel can re-enable when it boots.
373 	 */
374 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
375 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
376 	kvm_pv_disable_apf();
377 	kvm_disable_steal_time();
378 }
379 
380 static int kvm_pv_reboot_notify(struct notifier_block *nb,
381 				unsigned long code, void *unused)
382 {
383 	if (code == SYS_RESTART)
384 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
385 	return NOTIFY_DONE;
386 }
387 
388 static struct notifier_block kvm_pv_reboot_nb = {
389 	.notifier_call = kvm_pv_reboot_notify,
390 };
391 
392 static u64 kvm_steal_clock(int cpu)
393 {
394 	u64 steal;
395 	struct kvm_steal_time *src;
396 	int version;
397 
398 	src = &per_cpu(steal_time, cpu);
399 	do {
400 		version = src->version;
401 		rmb();
402 		steal = src->steal;
403 		rmb();
404 	} while ((version & 1) || (version != src->version));
405 
406 	return steal;
407 }
408 
409 void kvm_disable_steal_time(void)
410 {
411 	if (!has_steal_clock)
412 		return;
413 
414 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
415 }
416 
417 #ifdef CONFIG_SMP
418 static void __init kvm_smp_prepare_boot_cpu(void)
419 {
420 	WARN_ON(kvm_register_clock("primary cpu clock"));
421 	kvm_guest_cpu_init();
422 	native_smp_prepare_boot_cpu();
423 	kvm_spinlock_init();
424 }
425 
426 static void kvm_guest_cpu_online(void *dummy)
427 {
428 	kvm_guest_cpu_init();
429 }
430 
431 static void kvm_guest_cpu_offline(void *dummy)
432 {
433 	kvm_disable_steal_time();
434 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
435 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
436 	kvm_pv_disable_apf();
437 	apf_task_wake_all();
438 }
439 
440 static int kvm_cpu_notify(struct notifier_block *self, unsigned long action,
441 			  void *hcpu)
442 {
443 	int cpu = (unsigned long)hcpu;
444 	switch (action) {
445 	case CPU_ONLINE:
446 	case CPU_DOWN_FAILED:
447 	case CPU_ONLINE_FROZEN:
448 		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
449 		break;
450 	case CPU_DOWN_PREPARE:
451 	case CPU_DOWN_PREPARE_FROZEN:
452 		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
453 		break;
454 	default:
455 		break;
456 	}
457 	return NOTIFY_OK;
458 }
459 
460 static struct notifier_block kvm_cpu_notifier = {
461         .notifier_call  = kvm_cpu_notify,
462 };
463 #endif
464 
465 static void __init kvm_apf_trap_init(void)
466 {
467 	set_intr_gate(14, async_page_fault);
468 }
469 
470 void __init kvm_guest_init(void)
471 {
472 	int i;
473 
474 	if (!kvm_para_available())
475 		return;
476 
477 	paravirt_ops_setup();
478 	register_reboot_notifier(&kvm_pv_reboot_nb);
479 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
480 		spin_lock_init(&async_pf_sleepers[i].lock);
481 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
482 		x86_init.irqs.trap_init = kvm_apf_trap_init;
483 
484 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
485 		has_steal_clock = 1;
486 		pv_time_ops.steal_clock = kvm_steal_clock;
487 	}
488 
489 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
490 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
491 
492 	if (kvmclock_vsyscall)
493 		kvm_setup_vsyscall_timeinfo();
494 
495 #ifdef CONFIG_SMP
496 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
497 	register_cpu_notifier(&kvm_cpu_notifier);
498 #else
499 	kvm_guest_cpu_init();
500 #endif
501 }
502 
503 static noinline uint32_t __kvm_cpuid_base(void)
504 {
505 	if (boot_cpu_data.cpuid_level < 0)
506 		return 0;	/* So we don't blow up on old processors */
507 
508 	if (cpu_has_hypervisor)
509 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
510 
511 	return 0;
512 }
513 
514 static inline uint32_t kvm_cpuid_base(void)
515 {
516 	static int kvm_cpuid_base = -1;
517 
518 	if (kvm_cpuid_base == -1)
519 		kvm_cpuid_base = __kvm_cpuid_base();
520 
521 	return kvm_cpuid_base;
522 }
523 
524 bool kvm_para_available(void)
525 {
526 	return kvm_cpuid_base() != 0;
527 }
528 EXPORT_SYMBOL_GPL(kvm_para_available);
529 
530 unsigned int kvm_arch_para_features(void)
531 {
532 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
533 }
534 
535 static uint32_t __init kvm_detect(void)
536 {
537 	return kvm_cpuid_base();
538 }
539 
540 const struct hypervisor_x86 x86_hyper_kvm __refconst = {
541 	.name			= "KVM",
542 	.detect			= kvm_detect,
543 	.x2apic_available	= kvm_para_available,
544 };
545 EXPORT_SYMBOL_GPL(x86_hyper_kvm);
546 
547 static __init int activate_jump_labels(void)
548 {
549 	if (has_steal_clock) {
550 		static_key_slow_inc(&paravirt_steal_enabled);
551 		if (steal_acc)
552 			static_key_slow_inc(&paravirt_steal_rq_enabled);
553 	}
554 
555 	return 0;
556 }
557 arch_initcall(activate_jump_labels);
558 
559 #ifdef CONFIG_PARAVIRT_SPINLOCKS
560 
561 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
562 static void kvm_kick_cpu(int cpu)
563 {
564 	int apicid;
565 	unsigned long flags = 0;
566 
567 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
568 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
569 }
570 
571 enum kvm_contention_stat {
572 	TAKEN_SLOW,
573 	TAKEN_SLOW_PICKUP,
574 	RELEASED_SLOW,
575 	RELEASED_SLOW_KICKED,
576 	NR_CONTENTION_STATS
577 };
578 
579 #ifdef CONFIG_KVM_DEBUG_FS
580 #define HISTO_BUCKETS	30
581 
582 static struct kvm_spinlock_stats
583 {
584 	u32 contention_stats[NR_CONTENTION_STATS];
585 	u32 histo_spin_blocked[HISTO_BUCKETS+1];
586 	u64 time_blocked;
587 } spinlock_stats;
588 
589 static u8 zero_stats;
590 
591 static inline void check_zero(void)
592 {
593 	u8 ret;
594 	u8 old;
595 
596 	old = ACCESS_ONCE(zero_stats);
597 	if (unlikely(old)) {
598 		ret = cmpxchg(&zero_stats, old, 0);
599 		/* This ensures only one fellow resets the stat */
600 		if (ret == old)
601 			memset(&spinlock_stats, 0, sizeof(spinlock_stats));
602 	}
603 }
604 
605 static inline void add_stats(enum kvm_contention_stat var, u32 val)
606 {
607 	check_zero();
608 	spinlock_stats.contention_stats[var] += val;
609 }
610 
611 
612 static inline u64 spin_time_start(void)
613 {
614 	return sched_clock();
615 }
616 
617 static void __spin_time_accum(u64 delta, u32 *array)
618 {
619 	unsigned index;
620 
621 	index = ilog2(delta);
622 	check_zero();
623 
624 	if (index < HISTO_BUCKETS)
625 		array[index]++;
626 	else
627 		array[HISTO_BUCKETS]++;
628 }
629 
630 static inline void spin_time_accum_blocked(u64 start)
631 {
632 	u32 delta;
633 
634 	delta = sched_clock() - start;
635 	__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
636 	spinlock_stats.time_blocked += delta;
637 }
638 
639 static struct dentry *d_spin_debug;
640 static struct dentry *d_kvm_debug;
641 
642 struct dentry *kvm_init_debugfs(void)
643 {
644 	d_kvm_debug = debugfs_create_dir("kvm-guest", NULL);
645 	if (!d_kvm_debug)
646 		printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n");
647 
648 	return d_kvm_debug;
649 }
650 
651 static int __init kvm_spinlock_debugfs(void)
652 {
653 	struct dentry *d_kvm;
654 
655 	d_kvm = kvm_init_debugfs();
656 	if (d_kvm == NULL)
657 		return -ENOMEM;
658 
659 	d_spin_debug = debugfs_create_dir("spinlocks", d_kvm);
660 
661 	debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
662 
663 	debugfs_create_u32("taken_slow", 0444, d_spin_debug,
664 		   &spinlock_stats.contention_stats[TAKEN_SLOW]);
665 	debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
666 		   &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
667 
668 	debugfs_create_u32("released_slow", 0444, d_spin_debug,
669 		   &spinlock_stats.contention_stats[RELEASED_SLOW]);
670 	debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
671 		   &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
672 
673 	debugfs_create_u64("time_blocked", 0444, d_spin_debug,
674 			   &spinlock_stats.time_blocked);
675 
676 	debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
677 		     spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
678 
679 	return 0;
680 }
681 fs_initcall(kvm_spinlock_debugfs);
682 #else  /* !CONFIG_KVM_DEBUG_FS */
683 static inline void add_stats(enum kvm_contention_stat var, u32 val)
684 {
685 }
686 
687 static inline u64 spin_time_start(void)
688 {
689 	return 0;
690 }
691 
692 static inline void spin_time_accum_blocked(u64 start)
693 {
694 }
695 #endif  /* CONFIG_KVM_DEBUG_FS */
696 
697 struct kvm_lock_waiting {
698 	struct arch_spinlock *lock;
699 	__ticket_t want;
700 };
701 
702 /* cpus 'waiting' on a spinlock to become available */
703 static cpumask_t waiting_cpus;
704 
705 /* Track spinlock on which a cpu is waiting */
706 static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting);
707 
708 __visible void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
709 {
710 	struct kvm_lock_waiting *w;
711 	int cpu;
712 	u64 start;
713 	unsigned long flags;
714 
715 	if (in_nmi())
716 		return;
717 
718 	w = &__get_cpu_var(klock_waiting);
719 	cpu = smp_processor_id();
720 	start = spin_time_start();
721 
722 	/*
723 	 * Make sure an interrupt handler can't upset things in a
724 	 * partially setup state.
725 	 */
726 	local_irq_save(flags);
727 
728 	/*
729 	 * The ordering protocol on this is that the "lock" pointer
730 	 * may only be set non-NULL if the "want" ticket is correct.
731 	 * If we're updating "want", we must first clear "lock".
732 	 */
733 	w->lock = NULL;
734 	smp_wmb();
735 	w->want = want;
736 	smp_wmb();
737 	w->lock = lock;
738 
739 	add_stats(TAKEN_SLOW, 1);
740 
741 	/*
742 	 * This uses set_bit, which is atomic but we should not rely on its
743 	 * reordering gurantees. So barrier is needed after this call.
744 	 */
745 	cpumask_set_cpu(cpu, &waiting_cpus);
746 
747 	barrier();
748 
749 	/*
750 	 * Mark entry to slowpath before doing the pickup test to make
751 	 * sure we don't deadlock with an unlocker.
752 	 */
753 	__ticket_enter_slowpath(lock);
754 
755 	/*
756 	 * check again make sure it didn't become free while
757 	 * we weren't looking.
758 	 */
759 	if (ACCESS_ONCE(lock->tickets.head) == want) {
760 		add_stats(TAKEN_SLOW_PICKUP, 1);
761 		goto out;
762 	}
763 
764 	/*
765 	 * halt until it's our turn and kicked. Note that we do safe halt
766 	 * for irq enabled case to avoid hang when lock info is overwritten
767 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
768 	 */
769 	if (arch_irqs_disabled_flags(flags))
770 		halt();
771 	else
772 		safe_halt();
773 
774 out:
775 	cpumask_clear_cpu(cpu, &waiting_cpus);
776 	w->lock = NULL;
777 	local_irq_restore(flags);
778 	spin_time_accum_blocked(start);
779 }
780 PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning);
781 
782 /* Kick vcpu waiting on @lock->head to reach value @ticket */
783 static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket)
784 {
785 	int cpu;
786 
787 	add_stats(RELEASED_SLOW, 1);
788 	for_each_cpu(cpu, &waiting_cpus) {
789 		const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu);
790 		if (ACCESS_ONCE(w->lock) == lock &&
791 		    ACCESS_ONCE(w->want) == ticket) {
792 			add_stats(RELEASED_SLOW_KICKED, 1);
793 			kvm_kick_cpu(cpu);
794 			break;
795 		}
796 	}
797 }
798 
799 /*
800  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
801  */
802 void __init kvm_spinlock_init(void)
803 {
804 	if (!kvm_para_available())
805 		return;
806 	/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
807 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
808 		return;
809 
810 	pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning);
811 	pv_lock_ops.unlock_kick = kvm_unlock_kick;
812 }
813 
814 static __init int kvm_spinlock_init_jump(void)
815 {
816 	if (!kvm_para_available())
817 		return 0;
818 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
819 		return 0;
820 
821 	static_key_slow_inc(&paravirt_ticketlocks_enabled);
822 	printk(KERN_INFO "KVM setup paravirtual spinlock\n");
823 
824 	return 0;
825 }
826 early_initcall(kvm_spinlock_init_jump);
827 
828 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
829