xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * KVM paravirt_ops implementation
4  *
5  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  * Copyright IBM Corporation, 2007
7  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11 
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/cc_platform.h>
31 #include <linux/efi.h>
32 #include <asm/timer.h>
33 #include <asm/cpu.h>
34 #include <asm/traps.h>
35 #include <asm/desc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/apic.h>
38 #include <asm/apicdef.h>
39 #include <asm/hypervisor.h>
40 #include <asm/tlb.h>
41 #include <asm/cpuidle_haltpoll.h>
42 #include <asm/ptrace.h>
43 #include <asm/reboot.h>
44 #include <asm/svm.h>
45 #include <asm/e820/api.h>
46 
47 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
48 
49 static int kvmapf = 1;
50 
51 static int __init parse_no_kvmapf(char *arg)
52 {
53         kvmapf = 0;
54         return 0;
55 }
56 
57 early_param("no-kvmapf", parse_no_kvmapf);
58 
59 static int steal_acc = 1;
60 static int __init parse_no_stealacc(char *arg)
61 {
62         steal_acc = 0;
63         return 0;
64 }
65 
66 early_param("no-steal-acc", parse_no_stealacc);
67 
68 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
69 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
70 static int has_steal_clock = 0;
71 
72 /*
73  * No need for any "IO delay" on KVM
74  */
75 static void kvm_io_delay(void)
76 {
77 }
78 
79 #define KVM_TASK_SLEEP_HASHBITS 8
80 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
81 
82 struct kvm_task_sleep_node {
83 	struct hlist_node link;
84 	struct swait_queue_head wq;
85 	u32 token;
86 	int cpu;
87 };
88 
89 static struct kvm_task_sleep_head {
90 	raw_spinlock_t lock;
91 	struct hlist_head list;
92 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
93 
94 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
95 						  u32 token)
96 {
97 	struct hlist_node *p;
98 
99 	hlist_for_each(p, &b->list) {
100 		struct kvm_task_sleep_node *n =
101 			hlist_entry(p, typeof(*n), link);
102 		if (n->token == token)
103 			return n;
104 	}
105 
106 	return NULL;
107 }
108 
109 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
110 {
111 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
112 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
113 	struct kvm_task_sleep_node *e;
114 
115 	raw_spin_lock(&b->lock);
116 	e = _find_apf_task(b, token);
117 	if (e) {
118 		/* dummy entry exist -> wake up was delivered ahead of PF */
119 		hlist_del(&e->link);
120 		raw_spin_unlock(&b->lock);
121 		kfree(e);
122 		return false;
123 	}
124 
125 	n->token = token;
126 	n->cpu = smp_processor_id();
127 	init_swait_queue_head(&n->wq);
128 	hlist_add_head(&n->link, &b->list);
129 	raw_spin_unlock(&b->lock);
130 	return true;
131 }
132 
133 /*
134  * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
135  * @token:	Token to identify the sleep node entry
136  *
137  * Invoked from the async pagefault handling code or from the VM exit page
138  * fault handler. In both cases RCU is watching.
139  */
140 void kvm_async_pf_task_wait_schedule(u32 token)
141 {
142 	struct kvm_task_sleep_node n;
143 	DECLARE_SWAITQUEUE(wait);
144 
145 	lockdep_assert_irqs_disabled();
146 
147 	if (!kvm_async_pf_queue_task(token, &n))
148 		return;
149 
150 	for (;;) {
151 		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
152 		if (hlist_unhashed(&n.link))
153 			break;
154 
155 		local_irq_enable();
156 		schedule();
157 		local_irq_disable();
158 	}
159 	finish_swait(&n.wq, &wait);
160 }
161 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
162 
163 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
164 {
165 	hlist_del_init(&n->link);
166 	if (swq_has_sleeper(&n->wq))
167 		swake_up_one(&n->wq);
168 }
169 
170 static void apf_task_wake_all(void)
171 {
172 	int i;
173 
174 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
175 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
176 		struct kvm_task_sleep_node *n;
177 		struct hlist_node *p, *next;
178 
179 		raw_spin_lock(&b->lock);
180 		hlist_for_each_safe(p, next, &b->list) {
181 			n = hlist_entry(p, typeof(*n), link);
182 			if (n->cpu == smp_processor_id())
183 				apf_task_wake_one(n);
184 		}
185 		raw_spin_unlock(&b->lock);
186 	}
187 }
188 
189 void kvm_async_pf_task_wake(u32 token)
190 {
191 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
192 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
193 	struct kvm_task_sleep_node *n;
194 
195 	if (token == ~0) {
196 		apf_task_wake_all();
197 		return;
198 	}
199 
200 again:
201 	raw_spin_lock(&b->lock);
202 	n = _find_apf_task(b, token);
203 	if (!n) {
204 		/*
205 		 * async PF was not yet handled.
206 		 * Add dummy entry for the token.
207 		 */
208 		n = kzalloc(sizeof(*n), GFP_ATOMIC);
209 		if (!n) {
210 			/*
211 			 * Allocation failed! Busy wait while other cpu
212 			 * handles async PF.
213 			 */
214 			raw_spin_unlock(&b->lock);
215 			cpu_relax();
216 			goto again;
217 		}
218 		n->token = token;
219 		n->cpu = smp_processor_id();
220 		init_swait_queue_head(&n->wq);
221 		hlist_add_head(&n->link, &b->list);
222 	} else {
223 		apf_task_wake_one(n);
224 	}
225 	raw_spin_unlock(&b->lock);
226 	return;
227 }
228 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
229 
230 noinstr u32 kvm_read_and_reset_apf_flags(void)
231 {
232 	u32 flags = 0;
233 
234 	if (__this_cpu_read(apf_reason.enabled)) {
235 		flags = __this_cpu_read(apf_reason.flags);
236 		__this_cpu_write(apf_reason.flags, 0);
237 	}
238 
239 	return flags;
240 }
241 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
242 
243 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
244 {
245 	u32 flags = kvm_read_and_reset_apf_flags();
246 	irqentry_state_t state;
247 
248 	if (!flags)
249 		return false;
250 
251 	state = irqentry_enter(regs);
252 	instrumentation_begin();
253 
254 	/*
255 	 * If the host managed to inject an async #PF into an interrupt
256 	 * disabled region, then die hard as this is not going to end well
257 	 * and the host side is seriously broken.
258 	 */
259 	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
260 		panic("Host injected async #PF in interrupt disabled region\n");
261 
262 	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
263 		if (unlikely(!(user_mode(regs))))
264 			panic("Host injected async #PF in kernel mode\n");
265 		/* Page is swapped out by the host. */
266 		kvm_async_pf_task_wait_schedule(token);
267 	} else {
268 		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
269 	}
270 
271 	instrumentation_end();
272 	irqentry_exit(regs, state);
273 	return true;
274 }
275 
276 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
277 {
278 	struct pt_regs *old_regs = set_irq_regs(regs);
279 	u32 token;
280 
281 	ack_APIC_irq();
282 
283 	inc_irq_stat(irq_hv_callback_count);
284 
285 	if (__this_cpu_read(apf_reason.enabled)) {
286 		token = __this_cpu_read(apf_reason.token);
287 		kvm_async_pf_task_wake(token);
288 		__this_cpu_write(apf_reason.token, 0);
289 		wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
290 	}
291 
292 	set_irq_regs(old_regs);
293 }
294 
295 static void __init paravirt_ops_setup(void)
296 {
297 	pv_info.name = "KVM";
298 
299 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
300 		pv_ops.cpu.io_delay = kvm_io_delay;
301 
302 #ifdef CONFIG_X86_IO_APIC
303 	no_timer_check = 1;
304 #endif
305 }
306 
307 static void kvm_register_steal_time(void)
308 {
309 	int cpu = smp_processor_id();
310 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
311 
312 	if (!has_steal_clock)
313 		return;
314 
315 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
316 	pr_debug("stealtime: cpu %d, msr %llx\n", cpu,
317 		(unsigned long long) slow_virt_to_phys(st));
318 }
319 
320 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
321 
322 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
323 {
324 	/**
325 	 * This relies on __test_and_clear_bit to modify the memory
326 	 * in a way that is atomic with respect to the local CPU.
327 	 * The hypervisor only accesses this memory from the local CPU so
328 	 * there's no need for lock or memory barriers.
329 	 * An optimization barrier is implied in apic write.
330 	 */
331 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
332 		return;
333 	apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
334 }
335 
336 static void kvm_guest_cpu_init(void)
337 {
338 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
339 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
340 
341 		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
342 
343 		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
344 		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
345 
346 		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
347 			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
348 
349 		wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
350 
351 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
352 		__this_cpu_write(apf_reason.enabled, 1);
353 		pr_debug("setup async PF for cpu %d\n", smp_processor_id());
354 	}
355 
356 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
357 		unsigned long pa;
358 
359 		/* Size alignment is implied but just to make it explicit. */
360 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
361 		__this_cpu_write(kvm_apic_eoi, 0);
362 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
363 			| KVM_MSR_ENABLED;
364 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
365 	}
366 
367 	if (has_steal_clock)
368 		kvm_register_steal_time();
369 }
370 
371 static void kvm_pv_disable_apf(void)
372 {
373 	if (!__this_cpu_read(apf_reason.enabled))
374 		return;
375 
376 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
377 	__this_cpu_write(apf_reason.enabled, 0);
378 
379 	pr_debug("disable async PF for cpu %d\n", smp_processor_id());
380 }
381 
382 static void kvm_disable_steal_time(void)
383 {
384 	if (!has_steal_clock)
385 		return;
386 
387 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
388 }
389 
390 static u64 kvm_steal_clock(int cpu)
391 {
392 	u64 steal;
393 	struct kvm_steal_time *src;
394 	int version;
395 
396 	src = &per_cpu(steal_time, cpu);
397 	do {
398 		version = src->version;
399 		virt_rmb();
400 		steal = src->steal;
401 		virt_rmb();
402 	} while ((version & 1) || (version != src->version));
403 
404 	return steal;
405 }
406 
407 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
408 {
409 	early_set_memory_decrypted((unsigned long) ptr, size);
410 }
411 
412 /*
413  * Iterate through all possible CPUs and map the memory region pointed
414  * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
415  *
416  * Note: we iterate through all possible CPUs to ensure that CPUs
417  * hotplugged will have their per-cpu variable already mapped as
418  * decrypted.
419  */
420 static void __init sev_map_percpu_data(void)
421 {
422 	int cpu;
423 
424 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
425 		return;
426 
427 	for_each_possible_cpu(cpu) {
428 		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
429 		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
430 		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
431 	}
432 }
433 
434 static void kvm_guest_cpu_offline(bool shutdown)
435 {
436 	kvm_disable_steal_time();
437 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
438 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
439 	if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
440 		wrmsrl(MSR_KVM_MIGRATION_CONTROL, 0);
441 	kvm_pv_disable_apf();
442 	if (!shutdown)
443 		apf_task_wake_all();
444 	kvmclock_disable();
445 }
446 
447 static int kvm_cpu_online(unsigned int cpu)
448 {
449 	unsigned long flags;
450 
451 	local_irq_save(flags);
452 	kvm_guest_cpu_init();
453 	local_irq_restore(flags);
454 	return 0;
455 }
456 
457 #ifdef CONFIG_SMP
458 
459 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
460 
461 static bool pv_tlb_flush_supported(void)
462 {
463 	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
464 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
465 		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
466 }
467 
468 static bool pv_ipi_supported(void)
469 {
470 	return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
471 }
472 
473 static bool pv_sched_yield_supported(void)
474 {
475 	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
476 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
477 	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
478 }
479 
480 #define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
481 
482 static void __send_ipi_mask(const struct cpumask *mask, int vector)
483 {
484 	unsigned long flags;
485 	int cpu, apic_id, icr;
486 	int min = 0, max = 0;
487 #ifdef CONFIG_X86_64
488 	__uint128_t ipi_bitmap = 0;
489 #else
490 	u64 ipi_bitmap = 0;
491 #endif
492 	long ret;
493 
494 	if (cpumask_empty(mask))
495 		return;
496 
497 	local_irq_save(flags);
498 
499 	switch (vector) {
500 	default:
501 		icr = APIC_DM_FIXED | vector;
502 		break;
503 	case NMI_VECTOR:
504 		icr = APIC_DM_NMI;
505 		break;
506 	}
507 
508 	for_each_cpu(cpu, mask) {
509 		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
510 		if (!ipi_bitmap) {
511 			min = max = apic_id;
512 		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
513 			ipi_bitmap <<= min - apic_id;
514 			min = apic_id;
515 		} else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
516 			max = apic_id < max ? max : apic_id;
517 		} else {
518 			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
519 				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
520 			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
521 				  ret);
522 			min = max = apic_id;
523 			ipi_bitmap = 0;
524 		}
525 		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
526 	}
527 
528 	if (ipi_bitmap) {
529 		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
530 			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
531 		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
532 			  ret);
533 	}
534 
535 	local_irq_restore(flags);
536 }
537 
538 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
539 {
540 	__send_ipi_mask(mask, vector);
541 }
542 
543 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
544 {
545 	unsigned int this_cpu = smp_processor_id();
546 	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
547 	const struct cpumask *local_mask;
548 
549 	cpumask_copy(new_mask, mask);
550 	cpumask_clear_cpu(this_cpu, new_mask);
551 	local_mask = new_mask;
552 	__send_ipi_mask(local_mask, vector);
553 }
554 
555 static int __init setup_efi_kvm_sev_migration(void)
556 {
557 	efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled";
558 	efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID;
559 	efi_status_t status;
560 	unsigned long size;
561 	bool enabled;
562 
563 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) ||
564 	    !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
565 		return 0;
566 
567 	if (!efi_enabled(EFI_BOOT))
568 		return 0;
569 
570 	if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
571 		pr_info("%s : EFI runtime services are not enabled\n", __func__);
572 		return 0;
573 	}
574 
575 	size = sizeof(enabled);
576 
577 	/* Get variable contents into buffer */
578 	status = efi.get_variable(efi_sev_live_migration_enabled,
579 				  &efi_variable_guid, NULL, &size, &enabled);
580 
581 	if (status == EFI_NOT_FOUND) {
582 		pr_info("%s : EFI live migration variable not found\n", __func__);
583 		return 0;
584 	}
585 
586 	if (status != EFI_SUCCESS) {
587 		pr_info("%s : EFI variable retrieval failed\n", __func__);
588 		return 0;
589 	}
590 
591 	if (enabled == 0) {
592 		pr_info("%s: live migration disabled in EFI\n", __func__);
593 		return 0;
594 	}
595 
596 	pr_info("%s : live migration enabled in EFI\n", __func__);
597 	wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY);
598 
599 	return 1;
600 }
601 
602 late_initcall(setup_efi_kvm_sev_migration);
603 
604 /*
605  * Set the IPI entry points
606  */
607 static void kvm_setup_pv_ipi(void)
608 {
609 	apic->send_IPI_mask = kvm_send_ipi_mask;
610 	apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
611 	pr_info("setup PV IPIs\n");
612 }
613 
614 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
615 {
616 	int cpu;
617 
618 	native_send_call_func_ipi(mask);
619 
620 	/* Make sure other vCPUs get a chance to run if they need to. */
621 	for_each_cpu(cpu, mask) {
622 		if (vcpu_is_preempted(cpu)) {
623 			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
624 			break;
625 		}
626 	}
627 }
628 
629 static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
630 			const struct flush_tlb_info *info)
631 {
632 	u8 state;
633 	int cpu;
634 	struct kvm_steal_time *src;
635 	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
636 
637 	cpumask_copy(flushmask, cpumask);
638 	/*
639 	 * We have to call flush only on online vCPUs. And
640 	 * queue flush_on_enter for pre-empted vCPUs
641 	 */
642 	for_each_cpu(cpu, flushmask) {
643 		/*
644 		 * The local vCPU is never preempted, so we do not explicitly
645 		 * skip check for local vCPU - it will never be cleared from
646 		 * flushmask.
647 		 */
648 		src = &per_cpu(steal_time, cpu);
649 		state = READ_ONCE(src->preempted);
650 		if ((state & KVM_VCPU_PREEMPTED)) {
651 			if (try_cmpxchg(&src->preempted, &state,
652 					state | KVM_VCPU_FLUSH_TLB))
653 				__cpumask_clear_cpu(cpu, flushmask);
654 		}
655 	}
656 
657 	native_flush_tlb_multi(flushmask, info);
658 }
659 
660 static __init int kvm_alloc_cpumask(void)
661 {
662 	int cpu;
663 
664 	if (!kvm_para_available() || nopv)
665 		return 0;
666 
667 	if (pv_tlb_flush_supported() || pv_ipi_supported())
668 		for_each_possible_cpu(cpu) {
669 			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
670 				GFP_KERNEL, cpu_to_node(cpu));
671 		}
672 
673 	return 0;
674 }
675 arch_initcall(kvm_alloc_cpumask);
676 
677 static void __init kvm_smp_prepare_boot_cpu(void)
678 {
679 	/*
680 	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
681 	 * shares the guest physical address with the hypervisor.
682 	 */
683 	sev_map_percpu_data();
684 
685 	kvm_guest_cpu_init();
686 	native_smp_prepare_boot_cpu();
687 	kvm_spinlock_init();
688 }
689 
690 static int kvm_cpu_down_prepare(unsigned int cpu)
691 {
692 	unsigned long flags;
693 
694 	local_irq_save(flags);
695 	kvm_guest_cpu_offline(false);
696 	local_irq_restore(flags);
697 	return 0;
698 }
699 
700 #endif
701 
702 static int kvm_suspend(void)
703 {
704 	kvm_guest_cpu_offline(false);
705 
706 	return 0;
707 }
708 
709 static void kvm_resume(void)
710 {
711 	kvm_cpu_online(raw_smp_processor_id());
712 }
713 
714 static struct syscore_ops kvm_syscore_ops = {
715 	.suspend	= kvm_suspend,
716 	.resume		= kvm_resume,
717 };
718 
719 static void kvm_pv_guest_cpu_reboot(void *unused)
720 {
721 	kvm_guest_cpu_offline(true);
722 }
723 
724 static int kvm_pv_reboot_notify(struct notifier_block *nb,
725 				unsigned long code, void *unused)
726 {
727 	if (code == SYS_RESTART)
728 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
729 	return NOTIFY_DONE;
730 }
731 
732 static struct notifier_block kvm_pv_reboot_nb = {
733 	.notifier_call = kvm_pv_reboot_notify,
734 };
735 
736 /*
737  * After a PV feature is registered, the host will keep writing to the
738  * registered memory location. If the guest happens to shutdown, this memory
739  * won't be valid. In cases like kexec, in which you install a new kernel, this
740  * means a random memory location will be kept being written.
741  */
742 #ifdef CONFIG_KEXEC_CORE
743 static void kvm_crash_shutdown(struct pt_regs *regs)
744 {
745 	kvm_guest_cpu_offline(true);
746 	native_machine_crash_shutdown(regs);
747 }
748 #endif
749 
750 static void __init kvm_guest_init(void)
751 {
752 	int i;
753 
754 	paravirt_ops_setup();
755 	register_reboot_notifier(&kvm_pv_reboot_nb);
756 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
757 		raw_spin_lock_init(&async_pf_sleepers[i].lock);
758 
759 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
760 		has_steal_clock = 1;
761 		static_call_update(pv_steal_clock, kvm_steal_clock);
762 	}
763 
764 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
765 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
766 
767 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
768 		static_branch_enable(&kvm_async_pf_enabled);
769 		alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
770 	}
771 
772 #ifdef CONFIG_SMP
773 	if (pv_tlb_flush_supported()) {
774 		pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
775 		pv_ops.mmu.tlb_remove_table = tlb_remove_table;
776 		pr_info("KVM setup pv remote TLB flush\n");
777 	}
778 
779 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
780 	if (pv_sched_yield_supported()) {
781 		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
782 		pr_info("setup PV sched yield\n");
783 	}
784 	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
785 				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
786 		pr_err("failed to install cpu hotplug callbacks\n");
787 #else
788 	sev_map_percpu_data();
789 	kvm_guest_cpu_init();
790 #endif
791 
792 #ifdef CONFIG_KEXEC_CORE
793 	machine_ops.crash_shutdown = kvm_crash_shutdown;
794 #endif
795 
796 	register_syscore_ops(&kvm_syscore_ops);
797 
798 	/*
799 	 * Hard lockup detection is enabled by default. Disable it, as guests
800 	 * can get false positives too easily, for example if the host is
801 	 * overcommitted.
802 	 */
803 	hardlockup_detector_disable();
804 }
805 
806 static noinline uint32_t __kvm_cpuid_base(void)
807 {
808 	if (boot_cpu_data.cpuid_level < 0)
809 		return 0;	/* So we don't blow up on old processors */
810 
811 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
812 		return hypervisor_cpuid_base(KVM_SIGNATURE, 0);
813 
814 	return 0;
815 }
816 
817 static inline uint32_t kvm_cpuid_base(void)
818 {
819 	static int kvm_cpuid_base = -1;
820 
821 	if (kvm_cpuid_base == -1)
822 		kvm_cpuid_base = __kvm_cpuid_base();
823 
824 	return kvm_cpuid_base;
825 }
826 
827 bool kvm_para_available(void)
828 {
829 	return kvm_cpuid_base() != 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_para_available);
832 
833 unsigned int kvm_arch_para_features(void)
834 {
835 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
836 }
837 
838 unsigned int kvm_arch_para_hints(void)
839 {
840 	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
841 }
842 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
843 
844 static uint32_t __init kvm_detect(void)
845 {
846 	return kvm_cpuid_base();
847 }
848 
849 static void __init kvm_apic_init(void)
850 {
851 #ifdef CONFIG_SMP
852 	if (pv_ipi_supported())
853 		kvm_setup_pv_ipi();
854 #endif
855 }
856 
857 static bool __init kvm_msi_ext_dest_id(void)
858 {
859 	return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
860 }
861 
862 static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc)
863 {
864 	kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages,
865 			   KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
866 }
867 
868 static void __init kvm_init_platform(void)
869 {
870 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
871 	    kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) {
872 		unsigned long nr_pages;
873 		int i;
874 
875 		pv_ops.mmu.notify_page_enc_status_changed =
876 			kvm_sev_hc_page_enc_status;
877 
878 		/*
879 		 * Reset the host's shared pages list related to kernel
880 		 * specific page encryption status settings before we load a
881 		 * new kernel by kexec. Reset the page encryption status
882 		 * during early boot intead of just before kexec to avoid SMP
883 		 * races during kvm_pv_guest_cpu_reboot().
884 		 * NOTE: We cannot reset the complete shared pages list
885 		 * here as we need to retain the UEFI/OVMF firmware
886 		 * specific settings.
887 		 */
888 
889 		for (i = 0; i < e820_table->nr_entries; i++) {
890 			struct e820_entry *entry = &e820_table->entries[i];
891 
892 			if (entry->type != E820_TYPE_RAM)
893 				continue;
894 
895 			nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE);
896 
897 			kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr,
898 				       nr_pages,
899 				       KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
900 		}
901 
902 		/*
903 		 * Ensure that _bss_decrypted section is marked as decrypted in the
904 		 * shared pages list.
905 		 */
906 		nr_pages = DIV_ROUND_UP(__end_bss_decrypted - __start_bss_decrypted,
907 					PAGE_SIZE);
908 		early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted,
909 						nr_pages, 0);
910 
911 		/*
912 		 * If not booted using EFI, enable Live migration support.
913 		 */
914 		if (!efi_enabled(EFI_BOOT))
915 			wrmsrl(MSR_KVM_MIGRATION_CONTROL,
916 			       KVM_MIGRATION_READY);
917 	}
918 	kvmclock_init();
919 	x86_platform.apic_post_init = kvm_apic_init;
920 }
921 
922 #if defined(CONFIG_AMD_MEM_ENCRYPT)
923 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
924 {
925 	/* RAX and CPL are already in the GHCB */
926 	ghcb_set_rbx(ghcb, regs->bx);
927 	ghcb_set_rcx(ghcb, regs->cx);
928 	ghcb_set_rdx(ghcb, regs->dx);
929 	ghcb_set_rsi(ghcb, regs->si);
930 }
931 
932 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
933 {
934 	/* No checking of the return state needed */
935 	return true;
936 }
937 #endif
938 
939 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
940 	.name				= "KVM",
941 	.detect				= kvm_detect,
942 	.type				= X86_HYPER_KVM,
943 	.init.guest_late_init		= kvm_guest_init,
944 	.init.x2apic_available		= kvm_para_available,
945 	.init.msi_ext_dest_id		= kvm_msi_ext_dest_id,
946 	.init.init_platform		= kvm_init_platform,
947 #if defined(CONFIG_AMD_MEM_ENCRYPT)
948 	.runtime.sev_es_hcall_prepare	= kvm_sev_es_hcall_prepare,
949 	.runtime.sev_es_hcall_finish	= kvm_sev_es_hcall_finish,
950 #endif
951 };
952 
953 static __init int activate_jump_labels(void)
954 {
955 	if (has_steal_clock) {
956 		static_key_slow_inc(&paravirt_steal_enabled);
957 		if (steal_acc)
958 			static_key_slow_inc(&paravirt_steal_rq_enabled);
959 	}
960 
961 	return 0;
962 }
963 arch_initcall(activate_jump_labels);
964 
965 #ifdef CONFIG_PARAVIRT_SPINLOCKS
966 
967 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
968 static void kvm_kick_cpu(int cpu)
969 {
970 	int apicid;
971 	unsigned long flags = 0;
972 
973 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
974 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
975 }
976 
977 #include <asm/qspinlock.h>
978 
979 static void kvm_wait(u8 *ptr, u8 val)
980 {
981 	if (in_nmi())
982 		return;
983 
984 	/*
985 	 * halt until it's our turn and kicked. Note that we do safe halt
986 	 * for irq enabled case to avoid hang when lock info is overwritten
987 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
988 	 */
989 	if (irqs_disabled()) {
990 		if (READ_ONCE(*ptr) == val)
991 			halt();
992 	} else {
993 		local_irq_disable();
994 
995 		/* safe_halt() will enable IRQ */
996 		if (READ_ONCE(*ptr) == val)
997 			safe_halt();
998 		else
999 			local_irq_enable();
1000 	}
1001 }
1002 
1003 #ifdef CONFIG_X86_32
1004 __visible bool __kvm_vcpu_is_preempted(long cpu)
1005 {
1006 	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
1007 
1008 	return !!(src->preempted & KVM_VCPU_PREEMPTED);
1009 }
1010 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
1011 
1012 #else
1013 
1014 #include <asm/asm-offsets.h>
1015 
1016 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
1017 
1018 /*
1019  * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
1020  * restoring to/from the stack.
1021  */
1022 asm(
1023 ".pushsection .text;"
1024 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
1025 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
1026 "__raw_callee_save___kvm_vcpu_is_preempted:"
1027 "movq	__per_cpu_offset(,%rdi,8), %rax;"
1028 "cmpb	$0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
1029 "setne	%al;"
1030 "ret;"
1031 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
1032 ".popsection");
1033 
1034 #endif
1035 
1036 /*
1037  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
1038  */
1039 void __init kvm_spinlock_init(void)
1040 {
1041 	/*
1042 	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
1043 	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
1044 	 * preferred over native qspinlock when vCPU is preempted.
1045 	 */
1046 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
1047 		pr_info("PV spinlocks disabled, no host support\n");
1048 		return;
1049 	}
1050 
1051 	/*
1052 	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
1053 	 * are available.
1054 	 */
1055 	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
1056 		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
1057 		goto out;
1058 	}
1059 
1060 	if (num_possible_cpus() == 1) {
1061 		pr_info("PV spinlocks disabled, single CPU\n");
1062 		goto out;
1063 	}
1064 
1065 	if (nopvspin) {
1066 		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
1067 		goto out;
1068 	}
1069 
1070 	pr_info("PV spinlocks enabled\n");
1071 
1072 	__pv_init_lock_hash();
1073 	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1074 	pv_ops.lock.queued_spin_unlock =
1075 		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1076 	pv_ops.lock.wait = kvm_wait;
1077 	pv_ops.lock.kick = kvm_kick_cpu;
1078 
1079 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
1080 		pv_ops.lock.vcpu_is_preempted =
1081 			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
1082 	}
1083 	/*
1084 	 * When PV spinlock is enabled which is preferred over
1085 	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1086 	 * Just disable it anyway.
1087 	 */
1088 out:
1089 	static_branch_disable(&virt_spin_lock_key);
1090 }
1091 
1092 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
1093 
1094 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1095 
1096 static void kvm_disable_host_haltpoll(void *i)
1097 {
1098 	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1099 }
1100 
1101 static void kvm_enable_host_haltpoll(void *i)
1102 {
1103 	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1104 }
1105 
1106 void arch_haltpoll_enable(unsigned int cpu)
1107 {
1108 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1109 		pr_err_once("host does not support poll control\n");
1110 		pr_err_once("host upgrade recommended\n");
1111 		return;
1112 	}
1113 
1114 	/* Enable guest halt poll disables host halt poll */
1115 	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1116 }
1117 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1118 
1119 void arch_haltpoll_disable(unsigned int cpu)
1120 {
1121 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1122 		return;
1123 
1124 	/* Disable guest halt poll enables host halt poll */
1125 	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1126 }
1127 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1128 #endif
1129