1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * KVM paravirt_ops implementation 4 * 5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * Copyright IBM Corporation, 2007 7 * Authors: Anthony Liguori <aliguori@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kvm-guest: " fmt 11 12 #include <linux/context_tracking.h> 13 #include <linux/init.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/kvm_para.h> 17 #include <linux/cpu.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/hardirq.h> 21 #include <linux/notifier.h> 22 #include <linux/reboot.h> 23 #include <linux/hash.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/kprobes.h> 27 #include <linux/nmi.h> 28 #include <linux/swait.h> 29 #include <asm/timer.h> 30 #include <asm/cpu.h> 31 #include <asm/traps.h> 32 #include <asm/desc.h> 33 #include <asm/tlbflush.h> 34 #include <asm/apic.h> 35 #include <asm/apicdef.h> 36 #include <asm/hypervisor.h> 37 #include <asm/tlb.h> 38 #include <asm/cpuidle_haltpoll.h> 39 #include <asm/ptrace.h> 40 #include <asm/svm.h> 41 42 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled); 43 44 static int kvmapf = 1; 45 46 static int __init parse_no_kvmapf(char *arg) 47 { 48 kvmapf = 0; 49 return 0; 50 } 51 52 early_param("no-kvmapf", parse_no_kvmapf); 53 54 static int steal_acc = 1; 55 static int __init parse_no_stealacc(char *arg) 56 { 57 steal_acc = 0; 58 return 0; 59 } 60 61 early_param("no-steal-acc", parse_no_stealacc); 62 63 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); 64 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible; 65 static int has_steal_clock = 0; 66 67 /* 68 * No need for any "IO delay" on KVM 69 */ 70 static void kvm_io_delay(void) 71 { 72 } 73 74 #define KVM_TASK_SLEEP_HASHBITS 8 75 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) 76 77 struct kvm_task_sleep_node { 78 struct hlist_node link; 79 struct swait_queue_head wq; 80 u32 token; 81 int cpu; 82 }; 83 84 static struct kvm_task_sleep_head { 85 raw_spinlock_t lock; 86 struct hlist_head list; 87 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; 88 89 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, 90 u32 token) 91 { 92 struct hlist_node *p; 93 94 hlist_for_each(p, &b->list) { 95 struct kvm_task_sleep_node *n = 96 hlist_entry(p, typeof(*n), link); 97 if (n->token == token) 98 return n; 99 } 100 101 return NULL; 102 } 103 104 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n) 105 { 106 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 107 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 108 struct kvm_task_sleep_node *e; 109 110 raw_spin_lock(&b->lock); 111 e = _find_apf_task(b, token); 112 if (e) { 113 /* dummy entry exist -> wake up was delivered ahead of PF */ 114 hlist_del(&e->link); 115 raw_spin_unlock(&b->lock); 116 kfree(e); 117 return false; 118 } 119 120 n->token = token; 121 n->cpu = smp_processor_id(); 122 init_swait_queue_head(&n->wq); 123 hlist_add_head(&n->link, &b->list); 124 raw_spin_unlock(&b->lock); 125 return true; 126 } 127 128 /* 129 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled 130 * @token: Token to identify the sleep node entry 131 * 132 * Invoked from the async pagefault handling code or from the VM exit page 133 * fault handler. In both cases RCU is watching. 134 */ 135 void kvm_async_pf_task_wait_schedule(u32 token) 136 { 137 struct kvm_task_sleep_node n; 138 DECLARE_SWAITQUEUE(wait); 139 140 lockdep_assert_irqs_disabled(); 141 142 if (!kvm_async_pf_queue_task(token, &n)) 143 return; 144 145 for (;;) { 146 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); 147 if (hlist_unhashed(&n.link)) 148 break; 149 150 local_irq_enable(); 151 schedule(); 152 local_irq_disable(); 153 } 154 finish_swait(&n.wq, &wait); 155 } 156 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule); 157 158 static void apf_task_wake_one(struct kvm_task_sleep_node *n) 159 { 160 hlist_del_init(&n->link); 161 if (swq_has_sleeper(&n->wq)) 162 swake_up_one(&n->wq); 163 } 164 165 static void apf_task_wake_all(void) 166 { 167 int i; 168 169 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { 170 struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; 171 struct kvm_task_sleep_node *n; 172 struct hlist_node *p, *next; 173 174 raw_spin_lock(&b->lock); 175 hlist_for_each_safe(p, next, &b->list) { 176 n = hlist_entry(p, typeof(*n), link); 177 if (n->cpu == smp_processor_id()) 178 apf_task_wake_one(n); 179 } 180 raw_spin_unlock(&b->lock); 181 } 182 } 183 184 void kvm_async_pf_task_wake(u32 token) 185 { 186 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 187 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 188 struct kvm_task_sleep_node *n; 189 190 if (token == ~0) { 191 apf_task_wake_all(); 192 return; 193 } 194 195 again: 196 raw_spin_lock(&b->lock); 197 n = _find_apf_task(b, token); 198 if (!n) { 199 /* 200 * async PF was not yet handled. 201 * Add dummy entry for the token. 202 */ 203 n = kzalloc(sizeof(*n), GFP_ATOMIC); 204 if (!n) { 205 /* 206 * Allocation failed! Busy wait while other cpu 207 * handles async PF. 208 */ 209 raw_spin_unlock(&b->lock); 210 cpu_relax(); 211 goto again; 212 } 213 n->token = token; 214 n->cpu = smp_processor_id(); 215 init_swait_queue_head(&n->wq); 216 hlist_add_head(&n->link, &b->list); 217 } else { 218 apf_task_wake_one(n); 219 } 220 raw_spin_unlock(&b->lock); 221 return; 222 } 223 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); 224 225 noinstr u32 kvm_read_and_reset_apf_flags(void) 226 { 227 u32 flags = 0; 228 229 if (__this_cpu_read(apf_reason.enabled)) { 230 flags = __this_cpu_read(apf_reason.flags); 231 __this_cpu_write(apf_reason.flags, 0); 232 } 233 234 return flags; 235 } 236 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags); 237 238 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token) 239 { 240 u32 flags = kvm_read_and_reset_apf_flags(); 241 irqentry_state_t state; 242 243 if (!flags) 244 return false; 245 246 state = irqentry_enter(regs); 247 instrumentation_begin(); 248 249 /* 250 * If the host managed to inject an async #PF into an interrupt 251 * disabled region, then die hard as this is not going to end well 252 * and the host side is seriously broken. 253 */ 254 if (unlikely(!(regs->flags & X86_EFLAGS_IF))) 255 panic("Host injected async #PF in interrupt disabled region\n"); 256 257 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 258 if (unlikely(!(user_mode(regs)))) 259 panic("Host injected async #PF in kernel mode\n"); 260 /* Page is swapped out by the host. */ 261 kvm_async_pf_task_wait_schedule(token); 262 } else { 263 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags); 264 } 265 266 instrumentation_end(); 267 irqentry_exit(regs, state); 268 return true; 269 } 270 271 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt) 272 { 273 struct pt_regs *old_regs = set_irq_regs(regs); 274 u32 token; 275 276 ack_APIC_irq(); 277 278 inc_irq_stat(irq_hv_callback_count); 279 280 if (__this_cpu_read(apf_reason.enabled)) { 281 token = __this_cpu_read(apf_reason.token); 282 kvm_async_pf_task_wake(token); 283 __this_cpu_write(apf_reason.token, 0); 284 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1); 285 } 286 287 set_irq_regs(old_regs); 288 } 289 290 static void __init paravirt_ops_setup(void) 291 { 292 pv_info.name = "KVM"; 293 294 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) 295 pv_ops.cpu.io_delay = kvm_io_delay; 296 297 #ifdef CONFIG_X86_IO_APIC 298 no_timer_check = 1; 299 #endif 300 } 301 302 static void kvm_register_steal_time(void) 303 { 304 int cpu = smp_processor_id(); 305 struct kvm_steal_time *st = &per_cpu(steal_time, cpu); 306 307 if (!has_steal_clock) 308 return; 309 310 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); 311 pr_info("stealtime: cpu %d, msr %llx\n", cpu, 312 (unsigned long long) slow_virt_to_phys(st)); 313 } 314 315 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; 316 317 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val) 318 { 319 /** 320 * This relies on __test_and_clear_bit to modify the memory 321 * in a way that is atomic with respect to the local CPU. 322 * The hypervisor only accesses this memory from the local CPU so 323 * there's no need for lock or memory barriers. 324 * An optimization barrier is implied in apic write. 325 */ 326 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) 327 return; 328 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK); 329 } 330 331 static void kvm_guest_cpu_init(void) 332 { 333 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 334 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 335 336 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled)); 337 338 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 339 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 340 341 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) 342 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 343 344 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR); 345 346 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); 347 __this_cpu_write(apf_reason.enabled, 1); 348 pr_info("KVM setup async PF for cpu %d\n", smp_processor_id()); 349 } 350 351 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { 352 unsigned long pa; 353 354 /* Size alignment is implied but just to make it explicit. */ 355 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); 356 __this_cpu_write(kvm_apic_eoi, 0); 357 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) 358 | KVM_MSR_ENABLED; 359 wrmsrl(MSR_KVM_PV_EOI_EN, pa); 360 } 361 362 if (has_steal_clock) 363 kvm_register_steal_time(); 364 } 365 366 static void kvm_pv_disable_apf(void) 367 { 368 if (!__this_cpu_read(apf_reason.enabled)) 369 return; 370 371 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); 372 __this_cpu_write(apf_reason.enabled, 0); 373 374 pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id()); 375 } 376 377 static void kvm_pv_guest_cpu_reboot(void *unused) 378 { 379 /* 380 * We disable PV EOI before we load a new kernel by kexec, 381 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory. 382 * New kernel can re-enable when it boots. 383 */ 384 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 385 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 386 kvm_pv_disable_apf(); 387 kvm_disable_steal_time(); 388 } 389 390 static int kvm_pv_reboot_notify(struct notifier_block *nb, 391 unsigned long code, void *unused) 392 { 393 if (code == SYS_RESTART) 394 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); 395 return NOTIFY_DONE; 396 } 397 398 static struct notifier_block kvm_pv_reboot_nb = { 399 .notifier_call = kvm_pv_reboot_notify, 400 }; 401 402 static u64 kvm_steal_clock(int cpu) 403 { 404 u64 steal; 405 struct kvm_steal_time *src; 406 int version; 407 408 src = &per_cpu(steal_time, cpu); 409 do { 410 version = src->version; 411 virt_rmb(); 412 steal = src->steal; 413 virt_rmb(); 414 } while ((version & 1) || (version != src->version)); 415 416 return steal; 417 } 418 419 void kvm_disable_steal_time(void) 420 { 421 if (!has_steal_clock) 422 return; 423 424 wrmsr(MSR_KVM_STEAL_TIME, 0, 0); 425 } 426 427 static inline void __set_percpu_decrypted(void *ptr, unsigned long size) 428 { 429 early_set_memory_decrypted((unsigned long) ptr, size); 430 } 431 432 /* 433 * Iterate through all possible CPUs and map the memory region pointed 434 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. 435 * 436 * Note: we iterate through all possible CPUs to ensure that CPUs 437 * hotplugged will have their per-cpu variable already mapped as 438 * decrypted. 439 */ 440 static void __init sev_map_percpu_data(void) 441 { 442 int cpu; 443 444 if (!sev_active()) 445 return; 446 447 for_each_possible_cpu(cpu) { 448 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); 449 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); 450 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); 451 } 452 } 453 454 #ifdef CONFIG_SMP 455 456 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask); 457 458 static bool pv_tlb_flush_supported(void) 459 { 460 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && 461 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 462 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 463 } 464 465 static bool pv_ipi_supported(void) 466 { 467 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI); 468 } 469 470 static bool pv_sched_yield_supported(void) 471 { 472 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) && 473 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 474 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 475 } 476 477 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) 478 479 static void __send_ipi_mask(const struct cpumask *mask, int vector) 480 { 481 unsigned long flags; 482 int cpu, apic_id, icr; 483 int min = 0, max = 0; 484 #ifdef CONFIG_X86_64 485 __uint128_t ipi_bitmap = 0; 486 #else 487 u64 ipi_bitmap = 0; 488 #endif 489 long ret; 490 491 if (cpumask_empty(mask)) 492 return; 493 494 local_irq_save(flags); 495 496 switch (vector) { 497 default: 498 icr = APIC_DM_FIXED | vector; 499 break; 500 case NMI_VECTOR: 501 icr = APIC_DM_NMI; 502 break; 503 } 504 505 for_each_cpu(cpu, mask) { 506 apic_id = per_cpu(x86_cpu_to_apicid, cpu); 507 if (!ipi_bitmap) { 508 min = max = apic_id; 509 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { 510 ipi_bitmap <<= min - apic_id; 511 min = apic_id; 512 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) { 513 max = apic_id < max ? max : apic_id; 514 } else { 515 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 516 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 517 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 518 ret); 519 min = max = apic_id; 520 ipi_bitmap = 0; 521 } 522 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); 523 } 524 525 if (ipi_bitmap) { 526 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 527 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 528 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 529 ret); 530 } 531 532 local_irq_restore(flags); 533 } 534 535 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) 536 { 537 __send_ipi_mask(mask, vector); 538 } 539 540 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) 541 { 542 unsigned int this_cpu = smp_processor_id(); 543 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 544 const struct cpumask *local_mask; 545 546 cpumask_copy(new_mask, mask); 547 cpumask_clear_cpu(this_cpu, new_mask); 548 local_mask = new_mask; 549 __send_ipi_mask(local_mask, vector); 550 } 551 552 /* 553 * Set the IPI entry points 554 */ 555 static void kvm_setup_pv_ipi(void) 556 { 557 apic->send_IPI_mask = kvm_send_ipi_mask; 558 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself; 559 pr_info("setup PV IPIs\n"); 560 } 561 562 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask) 563 { 564 int cpu; 565 566 native_send_call_func_ipi(mask); 567 568 /* Make sure other vCPUs get a chance to run if they need to. */ 569 for_each_cpu(cpu, mask) { 570 if (vcpu_is_preempted(cpu)) { 571 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu)); 572 break; 573 } 574 } 575 } 576 577 static void kvm_flush_tlb_multi(const struct cpumask *cpumask, 578 const struct flush_tlb_info *info) 579 { 580 u8 state; 581 int cpu; 582 struct kvm_steal_time *src; 583 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 584 585 cpumask_copy(flushmask, cpumask); 586 /* 587 * We have to call flush only on online vCPUs. And 588 * queue flush_on_enter for pre-empted vCPUs 589 */ 590 for_each_cpu(cpu, flushmask) { 591 /* 592 * The local vCPU is never preempted, so we do not explicitly 593 * skip check for local vCPU - it will never be cleared from 594 * flushmask. 595 */ 596 src = &per_cpu(steal_time, cpu); 597 state = READ_ONCE(src->preempted); 598 if ((state & KVM_VCPU_PREEMPTED)) { 599 if (try_cmpxchg(&src->preempted, &state, 600 state | KVM_VCPU_FLUSH_TLB)) 601 __cpumask_clear_cpu(cpu, flushmask); 602 } 603 } 604 605 native_flush_tlb_multi(flushmask, info); 606 } 607 608 static __init int kvm_alloc_cpumask(void) 609 { 610 int cpu; 611 612 if (!kvm_para_available() || nopv) 613 return 0; 614 615 if (pv_tlb_flush_supported() || pv_ipi_supported()) 616 for_each_possible_cpu(cpu) { 617 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu), 618 GFP_KERNEL, cpu_to_node(cpu)); 619 } 620 621 return 0; 622 } 623 arch_initcall(kvm_alloc_cpumask); 624 625 static void __init kvm_smp_prepare_boot_cpu(void) 626 { 627 /* 628 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() 629 * shares the guest physical address with the hypervisor. 630 */ 631 sev_map_percpu_data(); 632 633 kvm_guest_cpu_init(); 634 native_smp_prepare_boot_cpu(); 635 kvm_spinlock_init(); 636 } 637 638 static void kvm_guest_cpu_offline(void) 639 { 640 kvm_disable_steal_time(); 641 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 642 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 643 kvm_pv_disable_apf(); 644 apf_task_wake_all(); 645 } 646 647 static int kvm_cpu_online(unsigned int cpu) 648 { 649 local_irq_disable(); 650 kvm_guest_cpu_init(); 651 local_irq_enable(); 652 return 0; 653 } 654 655 static int kvm_cpu_down_prepare(unsigned int cpu) 656 { 657 local_irq_disable(); 658 kvm_guest_cpu_offline(); 659 local_irq_enable(); 660 return 0; 661 } 662 663 #endif 664 665 static void __init kvm_guest_init(void) 666 { 667 int i; 668 669 paravirt_ops_setup(); 670 register_reboot_notifier(&kvm_pv_reboot_nb); 671 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) 672 raw_spin_lock_init(&async_pf_sleepers[i].lock); 673 674 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 675 has_steal_clock = 1; 676 static_call_update(pv_steal_clock, kvm_steal_clock); 677 } 678 679 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 680 apic_set_eoi_write(kvm_guest_apic_eoi_write); 681 682 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 683 static_branch_enable(&kvm_async_pf_enabled); 684 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt); 685 } 686 687 #ifdef CONFIG_SMP 688 if (pv_tlb_flush_supported()) { 689 pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi; 690 pv_ops.mmu.tlb_remove_table = tlb_remove_table; 691 pr_info("KVM setup pv remote TLB flush\n"); 692 } 693 694 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; 695 if (pv_sched_yield_supported()) { 696 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi; 697 pr_info("setup PV sched yield\n"); 698 } 699 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", 700 kvm_cpu_online, kvm_cpu_down_prepare) < 0) 701 pr_err("failed to install cpu hotplug callbacks\n"); 702 #else 703 sev_map_percpu_data(); 704 kvm_guest_cpu_init(); 705 #endif 706 707 /* 708 * Hard lockup detection is enabled by default. Disable it, as guests 709 * can get false positives too easily, for example if the host is 710 * overcommitted. 711 */ 712 hardlockup_detector_disable(); 713 } 714 715 static noinline uint32_t __kvm_cpuid_base(void) 716 { 717 if (boot_cpu_data.cpuid_level < 0) 718 return 0; /* So we don't blow up on old processors */ 719 720 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 721 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0); 722 723 return 0; 724 } 725 726 static inline uint32_t kvm_cpuid_base(void) 727 { 728 static int kvm_cpuid_base = -1; 729 730 if (kvm_cpuid_base == -1) 731 kvm_cpuid_base = __kvm_cpuid_base(); 732 733 return kvm_cpuid_base; 734 } 735 736 bool kvm_para_available(void) 737 { 738 return kvm_cpuid_base() != 0; 739 } 740 EXPORT_SYMBOL_GPL(kvm_para_available); 741 742 unsigned int kvm_arch_para_features(void) 743 { 744 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); 745 } 746 747 unsigned int kvm_arch_para_hints(void) 748 { 749 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); 750 } 751 EXPORT_SYMBOL_GPL(kvm_arch_para_hints); 752 753 static uint32_t __init kvm_detect(void) 754 { 755 return kvm_cpuid_base(); 756 } 757 758 static void __init kvm_apic_init(void) 759 { 760 #ifdef CONFIG_SMP 761 if (pv_ipi_supported()) 762 kvm_setup_pv_ipi(); 763 #endif 764 } 765 766 static bool __init kvm_msi_ext_dest_id(void) 767 { 768 return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID); 769 } 770 771 static void __init kvm_init_platform(void) 772 { 773 kvmclock_init(); 774 x86_platform.apic_post_init = kvm_apic_init; 775 } 776 777 #if defined(CONFIG_AMD_MEM_ENCRYPT) 778 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs) 779 { 780 /* RAX and CPL are already in the GHCB */ 781 ghcb_set_rbx(ghcb, regs->bx); 782 ghcb_set_rcx(ghcb, regs->cx); 783 ghcb_set_rdx(ghcb, regs->dx); 784 ghcb_set_rsi(ghcb, regs->si); 785 } 786 787 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs) 788 { 789 /* No checking of the return state needed */ 790 return true; 791 } 792 #endif 793 794 const __initconst struct hypervisor_x86 x86_hyper_kvm = { 795 .name = "KVM", 796 .detect = kvm_detect, 797 .type = X86_HYPER_KVM, 798 .init.guest_late_init = kvm_guest_init, 799 .init.x2apic_available = kvm_para_available, 800 .init.msi_ext_dest_id = kvm_msi_ext_dest_id, 801 .init.init_platform = kvm_init_platform, 802 #if defined(CONFIG_AMD_MEM_ENCRYPT) 803 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare, 804 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish, 805 #endif 806 }; 807 808 static __init int activate_jump_labels(void) 809 { 810 if (has_steal_clock) { 811 static_key_slow_inc(¶virt_steal_enabled); 812 if (steal_acc) 813 static_key_slow_inc(¶virt_steal_rq_enabled); 814 } 815 816 return 0; 817 } 818 arch_initcall(activate_jump_labels); 819 820 #ifdef CONFIG_PARAVIRT_SPINLOCKS 821 822 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ 823 static void kvm_kick_cpu(int cpu) 824 { 825 int apicid; 826 unsigned long flags = 0; 827 828 apicid = per_cpu(x86_cpu_to_apicid, cpu); 829 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); 830 } 831 832 #include <asm/qspinlock.h> 833 834 static void kvm_wait(u8 *ptr, u8 val) 835 { 836 if (in_nmi()) 837 return; 838 839 /* 840 * halt until it's our turn and kicked. Note that we do safe halt 841 * for irq enabled case to avoid hang when lock info is overwritten 842 * in irq spinlock slowpath and no spurious interrupt occur to save us. 843 */ 844 if (irqs_disabled()) { 845 if (READ_ONCE(*ptr) == val) 846 halt(); 847 } else { 848 local_irq_disable(); 849 850 if (READ_ONCE(*ptr) == val) 851 safe_halt(); 852 853 local_irq_enable(); 854 } 855 } 856 857 #ifdef CONFIG_X86_32 858 __visible bool __kvm_vcpu_is_preempted(long cpu) 859 { 860 struct kvm_steal_time *src = &per_cpu(steal_time, cpu); 861 862 return !!(src->preempted & KVM_VCPU_PREEMPTED); 863 } 864 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); 865 866 #else 867 868 #include <asm/asm-offsets.h> 869 870 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); 871 872 /* 873 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and 874 * restoring to/from the stack. 875 */ 876 asm( 877 ".pushsection .text;" 878 ".global __raw_callee_save___kvm_vcpu_is_preempted;" 879 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;" 880 "__raw_callee_save___kvm_vcpu_is_preempted:" 881 "movq __per_cpu_offset(,%rdi,8), %rax;" 882 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);" 883 "setne %al;" 884 "ret;" 885 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;" 886 ".popsection"); 887 888 #endif 889 890 /* 891 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. 892 */ 893 void __init kvm_spinlock_init(void) 894 { 895 /* 896 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an 897 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is 898 * preferred over native qspinlock when vCPU is preempted. 899 */ 900 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) { 901 pr_info("PV spinlocks disabled, no host support\n"); 902 return; 903 } 904 905 /* 906 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs 907 * are available. 908 */ 909 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) { 910 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n"); 911 goto out; 912 } 913 914 if (num_possible_cpus() == 1) { 915 pr_info("PV spinlocks disabled, single CPU\n"); 916 goto out; 917 } 918 919 if (nopvspin) { 920 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n"); 921 goto out; 922 } 923 924 pr_info("PV spinlocks enabled\n"); 925 926 __pv_init_lock_hash(); 927 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; 928 pv_ops.lock.queued_spin_unlock = 929 PV_CALLEE_SAVE(__pv_queued_spin_unlock); 930 pv_ops.lock.wait = kvm_wait; 931 pv_ops.lock.kick = kvm_kick_cpu; 932 933 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 934 pv_ops.lock.vcpu_is_preempted = 935 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); 936 } 937 /* 938 * When PV spinlock is enabled which is preferred over 939 * virt_spin_lock(), virt_spin_lock_key's value is meaningless. 940 * Just disable it anyway. 941 */ 942 out: 943 static_branch_disable(&virt_spin_lock_key); 944 } 945 946 #endif /* CONFIG_PARAVIRT_SPINLOCKS */ 947 948 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL 949 950 static void kvm_disable_host_haltpoll(void *i) 951 { 952 wrmsrl(MSR_KVM_POLL_CONTROL, 0); 953 } 954 955 static void kvm_enable_host_haltpoll(void *i) 956 { 957 wrmsrl(MSR_KVM_POLL_CONTROL, 1); 958 } 959 960 void arch_haltpoll_enable(unsigned int cpu) 961 { 962 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) { 963 pr_err_once("host does not support poll control\n"); 964 pr_err_once("host upgrade recommended\n"); 965 return; 966 } 967 968 /* Enable guest halt poll disables host halt poll */ 969 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1); 970 } 971 EXPORT_SYMBOL_GPL(arch_haltpoll_enable); 972 973 void arch_haltpoll_disable(unsigned int cpu) 974 { 975 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) 976 return; 977 978 /* Disable guest halt poll enables host halt poll */ 979 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1); 980 } 981 EXPORT_SYMBOL_GPL(arch_haltpoll_disable); 982 #endif 983