1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/extable.h> 37 #include <linux/kdebug.h> 38 #include <linux/kallsyms.h> 39 #include <linux/ftrace.h> 40 #include <linux/frame.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/vmalloc.h> 44 45 #include <asm/text-patching.h> 46 #include <asm/cacheflush.h> 47 #include <asm/desc.h> 48 #include <asm/pgtable.h> 49 #include <linux/uaccess.h> 50 #include <asm/alternative.h> 51 #include <asm/insn.h> 52 #include <asm/debugreg.h> 53 #include <asm/set_memory.h> 54 55 #include "common.h" 56 57 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 58 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 59 60 #define stack_addr(regs) ((unsigned long *)regs->sp) 61 62 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 63 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 64 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 65 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 66 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 67 << (row % 32)) 68 /* 69 * Undefined/reserved opcodes, conditional jump, Opcode Extension 70 * Groups, and some special opcodes can not boost. 71 * This is non-const and volatile to keep gcc from statically 72 * optimizing it out, as variable_test_bit makes gcc think only 73 * *(unsigned long*) is used. 74 */ 75 static volatile u32 twobyte_is_boostable[256 / 32] = { 76 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 77 /* ---------------------------------------------- */ 78 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 79 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 80 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 81 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 82 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 83 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 84 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 85 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 86 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 87 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 88 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 89 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 90 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 91 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 92 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 93 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 94 /* ----------------------------------------------- */ 95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 96 }; 97 #undef W 98 99 struct kretprobe_blackpoint kretprobe_blacklist[] = { 100 {"__switch_to", }, /* This function switches only current task, but 101 doesn't switch kernel stack.*/ 102 {NULL, NULL} /* Terminator */ 103 }; 104 105 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 106 107 static nokprobe_inline void 108 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 109 { 110 struct __arch_relative_insn { 111 u8 op; 112 s32 raddr; 113 } __packed *insn; 114 115 insn = (struct __arch_relative_insn *)dest; 116 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 117 insn->op = op; 118 } 119 120 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 121 void synthesize_reljump(void *dest, void *from, void *to) 122 { 123 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 124 } 125 NOKPROBE_SYMBOL(synthesize_reljump); 126 127 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 128 void synthesize_relcall(void *dest, void *from, void *to) 129 { 130 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 131 } 132 NOKPROBE_SYMBOL(synthesize_relcall); 133 134 /* 135 * Skip the prefixes of the instruction. 136 */ 137 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 138 { 139 insn_attr_t attr; 140 141 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 142 while (inat_is_legacy_prefix(attr)) { 143 insn++; 144 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 145 } 146 #ifdef CONFIG_X86_64 147 if (inat_is_rex_prefix(attr)) 148 insn++; 149 #endif 150 return insn; 151 } 152 NOKPROBE_SYMBOL(skip_prefixes); 153 154 /* 155 * Returns non-zero if INSN is boostable. 156 * RIP relative instructions are adjusted at copying time in 64 bits mode 157 */ 158 int can_boost(struct insn *insn, void *addr) 159 { 160 kprobe_opcode_t opcode; 161 162 if (search_exception_tables((unsigned long)addr)) 163 return 0; /* Page fault may occur on this address. */ 164 165 /* 2nd-byte opcode */ 166 if (insn->opcode.nbytes == 2) 167 return test_bit(insn->opcode.bytes[1], 168 (unsigned long *)twobyte_is_boostable); 169 170 if (insn->opcode.nbytes != 1) 171 return 0; 172 173 /* Can't boost Address-size override prefix */ 174 if (unlikely(inat_is_address_size_prefix(insn->attr))) 175 return 0; 176 177 opcode = insn->opcode.bytes[0]; 178 179 switch (opcode & 0xf0) { 180 case 0x60: 181 /* can't boost "bound" */ 182 return (opcode != 0x62); 183 case 0x70: 184 return 0; /* can't boost conditional jump */ 185 case 0x90: 186 return opcode != 0x9a; /* can't boost call far */ 187 case 0xc0: 188 /* can't boost software-interruptions */ 189 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 190 case 0xd0: 191 /* can boost AA* and XLAT */ 192 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 193 case 0xe0: 194 /* can boost in/out and absolute jmps */ 195 return ((opcode & 0x04) || opcode == 0xea); 196 case 0xf0: 197 /* clear and set flags are boostable */ 198 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 199 default: 200 /* CS override prefix and call are not boostable */ 201 return (opcode != 0x2e && opcode != 0x9a); 202 } 203 } 204 205 static unsigned long 206 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 207 { 208 struct kprobe *kp; 209 unsigned long faddr; 210 211 kp = get_kprobe((void *)addr); 212 faddr = ftrace_location(addr); 213 /* 214 * Addresses inside the ftrace location are refused by 215 * arch_check_ftrace_location(). Something went terribly wrong 216 * if such an address is checked here. 217 */ 218 if (WARN_ON(faddr && faddr != addr)) 219 return 0UL; 220 /* 221 * Use the current code if it is not modified by Kprobe 222 * and it cannot be modified by ftrace. 223 */ 224 if (!kp && !faddr) 225 return addr; 226 227 /* 228 * Basically, kp->ainsn.insn has an original instruction. 229 * However, RIP-relative instruction can not do single-stepping 230 * at different place, __copy_instruction() tweaks the displacement of 231 * that instruction. In that case, we can't recover the instruction 232 * from the kp->ainsn.insn. 233 * 234 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 235 * of the first byte of the probed instruction, which is overwritten 236 * by int3. And the instruction at kp->addr is not modified by kprobes 237 * except for the first byte, we can recover the original instruction 238 * from it and kp->opcode. 239 * 240 * In case of Kprobes using ftrace, we do not have a copy of 241 * the original instruction. In fact, the ftrace location might 242 * be modified at anytime and even could be in an inconsistent state. 243 * Fortunately, we know that the original code is the ideal 5-byte 244 * long NOP. 245 */ 246 if (probe_kernel_read(buf, (void *)addr, 247 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 248 return 0UL; 249 250 if (faddr) 251 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 252 else 253 buf[0] = kp->opcode; 254 return (unsigned long)buf; 255 } 256 257 /* 258 * Recover the probed instruction at addr for further analysis. 259 * Caller must lock kprobes by kprobe_mutex, or disable preemption 260 * for preventing to release referencing kprobes. 261 * Returns zero if the instruction can not get recovered (or access failed). 262 */ 263 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 264 { 265 unsigned long __addr; 266 267 __addr = __recover_optprobed_insn(buf, addr); 268 if (__addr != addr) 269 return __addr; 270 271 return __recover_probed_insn(buf, addr); 272 } 273 274 /* Check if paddr is at an instruction boundary */ 275 static int can_probe(unsigned long paddr) 276 { 277 unsigned long addr, __addr, offset = 0; 278 struct insn insn; 279 kprobe_opcode_t buf[MAX_INSN_SIZE]; 280 281 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 282 return 0; 283 284 /* Decode instructions */ 285 addr = paddr - offset; 286 while (addr < paddr) { 287 /* 288 * Check if the instruction has been modified by another 289 * kprobe, in which case we replace the breakpoint by the 290 * original instruction in our buffer. 291 * Also, jump optimization will change the breakpoint to 292 * relative-jump. Since the relative-jump itself is 293 * normally used, we just go through if there is no kprobe. 294 */ 295 __addr = recover_probed_instruction(buf, addr); 296 if (!__addr) 297 return 0; 298 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 299 insn_get_length(&insn); 300 301 /* 302 * Another debugging subsystem might insert this breakpoint. 303 * In that case, we can't recover it. 304 */ 305 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 306 return 0; 307 addr += insn.length; 308 } 309 310 return (addr == paddr); 311 } 312 313 /* 314 * Returns non-zero if opcode modifies the interrupt flag. 315 */ 316 static int is_IF_modifier(kprobe_opcode_t *insn) 317 { 318 /* Skip prefixes */ 319 insn = skip_prefixes(insn); 320 321 switch (*insn) { 322 case 0xfa: /* cli */ 323 case 0xfb: /* sti */ 324 case 0xcf: /* iret/iretd */ 325 case 0x9d: /* popf/popfd */ 326 return 1; 327 } 328 329 return 0; 330 } 331 332 /* 333 * Copy an instruction with recovering modified instruction by kprobes 334 * and adjust the displacement if the instruction uses the %rip-relative 335 * addressing mode. Note that since @real will be the final place of copied 336 * instruction, displacement must be adjust by @real, not @dest. 337 * This returns the length of copied instruction, or 0 if it has an error. 338 */ 339 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 340 { 341 kprobe_opcode_t buf[MAX_INSN_SIZE]; 342 unsigned long recovered_insn = 343 recover_probed_instruction(buf, (unsigned long)src); 344 345 if (!recovered_insn || !insn) 346 return 0; 347 348 /* This can access kernel text if given address is not recovered */ 349 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 350 return 0; 351 352 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 353 insn_get_length(insn); 354 355 /* We can not probe force emulate prefixed instruction */ 356 if (insn_has_emulate_prefix(insn)) 357 return 0; 358 359 /* Another subsystem puts a breakpoint, failed to recover */ 360 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 361 return 0; 362 363 /* We should not singlestep on the exception masking instructions */ 364 if (insn_masking_exception(insn)) 365 return 0; 366 367 #ifdef CONFIG_X86_64 368 /* Only x86_64 has RIP relative instructions */ 369 if (insn_rip_relative(insn)) { 370 s64 newdisp; 371 u8 *disp; 372 /* 373 * The copied instruction uses the %rip-relative addressing 374 * mode. Adjust the displacement for the difference between 375 * the original location of this instruction and the location 376 * of the copy that will actually be run. The tricky bit here 377 * is making sure that the sign extension happens correctly in 378 * this calculation, since we need a signed 32-bit result to 379 * be sign-extended to 64 bits when it's added to the %rip 380 * value and yield the same 64-bit result that the sign- 381 * extension of the original signed 32-bit displacement would 382 * have given. 383 */ 384 newdisp = (u8 *) src + (s64) insn->displacement.value 385 - (u8 *) real; 386 if ((s64) (s32) newdisp != newdisp) { 387 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 388 return 0; 389 } 390 disp = (u8 *) dest + insn_offset_displacement(insn); 391 *(s32 *) disp = (s32) newdisp; 392 } 393 #endif 394 return insn->length; 395 } 396 397 /* Prepare reljump right after instruction to boost */ 398 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 399 struct insn *insn) 400 { 401 int len = insn->length; 402 403 if (can_boost(insn, p->addr) && 404 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 405 /* 406 * These instructions can be executed directly if it 407 * jumps back to correct address. 408 */ 409 synthesize_reljump(buf + len, p->ainsn.insn + len, 410 p->addr + insn->length); 411 len += JMP32_INSN_SIZE; 412 p->ainsn.boostable = true; 413 } else { 414 p->ainsn.boostable = false; 415 } 416 417 return len; 418 } 419 420 /* Make page to RO mode when allocate it */ 421 void *alloc_insn_page(void) 422 { 423 void *page; 424 425 page = module_alloc(PAGE_SIZE); 426 if (!page) 427 return NULL; 428 429 set_vm_flush_reset_perms(page); 430 /* 431 * First make the page read-only, and only then make it executable to 432 * prevent it from being W+X in between. 433 */ 434 set_memory_ro((unsigned long)page, 1); 435 436 /* 437 * TODO: Once additional kernel code protection mechanisms are set, ensure 438 * that the page was not maliciously altered and it is still zeroed. 439 */ 440 set_memory_x((unsigned long)page, 1); 441 442 return page; 443 } 444 445 /* Recover page to RW mode before releasing it */ 446 void free_insn_page(void *page) 447 { 448 module_memfree(page); 449 } 450 451 static int arch_copy_kprobe(struct kprobe *p) 452 { 453 struct insn insn; 454 kprobe_opcode_t buf[MAX_INSN_SIZE]; 455 int len; 456 457 /* Copy an instruction with recovering if other optprobe modifies it.*/ 458 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 459 if (!len) 460 return -EINVAL; 461 462 /* 463 * __copy_instruction can modify the displacement of the instruction, 464 * but it doesn't affect boostable check. 465 */ 466 len = prepare_boost(buf, p, &insn); 467 468 /* Check whether the instruction modifies Interrupt Flag or not */ 469 p->ainsn.if_modifier = is_IF_modifier(buf); 470 471 /* Also, displacement change doesn't affect the first byte */ 472 p->opcode = buf[0]; 473 474 /* OK, write back the instruction(s) into ROX insn buffer */ 475 text_poke(p->ainsn.insn, buf, len); 476 477 return 0; 478 } 479 480 int arch_prepare_kprobe(struct kprobe *p) 481 { 482 int ret; 483 484 if (alternatives_text_reserved(p->addr, p->addr)) 485 return -EINVAL; 486 487 if (!can_probe((unsigned long)p->addr)) 488 return -EILSEQ; 489 /* insn: must be on special executable page on x86. */ 490 p->ainsn.insn = get_insn_slot(); 491 if (!p->ainsn.insn) 492 return -ENOMEM; 493 494 ret = arch_copy_kprobe(p); 495 if (ret) { 496 free_insn_slot(p->ainsn.insn, 0); 497 p->ainsn.insn = NULL; 498 } 499 500 return ret; 501 } 502 503 void arch_arm_kprobe(struct kprobe *p) 504 { 505 text_poke(p->addr, ((unsigned char []){INT3_INSN_OPCODE}), 1); 506 text_poke_sync(); 507 } 508 509 void arch_disarm_kprobe(struct kprobe *p) 510 { 511 text_poke(p->addr, &p->opcode, 1); 512 text_poke_sync(); 513 } 514 515 void arch_remove_kprobe(struct kprobe *p) 516 { 517 if (p->ainsn.insn) { 518 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 519 p->ainsn.insn = NULL; 520 } 521 } 522 523 static nokprobe_inline void 524 save_previous_kprobe(struct kprobe_ctlblk *kcb) 525 { 526 kcb->prev_kprobe.kp = kprobe_running(); 527 kcb->prev_kprobe.status = kcb->kprobe_status; 528 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 529 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 530 } 531 532 static nokprobe_inline void 533 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 534 { 535 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 536 kcb->kprobe_status = kcb->prev_kprobe.status; 537 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 538 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 539 } 540 541 static nokprobe_inline void 542 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 543 struct kprobe_ctlblk *kcb) 544 { 545 __this_cpu_write(current_kprobe, p); 546 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 547 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 548 if (p->ainsn.if_modifier) 549 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 550 } 551 552 static nokprobe_inline void clear_btf(void) 553 { 554 if (test_thread_flag(TIF_BLOCKSTEP)) { 555 unsigned long debugctl = get_debugctlmsr(); 556 557 debugctl &= ~DEBUGCTLMSR_BTF; 558 update_debugctlmsr(debugctl); 559 } 560 } 561 562 static nokprobe_inline void restore_btf(void) 563 { 564 if (test_thread_flag(TIF_BLOCKSTEP)) { 565 unsigned long debugctl = get_debugctlmsr(); 566 567 debugctl |= DEBUGCTLMSR_BTF; 568 update_debugctlmsr(debugctl); 569 } 570 } 571 572 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 573 { 574 unsigned long *sara = stack_addr(regs); 575 576 ri->ret_addr = (kprobe_opcode_t *) *sara; 577 ri->fp = sara; 578 579 /* Replace the return addr with trampoline addr */ 580 *sara = (unsigned long) &kretprobe_trampoline; 581 } 582 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 583 584 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 585 struct kprobe_ctlblk *kcb, int reenter) 586 { 587 if (setup_detour_execution(p, regs, reenter)) 588 return; 589 590 #if !defined(CONFIG_PREEMPTION) 591 if (p->ainsn.boostable && !p->post_handler) { 592 /* Boost up -- we can execute copied instructions directly */ 593 if (!reenter) 594 reset_current_kprobe(); 595 /* 596 * Reentering boosted probe doesn't reset current_kprobe, 597 * nor set current_kprobe, because it doesn't use single 598 * stepping. 599 */ 600 regs->ip = (unsigned long)p->ainsn.insn; 601 return; 602 } 603 #endif 604 if (reenter) { 605 save_previous_kprobe(kcb); 606 set_current_kprobe(p, regs, kcb); 607 kcb->kprobe_status = KPROBE_REENTER; 608 } else 609 kcb->kprobe_status = KPROBE_HIT_SS; 610 /* Prepare real single stepping */ 611 clear_btf(); 612 regs->flags |= X86_EFLAGS_TF; 613 regs->flags &= ~X86_EFLAGS_IF; 614 /* single step inline if the instruction is an int3 */ 615 if (p->opcode == INT3_INSN_OPCODE) 616 regs->ip = (unsigned long)p->addr; 617 else 618 regs->ip = (unsigned long)p->ainsn.insn; 619 } 620 NOKPROBE_SYMBOL(setup_singlestep); 621 622 /* 623 * We have reentered the kprobe_handler(), since another probe was hit while 624 * within the handler. We save the original kprobes variables and just single 625 * step on the instruction of the new probe without calling any user handlers. 626 */ 627 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 628 struct kprobe_ctlblk *kcb) 629 { 630 switch (kcb->kprobe_status) { 631 case KPROBE_HIT_SSDONE: 632 case KPROBE_HIT_ACTIVE: 633 case KPROBE_HIT_SS: 634 kprobes_inc_nmissed_count(p); 635 setup_singlestep(p, regs, kcb, 1); 636 break; 637 case KPROBE_REENTER: 638 /* A probe has been hit in the codepath leading up to, or just 639 * after, single-stepping of a probed instruction. This entire 640 * codepath should strictly reside in .kprobes.text section. 641 * Raise a BUG or we'll continue in an endless reentering loop 642 * and eventually a stack overflow. 643 */ 644 pr_err("Unrecoverable kprobe detected.\n"); 645 dump_kprobe(p); 646 BUG(); 647 default: 648 /* impossible cases */ 649 WARN_ON(1); 650 return 0; 651 } 652 653 return 1; 654 } 655 NOKPROBE_SYMBOL(reenter_kprobe); 656 657 /* 658 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 659 * remain disabled throughout this function. 660 */ 661 int kprobe_int3_handler(struct pt_regs *regs) 662 { 663 kprobe_opcode_t *addr; 664 struct kprobe *p; 665 struct kprobe_ctlblk *kcb; 666 667 if (user_mode(regs)) 668 return 0; 669 670 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 671 /* 672 * We don't want to be preempted for the entire duration of kprobe 673 * processing. Since int3 and debug trap disables irqs and we clear 674 * IF while singlestepping, it must be no preemptible. 675 */ 676 677 kcb = get_kprobe_ctlblk(); 678 p = get_kprobe(addr); 679 680 if (p) { 681 if (kprobe_running()) { 682 if (reenter_kprobe(p, regs, kcb)) 683 return 1; 684 } else { 685 set_current_kprobe(p, regs, kcb); 686 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 687 688 /* 689 * If we have no pre-handler or it returned 0, we 690 * continue with normal processing. If we have a 691 * pre-handler and it returned non-zero, that means 692 * user handler setup registers to exit to another 693 * instruction, we must skip the single stepping. 694 */ 695 if (!p->pre_handler || !p->pre_handler(p, regs)) 696 setup_singlestep(p, regs, kcb, 0); 697 else 698 reset_current_kprobe(); 699 return 1; 700 } 701 } else if (*addr != INT3_INSN_OPCODE) { 702 /* 703 * The breakpoint instruction was removed right 704 * after we hit it. Another cpu has removed 705 * either a probepoint or a debugger breakpoint 706 * at this address. In either case, no further 707 * handling of this interrupt is appropriate. 708 * Back up over the (now missing) int3 and run 709 * the original instruction. 710 */ 711 regs->ip = (unsigned long)addr; 712 return 1; 713 } /* else: not a kprobe fault; let the kernel handle it */ 714 715 return 0; 716 } 717 NOKPROBE_SYMBOL(kprobe_int3_handler); 718 719 /* 720 * When a retprobed function returns, this code saves registers and 721 * calls trampoline_handler() runs, which calls the kretprobe's handler. 722 */ 723 asm( 724 ".text\n" 725 ".global kretprobe_trampoline\n" 726 ".type kretprobe_trampoline, @function\n" 727 "kretprobe_trampoline:\n" 728 /* We don't bother saving the ss register */ 729 #ifdef CONFIG_X86_64 730 " pushq %rsp\n" 731 " pushfq\n" 732 SAVE_REGS_STRING 733 " movq %rsp, %rdi\n" 734 " call trampoline_handler\n" 735 /* Replace saved sp with true return address. */ 736 " movq %rax, 19*8(%rsp)\n" 737 RESTORE_REGS_STRING 738 " popfq\n" 739 #else 740 " pushl %esp\n" 741 " pushfl\n" 742 SAVE_REGS_STRING 743 " movl %esp, %eax\n" 744 " call trampoline_handler\n" 745 /* Replace saved sp with true return address. */ 746 " movl %eax, 15*4(%esp)\n" 747 RESTORE_REGS_STRING 748 " popfl\n" 749 #endif 750 " ret\n" 751 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 752 ); 753 NOKPROBE_SYMBOL(kretprobe_trampoline); 754 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 755 756 static struct kprobe kretprobe_kprobe = { 757 .addr = (void *)kretprobe_trampoline, 758 }; 759 760 /* 761 * Called from kretprobe_trampoline 762 */ 763 __used __visible void *trampoline_handler(struct pt_regs *regs) 764 { 765 struct kprobe_ctlblk *kcb; 766 struct kretprobe_instance *ri = NULL; 767 struct hlist_head *head, empty_rp; 768 struct hlist_node *tmp; 769 unsigned long flags, orig_ret_address = 0; 770 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 771 kprobe_opcode_t *correct_ret_addr = NULL; 772 void *frame_pointer; 773 bool skipped = false; 774 775 preempt_disable(); 776 777 /* 778 * Set a dummy kprobe for avoiding kretprobe recursion. 779 * Since kretprobe never run in kprobe handler, kprobe must not 780 * be running at this point. 781 */ 782 kcb = get_kprobe_ctlblk(); 783 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 784 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 785 786 INIT_HLIST_HEAD(&empty_rp); 787 kretprobe_hash_lock(current, &head, &flags); 788 /* fixup registers */ 789 regs->cs = __KERNEL_CS; 790 #ifdef CONFIG_X86_32 791 regs->cs |= get_kernel_rpl(); 792 regs->gs = 0; 793 #endif 794 /* We use pt_regs->sp for return address holder. */ 795 frame_pointer = ®s->sp; 796 regs->ip = trampoline_address; 797 regs->orig_ax = ~0UL; 798 799 /* 800 * It is possible to have multiple instances associated with a given 801 * task either because multiple functions in the call path have 802 * return probes installed on them, and/or more than one 803 * return probe was registered for a target function. 804 * 805 * We can handle this because: 806 * - instances are always pushed into the head of the list 807 * - when multiple return probes are registered for the same 808 * function, the (chronologically) first instance's ret_addr 809 * will be the real return address, and all the rest will 810 * point to kretprobe_trampoline. 811 */ 812 hlist_for_each_entry(ri, head, hlist) { 813 if (ri->task != current) 814 /* another task is sharing our hash bucket */ 815 continue; 816 /* 817 * Return probes must be pushed on this hash list correct 818 * order (same as return order) so that it can be popped 819 * correctly. However, if we find it is pushed it incorrect 820 * order, this means we find a function which should not be 821 * probed, because the wrong order entry is pushed on the 822 * path of processing other kretprobe itself. 823 */ 824 if (ri->fp != frame_pointer) { 825 if (!skipped) 826 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 827 skipped = true; 828 continue; 829 } 830 831 orig_ret_address = (unsigned long)ri->ret_addr; 832 if (skipped) 833 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 834 ri->rp->kp.addr); 835 836 if (orig_ret_address != trampoline_address) 837 /* 838 * This is the real return address. Any other 839 * instances associated with this task are for 840 * other calls deeper on the call stack 841 */ 842 break; 843 } 844 845 kretprobe_assert(ri, orig_ret_address, trampoline_address); 846 847 correct_ret_addr = ri->ret_addr; 848 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 849 if (ri->task != current) 850 /* another task is sharing our hash bucket */ 851 continue; 852 if (ri->fp != frame_pointer) 853 continue; 854 855 orig_ret_address = (unsigned long)ri->ret_addr; 856 if (ri->rp && ri->rp->handler) { 857 __this_cpu_write(current_kprobe, &ri->rp->kp); 858 ri->ret_addr = correct_ret_addr; 859 ri->rp->handler(ri, regs); 860 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 861 } 862 863 recycle_rp_inst(ri, &empty_rp); 864 865 if (orig_ret_address != trampoline_address) 866 /* 867 * This is the real return address. Any other 868 * instances associated with this task are for 869 * other calls deeper on the call stack 870 */ 871 break; 872 } 873 874 kretprobe_hash_unlock(current, &flags); 875 876 __this_cpu_write(current_kprobe, NULL); 877 preempt_enable(); 878 879 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 880 hlist_del(&ri->hlist); 881 kfree(ri); 882 } 883 return (void *)orig_ret_address; 884 } 885 NOKPROBE_SYMBOL(trampoline_handler); 886 887 /* 888 * Called after single-stepping. p->addr is the address of the 889 * instruction whose first byte has been replaced by the "int 3" 890 * instruction. To avoid the SMP problems that can occur when we 891 * temporarily put back the original opcode to single-step, we 892 * single-stepped a copy of the instruction. The address of this 893 * copy is p->ainsn.insn. 894 * 895 * This function prepares to return from the post-single-step 896 * interrupt. We have to fix up the stack as follows: 897 * 898 * 0) Except in the case of absolute or indirect jump or call instructions, 899 * the new ip is relative to the copied instruction. We need to make 900 * it relative to the original instruction. 901 * 902 * 1) If the single-stepped instruction was pushfl, then the TF and IF 903 * flags are set in the just-pushed flags, and may need to be cleared. 904 * 905 * 2) If the single-stepped instruction was a call, the return address 906 * that is atop the stack is the address following the copied instruction. 907 * We need to make it the address following the original instruction. 908 * 909 * If this is the first time we've single-stepped the instruction at 910 * this probepoint, and the instruction is boostable, boost it: add a 911 * jump instruction after the copied instruction, that jumps to the next 912 * instruction after the probepoint. 913 */ 914 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 915 struct kprobe_ctlblk *kcb) 916 { 917 unsigned long *tos = stack_addr(regs); 918 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 919 unsigned long orig_ip = (unsigned long)p->addr; 920 kprobe_opcode_t *insn = p->ainsn.insn; 921 922 /* Skip prefixes */ 923 insn = skip_prefixes(insn); 924 925 regs->flags &= ~X86_EFLAGS_TF; 926 switch (*insn) { 927 case 0x9c: /* pushfl */ 928 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 929 *tos |= kcb->kprobe_old_flags; 930 break; 931 case 0xc2: /* iret/ret/lret */ 932 case 0xc3: 933 case 0xca: 934 case 0xcb: 935 case 0xcf: 936 case 0xea: /* jmp absolute -- ip is correct */ 937 /* ip is already adjusted, no more changes required */ 938 p->ainsn.boostable = true; 939 goto no_change; 940 case 0xe8: /* call relative - Fix return addr */ 941 *tos = orig_ip + (*tos - copy_ip); 942 break; 943 #ifdef CONFIG_X86_32 944 case 0x9a: /* call absolute -- same as call absolute, indirect */ 945 *tos = orig_ip + (*tos - copy_ip); 946 goto no_change; 947 #endif 948 case 0xff: 949 if ((insn[1] & 0x30) == 0x10) { 950 /* 951 * call absolute, indirect 952 * Fix return addr; ip is correct. 953 * But this is not boostable 954 */ 955 *tos = orig_ip + (*tos - copy_ip); 956 goto no_change; 957 } else if (((insn[1] & 0x31) == 0x20) || 958 ((insn[1] & 0x31) == 0x21)) { 959 /* 960 * jmp near and far, absolute indirect 961 * ip is correct. And this is boostable 962 */ 963 p->ainsn.boostable = true; 964 goto no_change; 965 } 966 default: 967 break; 968 } 969 970 regs->ip += orig_ip - copy_ip; 971 972 no_change: 973 restore_btf(); 974 } 975 NOKPROBE_SYMBOL(resume_execution); 976 977 /* 978 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 979 * remain disabled throughout this function. 980 */ 981 int kprobe_debug_handler(struct pt_regs *regs) 982 { 983 struct kprobe *cur = kprobe_running(); 984 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 985 986 if (!cur) 987 return 0; 988 989 resume_execution(cur, regs, kcb); 990 regs->flags |= kcb->kprobe_saved_flags; 991 992 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 993 kcb->kprobe_status = KPROBE_HIT_SSDONE; 994 cur->post_handler(cur, regs, 0); 995 } 996 997 /* Restore back the original saved kprobes variables and continue. */ 998 if (kcb->kprobe_status == KPROBE_REENTER) { 999 restore_previous_kprobe(kcb); 1000 goto out; 1001 } 1002 reset_current_kprobe(); 1003 out: 1004 /* 1005 * if somebody else is singlestepping across a probe point, flags 1006 * will have TF set, in which case, continue the remaining processing 1007 * of do_debug, as if this is not a probe hit. 1008 */ 1009 if (regs->flags & X86_EFLAGS_TF) 1010 return 0; 1011 1012 return 1; 1013 } 1014 NOKPROBE_SYMBOL(kprobe_debug_handler); 1015 1016 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1017 { 1018 struct kprobe *cur = kprobe_running(); 1019 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1020 1021 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1022 /* This must happen on single-stepping */ 1023 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1024 kcb->kprobe_status != KPROBE_REENTER); 1025 /* 1026 * We are here because the instruction being single 1027 * stepped caused a page fault. We reset the current 1028 * kprobe and the ip points back to the probe address 1029 * and allow the page fault handler to continue as a 1030 * normal page fault. 1031 */ 1032 regs->ip = (unsigned long)cur->addr; 1033 /* 1034 * Trap flag (TF) has been set here because this fault 1035 * happened where the single stepping will be done. 1036 * So clear it by resetting the current kprobe: 1037 */ 1038 regs->flags &= ~X86_EFLAGS_TF; 1039 1040 /* 1041 * If the TF flag was set before the kprobe hit, 1042 * don't touch it: 1043 */ 1044 regs->flags |= kcb->kprobe_old_flags; 1045 1046 if (kcb->kprobe_status == KPROBE_REENTER) 1047 restore_previous_kprobe(kcb); 1048 else 1049 reset_current_kprobe(); 1050 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1051 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1052 /* 1053 * We increment the nmissed count for accounting, 1054 * we can also use npre/npostfault count for accounting 1055 * these specific fault cases. 1056 */ 1057 kprobes_inc_nmissed_count(cur); 1058 1059 /* 1060 * We come here because instructions in the pre/post 1061 * handler caused the page_fault, this could happen 1062 * if handler tries to access user space by 1063 * copy_from_user(), get_user() etc. Let the 1064 * user-specified handler try to fix it first. 1065 */ 1066 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1067 return 1; 1068 } 1069 1070 return 0; 1071 } 1072 NOKPROBE_SYMBOL(kprobe_fault_handler); 1073 1074 int __init arch_populate_kprobe_blacklist(void) 1075 { 1076 int ret; 1077 1078 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 1079 (unsigned long)__irqentry_text_end); 1080 if (ret) 1081 return ret; 1082 1083 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1084 (unsigned long)__entry_text_end); 1085 } 1086 1087 int __init arch_init_kprobes(void) 1088 { 1089 return 0; 1090 } 1091 1092 int arch_trampoline_kprobe(struct kprobe *p) 1093 { 1094 return 0; 1095 } 1096