xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 
56 #include <asm/text-patching.h>
57 #include <asm/cacheflush.h>
58 #include <asm/desc.h>
59 #include <asm/pgtable.h>
60 #include <linux/uaccess.h>
61 #include <asm/alternative.h>
62 #include <asm/insn.h>
63 #include <asm/debugreg.h>
64 
65 #include "common.h"
66 
67 void jprobe_return_end(void);
68 
69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
71 
72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
73 
74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
76 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
77 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
78 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
79 	 << (row % 32))
80 	/*
81 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 	 * Groups, and some special opcodes can not boost.
83 	 * This is non-const and volatile to keep gcc from statically
84 	 * optimizing it out, as variable_test_bit makes gcc think only
85 	 * *(unsigned long*) is used.
86 	 */
87 static volatile u32 twobyte_is_boostable[256 / 32] = {
88 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
89 	/*      ----------------------------------------------          */
90 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
106 	/*      -----------------------------------------------         */
107 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
108 };
109 #undef W
110 
111 struct kretprobe_blackpoint kretprobe_blacklist[] = {
112 	{"__switch_to", }, /* This function switches only current task, but
113 			      doesn't switch kernel stack.*/
114 	{NULL, NULL}	/* Terminator */
115 };
116 
117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
118 
119 static nokprobe_inline void
120 __synthesize_relative_insn(void *from, void *to, u8 op)
121 {
122 	struct __arch_relative_insn {
123 		u8 op;
124 		s32 raddr;
125 	} __packed *insn;
126 
127 	insn = (struct __arch_relative_insn *)from;
128 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
129 	insn->op = op;
130 }
131 
132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133 void synthesize_reljump(void *from, void *to)
134 {
135 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
136 }
137 NOKPROBE_SYMBOL(synthesize_reljump);
138 
139 /* Insert a call instruction at address 'from', which calls address 'to'.*/
140 void synthesize_relcall(void *from, void *to)
141 {
142 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
143 }
144 NOKPROBE_SYMBOL(synthesize_relcall);
145 
146 /*
147  * Skip the prefixes of the instruction.
148  */
149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
150 {
151 	insn_attr_t attr;
152 
153 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 	while (inat_is_legacy_prefix(attr)) {
155 		insn++;
156 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 	}
158 #ifdef CONFIG_X86_64
159 	if (inat_is_rex_prefix(attr))
160 		insn++;
161 #endif
162 	return insn;
163 }
164 NOKPROBE_SYMBOL(skip_prefixes);
165 
166 /*
167  * Returns non-zero if opcode is boostable.
168  * RIP relative instructions are adjusted at copying time in 64 bits mode
169  */
170 int can_boost(kprobe_opcode_t *opcodes, void *addr)
171 {
172 	kprobe_opcode_t opcode;
173 	kprobe_opcode_t *orig_opcodes = opcodes;
174 
175 	if (search_exception_tables((unsigned long)addr))
176 		return 0;	/* Page fault may occur on this address. */
177 
178 retry:
179 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
180 		return 0;
181 	opcode = *(opcodes++);
182 
183 	/* 2nd-byte opcode */
184 	if (opcode == 0x0f) {
185 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
186 			return 0;
187 		return test_bit(*opcodes,
188 				(unsigned long *)twobyte_is_boostable);
189 	}
190 
191 	switch (opcode & 0xf0) {
192 #ifdef CONFIG_X86_64
193 	case 0x40:
194 		goto retry; /* REX prefix is boostable */
195 #endif
196 	case 0x60:
197 		if (0x63 < opcode && opcode < 0x67)
198 			goto retry; /* prefixes */
199 		/* can't boost Address-size override and bound */
200 		return (opcode != 0x62 && opcode != 0x67);
201 	case 0x70:
202 		return 0; /* can't boost conditional jump */
203 	case 0xc0:
204 		/* can't boost software-interruptions */
205 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
206 	case 0xd0:
207 		/* can boost AA* and XLAT */
208 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
209 	case 0xe0:
210 		/* can boost in/out and absolute jmps */
211 		return ((opcode & 0x04) || opcode == 0xea);
212 	case 0xf0:
213 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
214 			goto retry; /* lock/rep(ne) prefix */
215 		/* clear and set flags are boostable */
216 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
217 	default:
218 		/* segment override prefixes are boostable */
219 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
220 			goto retry; /* prefixes */
221 		/* CS override prefix and call are not boostable */
222 		return (opcode != 0x2e && opcode != 0x9a);
223 	}
224 }
225 
226 static unsigned long
227 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
228 {
229 	struct kprobe *kp;
230 	unsigned long faddr;
231 
232 	kp = get_kprobe((void *)addr);
233 	faddr = ftrace_location(addr);
234 	/*
235 	 * Addresses inside the ftrace location are refused by
236 	 * arch_check_ftrace_location(). Something went terribly wrong
237 	 * if such an address is checked here.
238 	 */
239 	if (WARN_ON(faddr && faddr != addr))
240 		return 0UL;
241 	/*
242 	 * Use the current code if it is not modified by Kprobe
243 	 * and it cannot be modified by ftrace.
244 	 */
245 	if (!kp && !faddr)
246 		return addr;
247 
248 	/*
249 	 * Basically, kp->ainsn.insn has an original instruction.
250 	 * However, RIP-relative instruction can not do single-stepping
251 	 * at different place, __copy_instruction() tweaks the displacement of
252 	 * that instruction. In that case, we can't recover the instruction
253 	 * from the kp->ainsn.insn.
254 	 *
255 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
256 	 * of the first byte of the probed instruction, which is overwritten
257 	 * by int3. And the instruction at kp->addr is not modified by kprobes
258 	 * except for the first byte, we can recover the original instruction
259 	 * from it and kp->opcode.
260 	 *
261 	 * In case of Kprobes using ftrace, we do not have a copy of
262 	 * the original instruction. In fact, the ftrace location might
263 	 * be modified at anytime and even could be in an inconsistent state.
264 	 * Fortunately, we know that the original code is the ideal 5-byte
265 	 * long NOP.
266 	 */
267 	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
268 	if (faddr)
269 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
270 	else
271 		buf[0] = kp->opcode;
272 	return (unsigned long)buf;
273 }
274 
275 /*
276  * Recover the probed instruction at addr for further analysis.
277  * Caller must lock kprobes by kprobe_mutex, or disable preemption
278  * for preventing to release referencing kprobes.
279  * Returns zero if the instruction can not get recovered.
280  */
281 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
282 {
283 	unsigned long __addr;
284 
285 	__addr = __recover_optprobed_insn(buf, addr);
286 	if (__addr != addr)
287 		return __addr;
288 
289 	return __recover_probed_insn(buf, addr);
290 }
291 
292 /* Check if paddr is at an instruction boundary */
293 static int can_probe(unsigned long paddr)
294 {
295 	unsigned long addr, __addr, offset = 0;
296 	struct insn insn;
297 	kprobe_opcode_t buf[MAX_INSN_SIZE];
298 
299 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
300 		return 0;
301 
302 	/* Decode instructions */
303 	addr = paddr - offset;
304 	while (addr < paddr) {
305 		/*
306 		 * Check if the instruction has been modified by another
307 		 * kprobe, in which case we replace the breakpoint by the
308 		 * original instruction in our buffer.
309 		 * Also, jump optimization will change the breakpoint to
310 		 * relative-jump. Since the relative-jump itself is
311 		 * normally used, we just go through if there is no kprobe.
312 		 */
313 		__addr = recover_probed_instruction(buf, addr);
314 		if (!__addr)
315 			return 0;
316 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
317 		insn_get_length(&insn);
318 
319 		/*
320 		 * Another debugging subsystem might insert this breakpoint.
321 		 * In that case, we can't recover it.
322 		 */
323 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
324 			return 0;
325 		addr += insn.length;
326 	}
327 
328 	return (addr == paddr);
329 }
330 
331 /*
332  * Returns non-zero if opcode modifies the interrupt flag.
333  */
334 static int is_IF_modifier(kprobe_opcode_t *insn)
335 {
336 	/* Skip prefixes */
337 	insn = skip_prefixes(insn);
338 
339 	switch (*insn) {
340 	case 0xfa:		/* cli */
341 	case 0xfb:		/* sti */
342 	case 0xcf:		/* iret/iretd */
343 	case 0x9d:		/* popf/popfd */
344 		return 1;
345 	}
346 
347 	return 0;
348 }
349 
350 /*
351  * Copy an instruction and adjust the displacement if the instruction
352  * uses the %rip-relative addressing mode.
353  * If it does, Return the address of the 32-bit displacement word.
354  * If not, return null.
355  * Only applicable to 64-bit x86.
356  */
357 int __copy_instruction(u8 *dest, u8 *src)
358 {
359 	struct insn insn;
360 	kprobe_opcode_t buf[MAX_INSN_SIZE];
361 	int length;
362 	unsigned long recovered_insn =
363 		recover_probed_instruction(buf, (unsigned long)src);
364 
365 	if (!recovered_insn)
366 		return 0;
367 	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
368 	insn_get_length(&insn);
369 	length = insn.length;
370 
371 	/* Another subsystem puts a breakpoint, failed to recover */
372 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
373 		return 0;
374 	memcpy(dest, insn.kaddr, length);
375 
376 #ifdef CONFIG_X86_64
377 	if (insn_rip_relative(&insn)) {
378 		s64 newdisp;
379 		u8 *disp;
380 		kernel_insn_init(&insn, dest, length);
381 		insn_get_displacement(&insn);
382 		/*
383 		 * The copied instruction uses the %rip-relative addressing
384 		 * mode.  Adjust the displacement for the difference between
385 		 * the original location of this instruction and the location
386 		 * of the copy that will actually be run.  The tricky bit here
387 		 * is making sure that the sign extension happens correctly in
388 		 * this calculation, since we need a signed 32-bit result to
389 		 * be sign-extended to 64 bits when it's added to the %rip
390 		 * value and yield the same 64-bit result that the sign-
391 		 * extension of the original signed 32-bit displacement would
392 		 * have given.
393 		 */
394 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
395 		if ((s64) (s32) newdisp != newdisp) {
396 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
397 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
398 			return 0;
399 		}
400 		disp = (u8 *) dest + insn_offset_displacement(&insn);
401 		*(s32 *) disp = (s32) newdisp;
402 	}
403 #endif
404 	return length;
405 }
406 
407 static int arch_copy_kprobe(struct kprobe *p)
408 {
409 	int ret;
410 
411 	/* Copy an instruction with recovering if other optprobe modifies it.*/
412 	ret = __copy_instruction(p->ainsn.insn, p->addr);
413 	if (!ret)
414 		return -EINVAL;
415 
416 	/*
417 	 * __copy_instruction can modify the displacement of the instruction,
418 	 * but it doesn't affect boostable check.
419 	 */
420 	if (can_boost(p->ainsn.insn, p->addr))
421 		p->ainsn.boostable = 0;
422 	else
423 		p->ainsn.boostable = -1;
424 
425 	/* Check whether the instruction modifies Interrupt Flag or not */
426 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
427 
428 	/* Also, displacement change doesn't affect the first byte */
429 	p->opcode = p->ainsn.insn[0];
430 
431 	return 0;
432 }
433 
434 int arch_prepare_kprobe(struct kprobe *p)
435 {
436 	if (alternatives_text_reserved(p->addr, p->addr))
437 		return -EINVAL;
438 
439 	if (!can_probe((unsigned long)p->addr))
440 		return -EILSEQ;
441 	/* insn: must be on special executable page on x86. */
442 	p->ainsn.insn = get_insn_slot();
443 	if (!p->ainsn.insn)
444 		return -ENOMEM;
445 
446 	return arch_copy_kprobe(p);
447 }
448 
449 void arch_arm_kprobe(struct kprobe *p)
450 {
451 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
452 }
453 
454 void arch_disarm_kprobe(struct kprobe *p)
455 {
456 	text_poke(p->addr, &p->opcode, 1);
457 }
458 
459 void arch_remove_kprobe(struct kprobe *p)
460 {
461 	if (p->ainsn.insn) {
462 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
463 		p->ainsn.insn = NULL;
464 	}
465 }
466 
467 static nokprobe_inline void
468 save_previous_kprobe(struct kprobe_ctlblk *kcb)
469 {
470 	kcb->prev_kprobe.kp = kprobe_running();
471 	kcb->prev_kprobe.status = kcb->kprobe_status;
472 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
473 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
474 }
475 
476 static nokprobe_inline void
477 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
478 {
479 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
480 	kcb->kprobe_status = kcb->prev_kprobe.status;
481 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
482 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
483 }
484 
485 static nokprobe_inline void
486 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
487 		   struct kprobe_ctlblk *kcb)
488 {
489 	__this_cpu_write(current_kprobe, p);
490 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
491 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
492 	if (p->ainsn.if_modifier)
493 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
494 }
495 
496 static nokprobe_inline void clear_btf(void)
497 {
498 	if (test_thread_flag(TIF_BLOCKSTEP)) {
499 		unsigned long debugctl = get_debugctlmsr();
500 
501 		debugctl &= ~DEBUGCTLMSR_BTF;
502 		update_debugctlmsr(debugctl);
503 	}
504 }
505 
506 static nokprobe_inline void restore_btf(void)
507 {
508 	if (test_thread_flag(TIF_BLOCKSTEP)) {
509 		unsigned long debugctl = get_debugctlmsr();
510 
511 		debugctl |= DEBUGCTLMSR_BTF;
512 		update_debugctlmsr(debugctl);
513 	}
514 }
515 
516 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
517 {
518 	unsigned long *sara = stack_addr(regs);
519 
520 	ri->ret_addr = (kprobe_opcode_t *) *sara;
521 
522 	/* Replace the return addr with trampoline addr */
523 	*sara = (unsigned long) &kretprobe_trampoline;
524 }
525 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
526 
527 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
528 			     struct kprobe_ctlblk *kcb, int reenter)
529 {
530 	if (setup_detour_execution(p, regs, reenter))
531 		return;
532 
533 #if !defined(CONFIG_PREEMPT)
534 	if (p->ainsn.boostable == 1 && !p->post_handler) {
535 		/* Boost up -- we can execute copied instructions directly */
536 		if (!reenter)
537 			reset_current_kprobe();
538 		/*
539 		 * Reentering boosted probe doesn't reset current_kprobe,
540 		 * nor set current_kprobe, because it doesn't use single
541 		 * stepping.
542 		 */
543 		regs->ip = (unsigned long)p->ainsn.insn;
544 		preempt_enable_no_resched();
545 		return;
546 	}
547 #endif
548 	if (reenter) {
549 		save_previous_kprobe(kcb);
550 		set_current_kprobe(p, regs, kcb);
551 		kcb->kprobe_status = KPROBE_REENTER;
552 	} else
553 		kcb->kprobe_status = KPROBE_HIT_SS;
554 	/* Prepare real single stepping */
555 	clear_btf();
556 	regs->flags |= X86_EFLAGS_TF;
557 	regs->flags &= ~X86_EFLAGS_IF;
558 	/* single step inline if the instruction is an int3 */
559 	if (p->opcode == BREAKPOINT_INSTRUCTION)
560 		regs->ip = (unsigned long)p->addr;
561 	else
562 		regs->ip = (unsigned long)p->ainsn.insn;
563 }
564 NOKPROBE_SYMBOL(setup_singlestep);
565 
566 /*
567  * We have reentered the kprobe_handler(), since another probe was hit while
568  * within the handler. We save the original kprobes variables and just single
569  * step on the instruction of the new probe without calling any user handlers.
570  */
571 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
572 			  struct kprobe_ctlblk *kcb)
573 {
574 	switch (kcb->kprobe_status) {
575 	case KPROBE_HIT_SSDONE:
576 	case KPROBE_HIT_ACTIVE:
577 	case KPROBE_HIT_SS:
578 		kprobes_inc_nmissed_count(p);
579 		setup_singlestep(p, regs, kcb, 1);
580 		break;
581 	case KPROBE_REENTER:
582 		/* A probe has been hit in the codepath leading up to, or just
583 		 * after, single-stepping of a probed instruction. This entire
584 		 * codepath should strictly reside in .kprobes.text section.
585 		 * Raise a BUG or we'll continue in an endless reentering loop
586 		 * and eventually a stack overflow.
587 		 */
588 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
589 		       p->addr);
590 		dump_kprobe(p);
591 		BUG();
592 	default:
593 		/* impossible cases */
594 		WARN_ON(1);
595 		return 0;
596 	}
597 
598 	return 1;
599 }
600 NOKPROBE_SYMBOL(reenter_kprobe);
601 
602 /*
603  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
604  * remain disabled throughout this function.
605  */
606 int kprobe_int3_handler(struct pt_regs *regs)
607 {
608 	kprobe_opcode_t *addr;
609 	struct kprobe *p;
610 	struct kprobe_ctlblk *kcb;
611 
612 	if (user_mode(regs))
613 		return 0;
614 
615 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
616 	/*
617 	 * We don't want to be preempted for the entire
618 	 * duration of kprobe processing. We conditionally
619 	 * re-enable preemption at the end of this function,
620 	 * and also in reenter_kprobe() and setup_singlestep().
621 	 */
622 	preempt_disable();
623 
624 	kcb = get_kprobe_ctlblk();
625 	p = get_kprobe(addr);
626 
627 	if (p) {
628 		if (kprobe_running()) {
629 			if (reenter_kprobe(p, regs, kcb))
630 				return 1;
631 		} else {
632 			set_current_kprobe(p, regs, kcb);
633 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
634 
635 			/*
636 			 * If we have no pre-handler or it returned 0, we
637 			 * continue with normal processing.  If we have a
638 			 * pre-handler and it returned non-zero, it prepped
639 			 * for calling the break_handler below on re-entry
640 			 * for jprobe processing, so get out doing nothing
641 			 * more here.
642 			 */
643 			if (!p->pre_handler || !p->pre_handler(p, regs))
644 				setup_singlestep(p, regs, kcb, 0);
645 			return 1;
646 		}
647 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
648 		/*
649 		 * The breakpoint instruction was removed right
650 		 * after we hit it.  Another cpu has removed
651 		 * either a probepoint or a debugger breakpoint
652 		 * at this address.  In either case, no further
653 		 * handling of this interrupt is appropriate.
654 		 * Back up over the (now missing) int3 and run
655 		 * the original instruction.
656 		 */
657 		regs->ip = (unsigned long)addr;
658 		preempt_enable_no_resched();
659 		return 1;
660 	} else if (kprobe_running()) {
661 		p = __this_cpu_read(current_kprobe);
662 		if (p->break_handler && p->break_handler(p, regs)) {
663 			if (!skip_singlestep(p, regs, kcb))
664 				setup_singlestep(p, regs, kcb, 0);
665 			return 1;
666 		}
667 	} /* else: not a kprobe fault; let the kernel handle it */
668 
669 	preempt_enable_no_resched();
670 	return 0;
671 }
672 NOKPROBE_SYMBOL(kprobe_int3_handler);
673 
674 /*
675  * When a retprobed function returns, this code saves registers and
676  * calls trampoline_handler() runs, which calls the kretprobe's handler.
677  */
678 asm(
679 	".global kretprobe_trampoline\n"
680 	".type kretprobe_trampoline, @function\n"
681 	"kretprobe_trampoline:\n"
682 #ifdef CONFIG_X86_64
683 	/* We don't bother saving the ss register */
684 	"	pushq %rsp\n"
685 	"	pushfq\n"
686 	SAVE_REGS_STRING
687 	"	movq %rsp, %rdi\n"
688 	"	call trampoline_handler\n"
689 	/* Replace saved sp with true return address. */
690 	"	movq %rax, 152(%rsp)\n"
691 	RESTORE_REGS_STRING
692 	"	popfq\n"
693 #else
694 	"	pushf\n"
695 	SAVE_REGS_STRING
696 	"	movl %esp, %eax\n"
697 	"	call trampoline_handler\n"
698 	/* Move flags to cs */
699 	"	movl 56(%esp), %edx\n"
700 	"	movl %edx, 52(%esp)\n"
701 	/* Replace saved flags with true return address. */
702 	"	movl %eax, 56(%esp)\n"
703 	RESTORE_REGS_STRING
704 	"	popf\n"
705 #endif
706 	"	ret\n"
707 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
708 );
709 NOKPROBE_SYMBOL(kretprobe_trampoline);
710 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
711 
712 /*
713  * Called from kretprobe_trampoline
714  */
715 __visible __used void *trampoline_handler(struct pt_regs *regs)
716 {
717 	struct kretprobe_instance *ri = NULL;
718 	struct hlist_head *head, empty_rp;
719 	struct hlist_node *tmp;
720 	unsigned long flags, orig_ret_address = 0;
721 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
722 	kprobe_opcode_t *correct_ret_addr = NULL;
723 
724 	INIT_HLIST_HEAD(&empty_rp);
725 	kretprobe_hash_lock(current, &head, &flags);
726 	/* fixup registers */
727 #ifdef CONFIG_X86_64
728 	regs->cs = __KERNEL_CS;
729 #else
730 	regs->cs = __KERNEL_CS | get_kernel_rpl();
731 	regs->gs = 0;
732 #endif
733 	regs->ip = trampoline_address;
734 	regs->orig_ax = ~0UL;
735 
736 	/*
737 	 * It is possible to have multiple instances associated with a given
738 	 * task either because multiple functions in the call path have
739 	 * return probes installed on them, and/or more than one
740 	 * return probe was registered for a target function.
741 	 *
742 	 * We can handle this because:
743 	 *     - instances are always pushed into the head of the list
744 	 *     - when multiple return probes are registered for the same
745 	 *	 function, the (chronologically) first instance's ret_addr
746 	 *	 will be the real return address, and all the rest will
747 	 *	 point to kretprobe_trampoline.
748 	 */
749 	hlist_for_each_entry(ri, head, hlist) {
750 		if (ri->task != current)
751 			/* another task is sharing our hash bucket */
752 			continue;
753 
754 		orig_ret_address = (unsigned long)ri->ret_addr;
755 
756 		if (orig_ret_address != trampoline_address)
757 			/*
758 			 * This is the real return address. Any other
759 			 * instances associated with this task are for
760 			 * other calls deeper on the call stack
761 			 */
762 			break;
763 	}
764 
765 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
766 
767 	correct_ret_addr = ri->ret_addr;
768 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
769 		if (ri->task != current)
770 			/* another task is sharing our hash bucket */
771 			continue;
772 
773 		orig_ret_address = (unsigned long)ri->ret_addr;
774 		if (ri->rp && ri->rp->handler) {
775 			__this_cpu_write(current_kprobe, &ri->rp->kp);
776 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
777 			ri->ret_addr = correct_ret_addr;
778 			ri->rp->handler(ri, regs);
779 			__this_cpu_write(current_kprobe, NULL);
780 		}
781 
782 		recycle_rp_inst(ri, &empty_rp);
783 
784 		if (orig_ret_address != trampoline_address)
785 			/*
786 			 * This is the real return address. Any other
787 			 * instances associated with this task are for
788 			 * other calls deeper on the call stack
789 			 */
790 			break;
791 	}
792 
793 	kretprobe_hash_unlock(current, &flags);
794 
795 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
796 		hlist_del(&ri->hlist);
797 		kfree(ri);
798 	}
799 	return (void *)orig_ret_address;
800 }
801 NOKPROBE_SYMBOL(trampoline_handler);
802 
803 /*
804  * Called after single-stepping.  p->addr is the address of the
805  * instruction whose first byte has been replaced by the "int 3"
806  * instruction.  To avoid the SMP problems that can occur when we
807  * temporarily put back the original opcode to single-step, we
808  * single-stepped a copy of the instruction.  The address of this
809  * copy is p->ainsn.insn.
810  *
811  * This function prepares to return from the post-single-step
812  * interrupt.  We have to fix up the stack as follows:
813  *
814  * 0) Except in the case of absolute or indirect jump or call instructions,
815  * the new ip is relative to the copied instruction.  We need to make
816  * it relative to the original instruction.
817  *
818  * 1) If the single-stepped instruction was pushfl, then the TF and IF
819  * flags are set in the just-pushed flags, and may need to be cleared.
820  *
821  * 2) If the single-stepped instruction was a call, the return address
822  * that is atop the stack is the address following the copied instruction.
823  * We need to make it the address following the original instruction.
824  *
825  * If this is the first time we've single-stepped the instruction at
826  * this probepoint, and the instruction is boostable, boost it: add a
827  * jump instruction after the copied instruction, that jumps to the next
828  * instruction after the probepoint.
829  */
830 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
831 			     struct kprobe_ctlblk *kcb)
832 {
833 	unsigned long *tos = stack_addr(regs);
834 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
835 	unsigned long orig_ip = (unsigned long)p->addr;
836 	kprobe_opcode_t *insn = p->ainsn.insn;
837 
838 	/* Skip prefixes */
839 	insn = skip_prefixes(insn);
840 
841 	regs->flags &= ~X86_EFLAGS_TF;
842 	switch (*insn) {
843 	case 0x9c:	/* pushfl */
844 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
845 		*tos |= kcb->kprobe_old_flags;
846 		break;
847 	case 0xc2:	/* iret/ret/lret */
848 	case 0xc3:
849 	case 0xca:
850 	case 0xcb:
851 	case 0xcf:
852 	case 0xea:	/* jmp absolute -- ip is correct */
853 		/* ip is already adjusted, no more changes required */
854 		p->ainsn.boostable = 1;
855 		goto no_change;
856 	case 0xe8:	/* call relative - Fix return addr */
857 		*tos = orig_ip + (*tos - copy_ip);
858 		break;
859 #ifdef CONFIG_X86_32
860 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
861 		*tos = orig_ip + (*tos - copy_ip);
862 		goto no_change;
863 #endif
864 	case 0xff:
865 		if ((insn[1] & 0x30) == 0x10) {
866 			/*
867 			 * call absolute, indirect
868 			 * Fix return addr; ip is correct.
869 			 * But this is not boostable
870 			 */
871 			*tos = orig_ip + (*tos - copy_ip);
872 			goto no_change;
873 		} else if (((insn[1] & 0x31) == 0x20) ||
874 			   ((insn[1] & 0x31) == 0x21)) {
875 			/*
876 			 * jmp near and far, absolute indirect
877 			 * ip is correct. And this is boostable
878 			 */
879 			p->ainsn.boostable = 1;
880 			goto no_change;
881 		}
882 	default:
883 		break;
884 	}
885 
886 	if (p->ainsn.boostable == 0) {
887 		if ((regs->ip > copy_ip) &&
888 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
889 			/*
890 			 * These instructions can be executed directly if it
891 			 * jumps back to correct address.
892 			 */
893 			synthesize_reljump((void *)regs->ip,
894 				(void *)orig_ip + (regs->ip - copy_ip));
895 			p->ainsn.boostable = 1;
896 		} else {
897 			p->ainsn.boostable = -1;
898 		}
899 	}
900 
901 	regs->ip += orig_ip - copy_ip;
902 
903 no_change:
904 	restore_btf();
905 }
906 NOKPROBE_SYMBOL(resume_execution);
907 
908 /*
909  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
910  * remain disabled throughout this function.
911  */
912 int kprobe_debug_handler(struct pt_regs *regs)
913 {
914 	struct kprobe *cur = kprobe_running();
915 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
916 
917 	if (!cur)
918 		return 0;
919 
920 	resume_execution(cur, regs, kcb);
921 	regs->flags |= kcb->kprobe_saved_flags;
922 
923 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
924 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
925 		cur->post_handler(cur, regs, 0);
926 	}
927 
928 	/* Restore back the original saved kprobes variables and continue. */
929 	if (kcb->kprobe_status == KPROBE_REENTER) {
930 		restore_previous_kprobe(kcb);
931 		goto out;
932 	}
933 	reset_current_kprobe();
934 out:
935 	preempt_enable_no_resched();
936 
937 	/*
938 	 * if somebody else is singlestepping across a probe point, flags
939 	 * will have TF set, in which case, continue the remaining processing
940 	 * of do_debug, as if this is not a probe hit.
941 	 */
942 	if (regs->flags & X86_EFLAGS_TF)
943 		return 0;
944 
945 	return 1;
946 }
947 NOKPROBE_SYMBOL(kprobe_debug_handler);
948 
949 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
950 {
951 	struct kprobe *cur = kprobe_running();
952 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
953 
954 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
955 		/* This must happen on single-stepping */
956 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
957 			kcb->kprobe_status != KPROBE_REENTER);
958 		/*
959 		 * We are here because the instruction being single
960 		 * stepped caused a page fault. We reset the current
961 		 * kprobe and the ip points back to the probe address
962 		 * and allow the page fault handler to continue as a
963 		 * normal page fault.
964 		 */
965 		regs->ip = (unsigned long)cur->addr;
966 		/*
967 		 * Trap flag (TF) has been set here because this fault
968 		 * happened where the single stepping will be done.
969 		 * So clear it by resetting the current kprobe:
970 		 */
971 		regs->flags &= ~X86_EFLAGS_TF;
972 
973 		/*
974 		 * If the TF flag was set before the kprobe hit,
975 		 * don't touch it:
976 		 */
977 		regs->flags |= kcb->kprobe_old_flags;
978 
979 		if (kcb->kprobe_status == KPROBE_REENTER)
980 			restore_previous_kprobe(kcb);
981 		else
982 			reset_current_kprobe();
983 		preempt_enable_no_resched();
984 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
985 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
986 		/*
987 		 * We increment the nmissed count for accounting,
988 		 * we can also use npre/npostfault count for accounting
989 		 * these specific fault cases.
990 		 */
991 		kprobes_inc_nmissed_count(cur);
992 
993 		/*
994 		 * We come here because instructions in the pre/post
995 		 * handler caused the page_fault, this could happen
996 		 * if handler tries to access user space by
997 		 * copy_from_user(), get_user() etc. Let the
998 		 * user-specified handler try to fix it first.
999 		 */
1000 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1001 			return 1;
1002 
1003 		/*
1004 		 * In case the user-specified fault handler returned
1005 		 * zero, try to fix up.
1006 		 */
1007 		if (fixup_exception(regs, trapnr))
1008 			return 1;
1009 
1010 		/*
1011 		 * fixup routine could not handle it,
1012 		 * Let do_page_fault() fix it.
1013 		 */
1014 	}
1015 
1016 	return 0;
1017 }
1018 NOKPROBE_SYMBOL(kprobe_fault_handler);
1019 
1020 /*
1021  * Wrapper routine for handling exceptions.
1022  */
1023 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1024 			     void *data)
1025 {
1026 	struct die_args *args = data;
1027 	int ret = NOTIFY_DONE;
1028 
1029 	if (args->regs && user_mode(args->regs))
1030 		return ret;
1031 
1032 	if (val == DIE_GPF) {
1033 		/*
1034 		 * To be potentially processing a kprobe fault and to
1035 		 * trust the result from kprobe_running(), we have
1036 		 * be non-preemptible.
1037 		 */
1038 		if (!preemptible() && kprobe_running() &&
1039 		    kprobe_fault_handler(args->regs, args->trapnr))
1040 			ret = NOTIFY_STOP;
1041 	}
1042 	return ret;
1043 }
1044 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1045 
1046 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047 {
1048 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1049 	unsigned long addr;
1050 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1051 
1052 	kcb->jprobe_saved_regs = *regs;
1053 	kcb->jprobe_saved_sp = stack_addr(regs);
1054 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1055 
1056 	/*
1057 	 * As Linus pointed out, gcc assumes that the callee
1058 	 * owns the argument space and could overwrite it, e.g.
1059 	 * tailcall optimization. So, to be absolutely safe
1060 	 * we also save and restore enough stack bytes to cover
1061 	 * the argument area.
1062 	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1063 	 * raw stack chunk with redzones:
1064 	 */
1065 	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1066 	regs->flags &= ~X86_EFLAGS_IF;
1067 	trace_hardirqs_off();
1068 	regs->ip = (unsigned long)(jp->entry);
1069 
1070 	/*
1071 	 * jprobes use jprobe_return() which skips the normal return
1072 	 * path of the function, and this messes up the accounting of the
1073 	 * function graph tracer to get messed up.
1074 	 *
1075 	 * Pause function graph tracing while performing the jprobe function.
1076 	 */
1077 	pause_graph_tracing();
1078 	return 1;
1079 }
1080 NOKPROBE_SYMBOL(setjmp_pre_handler);
1081 
1082 void jprobe_return(void)
1083 {
1084 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1085 
1086 	/* Unpoison stack redzones in the frames we are going to jump over. */
1087 	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1088 
1089 	asm volatile (
1090 #ifdef CONFIG_X86_64
1091 			"       xchg   %%rbx,%%rsp	\n"
1092 #else
1093 			"       xchgl   %%ebx,%%esp	\n"
1094 #endif
1095 			"       int3			\n"
1096 			"       .globl jprobe_return_end\n"
1097 			"       jprobe_return_end:	\n"
1098 			"       nop			\n"::"b"
1099 			(kcb->jprobe_saved_sp):"memory");
1100 }
1101 NOKPROBE_SYMBOL(jprobe_return);
1102 NOKPROBE_SYMBOL(jprobe_return_end);
1103 
1104 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1105 {
1106 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1107 	u8 *addr = (u8 *) (regs->ip - 1);
1108 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1109 	void *saved_sp = kcb->jprobe_saved_sp;
1110 
1111 	if ((addr > (u8 *) jprobe_return) &&
1112 	    (addr < (u8 *) jprobe_return_end)) {
1113 		if (stack_addr(regs) != saved_sp) {
1114 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1115 			printk(KERN_ERR
1116 			       "current sp %p does not match saved sp %p\n",
1117 			       stack_addr(regs), saved_sp);
1118 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1119 			show_regs(saved_regs);
1120 			printk(KERN_ERR "Current registers\n");
1121 			show_regs(regs);
1122 			BUG();
1123 		}
1124 		/* It's OK to start function graph tracing again */
1125 		unpause_graph_tracing();
1126 		*regs = kcb->jprobe_saved_regs;
1127 		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1128 		preempt_enable_no_resched();
1129 		return 1;
1130 	}
1131 	return 0;
1132 }
1133 NOKPROBE_SYMBOL(longjmp_break_handler);
1134 
1135 bool arch_within_kprobe_blacklist(unsigned long addr)
1136 {
1137 	return  (addr >= (unsigned long)__kprobes_text_start &&
1138 		 addr < (unsigned long)__kprobes_text_end) ||
1139 		(addr >= (unsigned long)__entry_text_start &&
1140 		 addr < (unsigned long)__entry_text_end);
1141 }
1142 
1143 int __init arch_init_kprobes(void)
1144 {
1145 	return 0;
1146 }
1147 
1148 int arch_trampoline_kprobe(struct kprobe *p)
1149 {
1150 	return 0;
1151 }
1152