1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 56 #include <asm/text-patching.h> 57 #include <asm/cacheflush.h> 58 #include <asm/desc.h> 59 #include <asm/pgtable.h> 60 #include <linux/uaccess.h> 61 #include <asm/alternative.h> 62 #include <asm/insn.h> 63 #include <asm/debugreg.h> 64 65 #include "common.h" 66 67 void jprobe_return_end(void); 68 69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 71 72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 73 74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 79 << (row % 32)) 80 /* 81 * Undefined/reserved opcodes, conditional jump, Opcode Extension 82 * Groups, and some special opcodes can not boost. 83 * This is non-const and volatile to keep gcc from statically 84 * optimizing it out, as variable_test_bit makes gcc think only 85 * *(unsigned long*) is used. 86 */ 87 static volatile u32 twobyte_is_boostable[256 / 32] = { 88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 89 /* ---------------------------------------------- */ 90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 106 /* ----------------------------------------------- */ 107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 108 }; 109 #undef W 110 111 struct kretprobe_blackpoint kretprobe_blacklist[] = { 112 {"__switch_to", }, /* This function switches only current task, but 113 doesn't switch kernel stack.*/ 114 {NULL, NULL} /* Terminator */ 115 }; 116 117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 118 119 static nokprobe_inline void 120 __synthesize_relative_insn(void *from, void *to, u8 op) 121 { 122 struct __arch_relative_insn { 123 u8 op; 124 s32 raddr; 125 } __packed *insn; 126 127 insn = (struct __arch_relative_insn *)from; 128 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 129 insn->op = op; 130 } 131 132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 133 void synthesize_reljump(void *from, void *to) 134 { 135 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 136 } 137 NOKPROBE_SYMBOL(synthesize_reljump); 138 139 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 140 void synthesize_relcall(void *from, void *to) 141 { 142 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 143 } 144 NOKPROBE_SYMBOL(synthesize_relcall); 145 146 /* 147 * Skip the prefixes of the instruction. 148 */ 149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 150 { 151 insn_attr_t attr; 152 153 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 154 while (inat_is_legacy_prefix(attr)) { 155 insn++; 156 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 157 } 158 #ifdef CONFIG_X86_64 159 if (inat_is_rex_prefix(attr)) 160 insn++; 161 #endif 162 return insn; 163 } 164 NOKPROBE_SYMBOL(skip_prefixes); 165 166 /* 167 * Returns non-zero if opcode is boostable. 168 * RIP relative instructions are adjusted at copying time in 64 bits mode 169 */ 170 int can_boost(kprobe_opcode_t *opcodes, void *addr) 171 { 172 kprobe_opcode_t opcode; 173 kprobe_opcode_t *orig_opcodes = opcodes; 174 175 if (search_exception_tables((unsigned long)addr)) 176 return 0; /* Page fault may occur on this address. */ 177 178 retry: 179 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 180 return 0; 181 opcode = *(opcodes++); 182 183 /* 2nd-byte opcode */ 184 if (opcode == 0x0f) { 185 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 186 return 0; 187 return test_bit(*opcodes, 188 (unsigned long *)twobyte_is_boostable); 189 } 190 191 switch (opcode & 0xf0) { 192 #ifdef CONFIG_X86_64 193 case 0x40: 194 goto retry; /* REX prefix is boostable */ 195 #endif 196 case 0x60: 197 if (0x63 < opcode && opcode < 0x67) 198 goto retry; /* prefixes */ 199 /* can't boost Address-size override and bound */ 200 return (opcode != 0x62 && opcode != 0x67); 201 case 0x70: 202 return 0; /* can't boost conditional jump */ 203 case 0xc0: 204 /* can't boost software-interruptions */ 205 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 206 case 0xd0: 207 /* can boost AA* and XLAT */ 208 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 209 case 0xe0: 210 /* can boost in/out and absolute jmps */ 211 return ((opcode & 0x04) || opcode == 0xea); 212 case 0xf0: 213 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 214 goto retry; /* lock/rep(ne) prefix */ 215 /* clear and set flags are boostable */ 216 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 217 default: 218 /* segment override prefixes are boostable */ 219 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 220 goto retry; /* prefixes */ 221 /* CS override prefix and call are not boostable */ 222 return (opcode != 0x2e && opcode != 0x9a); 223 } 224 } 225 226 static unsigned long 227 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 228 { 229 struct kprobe *kp; 230 unsigned long faddr; 231 232 kp = get_kprobe((void *)addr); 233 faddr = ftrace_location(addr); 234 /* 235 * Addresses inside the ftrace location are refused by 236 * arch_check_ftrace_location(). Something went terribly wrong 237 * if such an address is checked here. 238 */ 239 if (WARN_ON(faddr && faddr != addr)) 240 return 0UL; 241 /* 242 * Use the current code if it is not modified by Kprobe 243 * and it cannot be modified by ftrace. 244 */ 245 if (!kp && !faddr) 246 return addr; 247 248 /* 249 * Basically, kp->ainsn.insn has an original instruction. 250 * However, RIP-relative instruction can not do single-stepping 251 * at different place, __copy_instruction() tweaks the displacement of 252 * that instruction. In that case, we can't recover the instruction 253 * from the kp->ainsn.insn. 254 * 255 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 256 * of the first byte of the probed instruction, which is overwritten 257 * by int3. And the instruction at kp->addr is not modified by kprobes 258 * except for the first byte, we can recover the original instruction 259 * from it and kp->opcode. 260 * 261 * In case of Kprobes using ftrace, we do not have a copy of 262 * the original instruction. In fact, the ftrace location might 263 * be modified at anytime and even could be in an inconsistent state. 264 * Fortunately, we know that the original code is the ideal 5-byte 265 * long NOP. 266 */ 267 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 268 if (faddr) 269 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 270 else 271 buf[0] = kp->opcode; 272 return (unsigned long)buf; 273 } 274 275 /* 276 * Recover the probed instruction at addr for further analysis. 277 * Caller must lock kprobes by kprobe_mutex, or disable preemption 278 * for preventing to release referencing kprobes. 279 * Returns zero if the instruction can not get recovered. 280 */ 281 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 282 { 283 unsigned long __addr; 284 285 __addr = __recover_optprobed_insn(buf, addr); 286 if (__addr != addr) 287 return __addr; 288 289 return __recover_probed_insn(buf, addr); 290 } 291 292 /* Check if paddr is at an instruction boundary */ 293 static int can_probe(unsigned long paddr) 294 { 295 unsigned long addr, __addr, offset = 0; 296 struct insn insn; 297 kprobe_opcode_t buf[MAX_INSN_SIZE]; 298 299 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 300 return 0; 301 302 /* Decode instructions */ 303 addr = paddr - offset; 304 while (addr < paddr) { 305 /* 306 * Check if the instruction has been modified by another 307 * kprobe, in which case we replace the breakpoint by the 308 * original instruction in our buffer. 309 * Also, jump optimization will change the breakpoint to 310 * relative-jump. Since the relative-jump itself is 311 * normally used, we just go through if there is no kprobe. 312 */ 313 __addr = recover_probed_instruction(buf, addr); 314 if (!__addr) 315 return 0; 316 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 317 insn_get_length(&insn); 318 319 /* 320 * Another debugging subsystem might insert this breakpoint. 321 * In that case, we can't recover it. 322 */ 323 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 324 return 0; 325 addr += insn.length; 326 } 327 328 return (addr == paddr); 329 } 330 331 /* 332 * Returns non-zero if opcode modifies the interrupt flag. 333 */ 334 static int is_IF_modifier(kprobe_opcode_t *insn) 335 { 336 /* Skip prefixes */ 337 insn = skip_prefixes(insn); 338 339 switch (*insn) { 340 case 0xfa: /* cli */ 341 case 0xfb: /* sti */ 342 case 0xcf: /* iret/iretd */ 343 case 0x9d: /* popf/popfd */ 344 return 1; 345 } 346 347 return 0; 348 } 349 350 /* 351 * Copy an instruction and adjust the displacement if the instruction 352 * uses the %rip-relative addressing mode. 353 * If it does, Return the address of the 32-bit displacement word. 354 * If not, return null. 355 * Only applicable to 64-bit x86. 356 */ 357 int __copy_instruction(u8 *dest, u8 *src) 358 { 359 struct insn insn; 360 kprobe_opcode_t buf[MAX_INSN_SIZE]; 361 int length; 362 unsigned long recovered_insn = 363 recover_probed_instruction(buf, (unsigned long)src); 364 365 if (!recovered_insn) 366 return 0; 367 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); 368 insn_get_length(&insn); 369 length = insn.length; 370 371 /* Another subsystem puts a breakpoint, failed to recover */ 372 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 373 return 0; 374 memcpy(dest, insn.kaddr, length); 375 376 #ifdef CONFIG_X86_64 377 if (insn_rip_relative(&insn)) { 378 s64 newdisp; 379 u8 *disp; 380 kernel_insn_init(&insn, dest, length); 381 insn_get_displacement(&insn); 382 /* 383 * The copied instruction uses the %rip-relative addressing 384 * mode. Adjust the displacement for the difference between 385 * the original location of this instruction and the location 386 * of the copy that will actually be run. The tricky bit here 387 * is making sure that the sign extension happens correctly in 388 * this calculation, since we need a signed 32-bit result to 389 * be sign-extended to 64 bits when it's added to the %rip 390 * value and yield the same 64-bit result that the sign- 391 * extension of the original signed 32-bit displacement would 392 * have given. 393 */ 394 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 395 if ((s64) (s32) newdisp != newdisp) { 396 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 397 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 398 return 0; 399 } 400 disp = (u8 *) dest + insn_offset_displacement(&insn); 401 *(s32 *) disp = (s32) newdisp; 402 } 403 #endif 404 return length; 405 } 406 407 static int arch_copy_kprobe(struct kprobe *p) 408 { 409 int ret; 410 411 /* Copy an instruction with recovering if other optprobe modifies it.*/ 412 ret = __copy_instruction(p->ainsn.insn, p->addr); 413 if (!ret) 414 return -EINVAL; 415 416 /* 417 * __copy_instruction can modify the displacement of the instruction, 418 * but it doesn't affect boostable check. 419 */ 420 if (can_boost(p->ainsn.insn, p->addr)) 421 p->ainsn.boostable = 0; 422 else 423 p->ainsn.boostable = -1; 424 425 /* Check whether the instruction modifies Interrupt Flag or not */ 426 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 427 428 /* Also, displacement change doesn't affect the first byte */ 429 p->opcode = p->ainsn.insn[0]; 430 431 return 0; 432 } 433 434 int arch_prepare_kprobe(struct kprobe *p) 435 { 436 if (alternatives_text_reserved(p->addr, p->addr)) 437 return -EINVAL; 438 439 if (!can_probe((unsigned long)p->addr)) 440 return -EILSEQ; 441 /* insn: must be on special executable page on x86. */ 442 p->ainsn.insn = get_insn_slot(); 443 if (!p->ainsn.insn) 444 return -ENOMEM; 445 446 return arch_copy_kprobe(p); 447 } 448 449 void arch_arm_kprobe(struct kprobe *p) 450 { 451 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 452 } 453 454 void arch_disarm_kprobe(struct kprobe *p) 455 { 456 text_poke(p->addr, &p->opcode, 1); 457 } 458 459 void arch_remove_kprobe(struct kprobe *p) 460 { 461 if (p->ainsn.insn) { 462 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 463 p->ainsn.insn = NULL; 464 } 465 } 466 467 static nokprobe_inline void 468 save_previous_kprobe(struct kprobe_ctlblk *kcb) 469 { 470 kcb->prev_kprobe.kp = kprobe_running(); 471 kcb->prev_kprobe.status = kcb->kprobe_status; 472 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 473 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 474 } 475 476 static nokprobe_inline void 477 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 478 { 479 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 480 kcb->kprobe_status = kcb->prev_kprobe.status; 481 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 482 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 483 } 484 485 static nokprobe_inline void 486 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 487 struct kprobe_ctlblk *kcb) 488 { 489 __this_cpu_write(current_kprobe, p); 490 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 491 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 492 if (p->ainsn.if_modifier) 493 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 494 } 495 496 static nokprobe_inline void clear_btf(void) 497 { 498 if (test_thread_flag(TIF_BLOCKSTEP)) { 499 unsigned long debugctl = get_debugctlmsr(); 500 501 debugctl &= ~DEBUGCTLMSR_BTF; 502 update_debugctlmsr(debugctl); 503 } 504 } 505 506 static nokprobe_inline void restore_btf(void) 507 { 508 if (test_thread_flag(TIF_BLOCKSTEP)) { 509 unsigned long debugctl = get_debugctlmsr(); 510 511 debugctl |= DEBUGCTLMSR_BTF; 512 update_debugctlmsr(debugctl); 513 } 514 } 515 516 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 517 { 518 unsigned long *sara = stack_addr(regs); 519 520 ri->ret_addr = (kprobe_opcode_t *) *sara; 521 522 /* Replace the return addr with trampoline addr */ 523 *sara = (unsigned long) &kretprobe_trampoline; 524 } 525 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 526 527 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 528 struct kprobe_ctlblk *kcb, int reenter) 529 { 530 if (setup_detour_execution(p, regs, reenter)) 531 return; 532 533 #if !defined(CONFIG_PREEMPT) 534 if (p->ainsn.boostable == 1 && !p->post_handler) { 535 /* Boost up -- we can execute copied instructions directly */ 536 if (!reenter) 537 reset_current_kprobe(); 538 /* 539 * Reentering boosted probe doesn't reset current_kprobe, 540 * nor set current_kprobe, because it doesn't use single 541 * stepping. 542 */ 543 regs->ip = (unsigned long)p->ainsn.insn; 544 preempt_enable_no_resched(); 545 return; 546 } 547 #endif 548 if (reenter) { 549 save_previous_kprobe(kcb); 550 set_current_kprobe(p, regs, kcb); 551 kcb->kprobe_status = KPROBE_REENTER; 552 } else 553 kcb->kprobe_status = KPROBE_HIT_SS; 554 /* Prepare real single stepping */ 555 clear_btf(); 556 regs->flags |= X86_EFLAGS_TF; 557 regs->flags &= ~X86_EFLAGS_IF; 558 /* single step inline if the instruction is an int3 */ 559 if (p->opcode == BREAKPOINT_INSTRUCTION) 560 regs->ip = (unsigned long)p->addr; 561 else 562 regs->ip = (unsigned long)p->ainsn.insn; 563 } 564 NOKPROBE_SYMBOL(setup_singlestep); 565 566 /* 567 * We have reentered the kprobe_handler(), since another probe was hit while 568 * within the handler. We save the original kprobes variables and just single 569 * step on the instruction of the new probe without calling any user handlers. 570 */ 571 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 572 struct kprobe_ctlblk *kcb) 573 { 574 switch (kcb->kprobe_status) { 575 case KPROBE_HIT_SSDONE: 576 case KPROBE_HIT_ACTIVE: 577 case KPROBE_HIT_SS: 578 kprobes_inc_nmissed_count(p); 579 setup_singlestep(p, regs, kcb, 1); 580 break; 581 case KPROBE_REENTER: 582 /* A probe has been hit in the codepath leading up to, or just 583 * after, single-stepping of a probed instruction. This entire 584 * codepath should strictly reside in .kprobes.text section. 585 * Raise a BUG or we'll continue in an endless reentering loop 586 * and eventually a stack overflow. 587 */ 588 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 589 p->addr); 590 dump_kprobe(p); 591 BUG(); 592 default: 593 /* impossible cases */ 594 WARN_ON(1); 595 return 0; 596 } 597 598 return 1; 599 } 600 NOKPROBE_SYMBOL(reenter_kprobe); 601 602 /* 603 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 604 * remain disabled throughout this function. 605 */ 606 int kprobe_int3_handler(struct pt_regs *regs) 607 { 608 kprobe_opcode_t *addr; 609 struct kprobe *p; 610 struct kprobe_ctlblk *kcb; 611 612 if (user_mode(regs)) 613 return 0; 614 615 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 616 /* 617 * We don't want to be preempted for the entire 618 * duration of kprobe processing. We conditionally 619 * re-enable preemption at the end of this function, 620 * and also in reenter_kprobe() and setup_singlestep(). 621 */ 622 preempt_disable(); 623 624 kcb = get_kprobe_ctlblk(); 625 p = get_kprobe(addr); 626 627 if (p) { 628 if (kprobe_running()) { 629 if (reenter_kprobe(p, regs, kcb)) 630 return 1; 631 } else { 632 set_current_kprobe(p, regs, kcb); 633 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 634 635 /* 636 * If we have no pre-handler or it returned 0, we 637 * continue with normal processing. If we have a 638 * pre-handler and it returned non-zero, it prepped 639 * for calling the break_handler below on re-entry 640 * for jprobe processing, so get out doing nothing 641 * more here. 642 */ 643 if (!p->pre_handler || !p->pre_handler(p, regs)) 644 setup_singlestep(p, regs, kcb, 0); 645 return 1; 646 } 647 } else if (*addr != BREAKPOINT_INSTRUCTION) { 648 /* 649 * The breakpoint instruction was removed right 650 * after we hit it. Another cpu has removed 651 * either a probepoint or a debugger breakpoint 652 * at this address. In either case, no further 653 * handling of this interrupt is appropriate. 654 * Back up over the (now missing) int3 and run 655 * the original instruction. 656 */ 657 regs->ip = (unsigned long)addr; 658 preempt_enable_no_resched(); 659 return 1; 660 } else if (kprobe_running()) { 661 p = __this_cpu_read(current_kprobe); 662 if (p->break_handler && p->break_handler(p, regs)) { 663 if (!skip_singlestep(p, regs, kcb)) 664 setup_singlestep(p, regs, kcb, 0); 665 return 1; 666 } 667 } /* else: not a kprobe fault; let the kernel handle it */ 668 669 preempt_enable_no_resched(); 670 return 0; 671 } 672 NOKPROBE_SYMBOL(kprobe_int3_handler); 673 674 /* 675 * When a retprobed function returns, this code saves registers and 676 * calls trampoline_handler() runs, which calls the kretprobe's handler. 677 */ 678 asm( 679 ".global kretprobe_trampoline\n" 680 ".type kretprobe_trampoline, @function\n" 681 "kretprobe_trampoline:\n" 682 #ifdef CONFIG_X86_64 683 /* We don't bother saving the ss register */ 684 " pushq %rsp\n" 685 " pushfq\n" 686 SAVE_REGS_STRING 687 " movq %rsp, %rdi\n" 688 " call trampoline_handler\n" 689 /* Replace saved sp with true return address. */ 690 " movq %rax, 152(%rsp)\n" 691 RESTORE_REGS_STRING 692 " popfq\n" 693 #else 694 " pushf\n" 695 SAVE_REGS_STRING 696 " movl %esp, %eax\n" 697 " call trampoline_handler\n" 698 /* Move flags to cs */ 699 " movl 56(%esp), %edx\n" 700 " movl %edx, 52(%esp)\n" 701 /* Replace saved flags with true return address. */ 702 " movl %eax, 56(%esp)\n" 703 RESTORE_REGS_STRING 704 " popf\n" 705 #endif 706 " ret\n" 707 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 708 ); 709 NOKPROBE_SYMBOL(kretprobe_trampoline); 710 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 711 712 /* 713 * Called from kretprobe_trampoline 714 */ 715 __visible __used void *trampoline_handler(struct pt_regs *regs) 716 { 717 struct kretprobe_instance *ri = NULL; 718 struct hlist_head *head, empty_rp; 719 struct hlist_node *tmp; 720 unsigned long flags, orig_ret_address = 0; 721 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 722 kprobe_opcode_t *correct_ret_addr = NULL; 723 724 INIT_HLIST_HEAD(&empty_rp); 725 kretprobe_hash_lock(current, &head, &flags); 726 /* fixup registers */ 727 #ifdef CONFIG_X86_64 728 regs->cs = __KERNEL_CS; 729 #else 730 regs->cs = __KERNEL_CS | get_kernel_rpl(); 731 regs->gs = 0; 732 #endif 733 regs->ip = trampoline_address; 734 regs->orig_ax = ~0UL; 735 736 /* 737 * It is possible to have multiple instances associated with a given 738 * task either because multiple functions in the call path have 739 * return probes installed on them, and/or more than one 740 * return probe was registered for a target function. 741 * 742 * We can handle this because: 743 * - instances are always pushed into the head of the list 744 * - when multiple return probes are registered for the same 745 * function, the (chronologically) first instance's ret_addr 746 * will be the real return address, and all the rest will 747 * point to kretprobe_trampoline. 748 */ 749 hlist_for_each_entry(ri, head, hlist) { 750 if (ri->task != current) 751 /* another task is sharing our hash bucket */ 752 continue; 753 754 orig_ret_address = (unsigned long)ri->ret_addr; 755 756 if (orig_ret_address != trampoline_address) 757 /* 758 * This is the real return address. Any other 759 * instances associated with this task are for 760 * other calls deeper on the call stack 761 */ 762 break; 763 } 764 765 kretprobe_assert(ri, orig_ret_address, trampoline_address); 766 767 correct_ret_addr = ri->ret_addr; 768 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 769 if (ri->task != current) 770 /* another task is sharing our hash bucket */ 771 continue; 772 773 orig_ret_address = (unsigned long)ri->ret_addr; 774 if (ri->rp && ri->rp->handler) { 775 __this_cpu_write(current_kprobe, &ri->rp->kp); 776 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 777 ri->ret_addr = correct_ret_addr; 778 ri->rp->handler(ri, regs); 779 __this_cpu_write(current_kprobe, NULL); 780 } 781 782 recycle_rp_inst(ri, &empty_rp); 783 784 if (orig_ret_address != trampoline_address) 785 /* 786 * This is the real return address. Any other 787 * instances associated with this task are for 788 * other calls deeper on the call stack 789 */ 790 break; 791 } 792 793 kretprobe_hash_unlock(current, &flags); 794 795 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 796 hlist_del(&ri->hlist); 797 kfree(ri); 798 } 799 return (void *)orig_ret_address; 800 } 801 NOKPROBE_SYMBOL(trampoline_handler); 802 803 /* 804 * Called after single-stepping. p->addr is the address of the 805 * instruction whose first byte has been replaced by the "int 3" 806 * instruction. To avoid the SMP problems that can occur when we 807 * temporarily put back the original opcode to single-step, we 808 * single-stepped a copy of the instruction. The address of this 809 * copy is p->ainsn.insn. 810 * 811 * This function prepares to return from the post-single-step 812 * interrupt. We have to fix up the stack as follows: 813 * 814 * 0) Except in the case of absolute or indirect jump or call instructions, 815 * the new ip is relative to the copied instruction. We need to make 816 * it relative to the original instruction. 817 * 818 * 1) If the single-stepped instruction was pushfl, then the TF and IF 819 * flags are set in the just-pushed flags, and may need to be cleared. 820 * 821 * 2) If the single-stepped instruction was a call, the return address 822 * that is atop the stack is the address following the copied instruction. 823 * We need to make it the address following the original instruction. 824 * 825 * If this is the first time we've single-stepped the instruction at 826 * this probepoint, and the instruction is boostable, boost it: add a 827 * jump instruction after the copied instruction, that jumps to the next 828 * instruction after the probepoint. 829 */ 830 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 831 struct kprobe_ctlblk *kcb) 832 { 833 unsigned long *tos = stack_addr(regs); 834 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 835 unsigned long orig_ip = (unsigned long)p->addr; 836 kprobe_opcode_t *insn = p->ainsn.insn; 837 838 /* Skip prefixes */ 839 insn = skip_prefixes(insn); 840 841 regs->flags &= ~X86_EFLAGS_TF; 842 switch (*insn) { 843 case 0x9c: /* pushfl */ 844 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 845 *tos |= kcb->kprobe_old_flags; 846 break; 847 case 0xc2: /* iret/ret/lret */ 848 case 0xc3: 849 case 0xca: 850 case 0xcb: 851 case 0xcf: 852 case 0xea: /* jmp absolute -- ip is correct */ 853 /* ip is already adjusted, no more changes required */ 854 p->ainsn.boostable = 1; 855 goto no_change; 856 case 0xe8: /* call relative - Fix return addr */ 857 *tos = orig_ip + (*tos - copy_ip); 858 break; 859 #ifdef CONFIG_X86_32 860 case 0x9a: /* call absolute -- same as call absolute, indirect */ 861 *tos = orig_ip + (*tos - copy_ip); 862 goto no_change; 863 #endif 864 case 0xff: 865 if ((insn[1] & 0x30) == 0x10) { 866 /* 867 * call absolute, indirect 868 * Fix return addr; ip is correct. 869 * But this is not boostable 870 */ 871 *tos = orig_ip + (*tos - copy_ip); 872 goto no_change; 873 } else if (((insn[1] & 0x31) == 0x20) || 874 ((insn[1] & 0x31) == 0x21)) { 875 /* 876 * jmp near and far, absolute indirect 877 * ip is correct. And this is boostable 878 */ 879 p->ainsn.boostable = 1; 880 goto no_change; 881 } 882 default: 883 break; 884 } 885 886 if (p->ainsn.boostable == 0) { 887 if ((regs->ip > copy_ip) && 888 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 889 /* 890 * These instructions can be executed directly if it 891 * jumps back to correct address. 892 */ 893 synthesize_reljump((void *)regs->ip, 894 (void *)orig_ip + (regs->ip - copy_ip)); 895 p->ainsn.boostable = 1; 896 } else { 897 p->ainsn.boostable = -1; 898 } 899 } 900 901 regs->ip += orig_ip - copy_ip; 902 903 no_change: 904 restore_btf(); 905 } 906 NOKPROBE_SYMBOL(resume_execution); 907 908 /* 909 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 910 * remain disabled throughout this function. 911 */ 912 int kprobe_debug_handler(struct pt_regs *regs) 913 { 914 struct kprobe *cur = kprobe_running(); 915 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 916 917 if (!cur) 918 return 0; 919 920 resume_execution(cur, regs, kcb); 921 regs->flags |= kcb->kprobe_saved_flags; 922 923 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 924 kcb->kprobe_status = KPROBE_HIT_SSDONE; 925 cur->post_handler(cur, regs, 0); 926 } 927 928 /* Restore back the original saved kprobes variables and continue. */ 929 if (kcb->kprobe_status == KPROBE_REENTER) { 930 restore_previous_kprobe(kcb); 931 goto out; 932 } 933 reset_current_kprobe(); 934 out: 935 preempt_enable_no_resched(); 936 937 /* 938 * if somebody else is singlestepping across a probe point, flags 939 * will have TF set, in which case, continue the remaining processing 940 * of do_debug, as if this is not a probe hit. 941 */ 942 if (regs->flags & X86_EFLAGS_TF) 943 return 0; 944 945 return 1; 946 } 947 NOKPROBE_SYMBOL(kprobe_debug_handler); 948 949 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 950 { 951 struct kprobe *cur = kprobe_running(); 952 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 953 954 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 955 /* This must happen on single-stepping */ 956 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 957 kcb->kprobe_status != KPROBE_REENTER); 958 /* 959 * We are here because the instruction being single 960 * stepped caused a page fault. We reset the current 961 * kprobe and the ip points back to the probe address 962 * and allow the page fault handler to continue as a 963 * normal page fault. 964 */ 965 regs->ip = (unsigned long)cur->addr; 966 /* 967 * Trap flag (TF) has been set here because this fault 968 * happened where the single stepping will be done. 969 * So clear it by resetting the current kprobe: 970 */ 971 regs->flags &= ~X86_EFLAGS_TF; 972 973 /* 974 * If the TF flag was set before the kprobe hit, 975 * don't touch it: 976 */ 977 regs->flags |= kcb->kprobe_old_flags; 978 979 if (kcb->kprobe_status == KPROBE_REENTER) 980 restore_previous_kprobe(kcb); 981 else 982 reset_current_kprobe(); 983 preempt_enable_no_resched(); 984 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 985 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 986 /* 987 * We increment the nmissed count for accounting, 988 * we can also use npre/npostfault count for accounting 989 * these specific fault cases. 990 */ 991 kprobes_inc_nmissed_count(cur); 992 993 /* 994 * We come here because instructions in the pre/post 995 * handler caused the page_fault, this could happen 996 * if handler tries to access user space by 997 * copy_from_user(), get_user() etc. Let the 998 * user-specified handler try to fix it first. 999 */ 1000 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1001 return 1; 1002 1003 /* 1004 * In case the user-specified fault handler returned 1005 * zero, try to fix up. 1006 */ 1007 if (fixup_exception(regs, trapnr)) 1008 return 1; 1009 1010 /* 1011 * fixup routine could not handle it, 1012 * Let do_page_fault() fix it. 1013 */ 1014 } 1015 1016 return 0; 1017 } 1018 NOKPROBE_SYMBOL(kprobe_fault_handler); 1019 1020 /* 1021 * Wrapper routine for handling exceptions. 1022 */ 1023 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1024 void *data) 1025 { 1026 struct die_args *args = data; 1027 int ret = NOTIFY_DONE; 1028 1029 if (args->regs && user_mode(args->regs)) 1030 return ret; 1031 1032 if (val == DIE_GPF) { 1033 /* 1034 * To be potentially processing a kprobe fault and to 1035 * trust the result from kprobe_running(), we have 1036 * be non-preemptible. 1037 */ 1038 if (!preemptible() && kprobe_running() && 1039 kprobe_fault_handler(args->regs, args->trapnr)) 1040 ret = NOTIFY_STOP; 1041 } 1042 return ret; 1043 } 1044 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1045 1046 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1047 { 1048 struct jprobe *jp = container_of(p, struct jprobe, kp); 1049 unsigned long addr; 1050 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1051 1052 kcb->jprobe_saved_regs = *regs; 1053 kcb->jprobe_saved_sp = stack_addr(regs); 1054 addr = (unsigned long)(kcb->jprobe_saved_sp); 1055 1056 /* 1057 * As Linus pointed out, gcc assumes that the callee 1058 * owns the argument space and could overwrite it, e.g. 1059 * tailcall optimization. So, to be absolutely safe 1060 * we also save and restore enough stack bytes to cover 1061 * the argument area. 1062 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1063 * raw stack chunk with redzones: 1064 */ 1065 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1066 regs->flags &= ~X86_EFLAGS_IF; 1067 trace_hardirqs_off(); 1068 regs->ip = (unsigned long)(jp->entry); 1069 1070 /* 1071 * jprobes use jprobe_return() which skips the normal return 1072 * path of the function, and this messes up the accounting of the 1073 * function graph tracer to get messed up. 1074 * 1075 * Pause function graph tracing while performing the jprobe function. 1076 */ 1077 pause_graph_tracing(); 1078 return 1; 1079 } 1080 NOKPROBE_SYMBOL(setjmp_pre_handler); 1081 1082 void jprobe_return(void) 1083 { 1084 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1085 1086 /* Unpoison stack redzones in the frames we are going to jump over. */ 1087 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1088 1089 asm volatile ( 1090 #ifdef CONFIG_X86_64 1091 " xchg %%rbx,%%rsp \n" 1092 #else 1093 " xchgl %%ebx,%%esp \n" 1094 #endif 1095 " int3 \n" 1096 " .globl jprobe_return_end\n" 1097 " jprobe_return_end: \n" 1098 " nop \n"::"b" 1099 (kcb->jprobe_saved_sp):"memory"); 1100 } 1101 NOKPROBE_SYMBOL(jprobe_return); 1102 NOKPROBE_SYMBOL(jprobe_return_end); 1103 1104 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1105 { 1106 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1107 u8 *addr = (u8 *) (regs->ip - 1); 1108 struct jprobe *jp = container_of(p, struct jprobe, kp); 1109 void *saved_sp = kcb->jprobe_saved_sp; 1110 1111 if ((addr > (u8 *) jprobe_return) && 1112 (addr < (u8 *) jprobe_return_end)) { 1113 if (stack_addr(regs) != saved_sp) { 1114 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1115 printk(KERN_ERR 1116 "current sp %p does not match saved sp %p\n", 1117 stack_addr(regs), saved_sp); 1118 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1119 show_regs(saved_regs); 1120 printk(KERN_ERR "Current registers\n"); 1121 show_regs(regs); 1122 BUG(); 1123 } 1124 /* It's OK to start function graph tracing again */ 1125 unpause_graph_tracing(); 1126 *regs = kcb->jprobe_saved_regs; 1127 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1128 preempt_enable_no_resched(); 1129 return 1; 1130 } 1131 return 0; 1132 } 1133 NOKPROBE_SYMBOL(longjmp_break_handler); 1134 1135 bool arch_within_kprobe_blacklist(unsigned long addr) 1136 { 1137 return (addr >= (unsigned long)__kprobes_text_start && 1138 addr < (unsigned long)__kprobes_text_end) || 1139 (addr >= (unsigned long)__entry_text_start && 1140 addr < (unsigned long)__entry_text_end); 1141 } 1142 1143 int __init arch_init_kprobes(void) 1144 { 1145 return 0; 1146 } 1147 1148 int arch_trampoline_kprobe(struct kprobe *p) 1149 { 1150 return 0; 1151 } 1152