xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision e2bd6bad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/ftrace.h>
41 #include <linux/kasan.h>
42 #include <linux/moduleloader.h>
43 #include <linux/objtool.h>
44 #include <linux/vmalloc.h>
45 #include <linux/pgtable.h>
46 
47 #include <asm/text-patching.h>
48 #include <asm/cacheflush.h>
49 #include <asm/desc.h>
50 #include <linux/uaccess.h>
51 #include <asm/alternative.h>
52 #include <asm/insn.h>
53 #include <asm/debugreg.h>
54 #include <asm/set_memory.h>
55 
56 #include "common.h"
57 
58 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
59 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
60 
61 #define stack_addr(regs) ((unsigned long *)regs->sp)
62 
63 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
64 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
65 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
66 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
67 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
68 	 << (row % 32))
69 	/*
70 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
71 	 * Groups, and some special opcodes can not boost.
72 	 * This is non-const and volatile to keep gcc from statically
73 	 * optimizing it out, as variable_test_bit makes gcc think only
74 	 * *(unsigned long*) is used.
75 	 */
76 static volatile u32 twobyte_is_boostable[256 / 32] = {
77 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
78 	/*      ----------------------------------------------          */
79 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
80 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
81 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
82 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
83 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
84 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
85 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
86 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
87 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
88 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
89 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
90 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
91 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
92 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
93 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
94 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
95 	/*      -----------------------------------------------         */
96 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
97 };
98 #undef W
99 
100 struct kretprobe_blackpoint kretprobe_blacklist[] = {
101 	{"__switch_to", }, /* This function switches only current task, but
102 			      doesn't switch kernel stack.*/
103 	{NULL, NULL}	/* Terminator */
104 };
105 
106 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
107 
108 static nokprobe_inline void
109 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
110 {
111 	struct __arch_relative_insn {
112 		u8 op;
113 		s32 raddr;
114 	} __packed *insn;
115 
116 	insn = (struct __arch_relative_insn *)dest;
117 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
118 	insn->op = op;
119 }
120 
121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
122 void synthesize_reljump(void *dest, void *from, void *to)
123 {
124 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
125 }
126 NOKPROBE_SYMBOL(synthesize_reljump);
127 
128 /* Insert a call instruction at address 'from', which calls address 'to'.*/
129 void synthesize_relcall(void *dest, void *from, void *to)
130 {
131 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_relcall);
134 
135 /*
136  * Returns non-zero if INSN is boostable.
137  * RIP relative instructions are adjusted at copying time in 64 bits mode
138  */
139 int can_boost(struct insn *insn, void *addr)
140 {
141 	kprobe_opcode_t opcode;
142 	insn_byte_t prefix;
143 	int i;
144 
145 	if (search_exception_tables((unsigned long)addr))
146 		return 0;	/* Page fault may occur on this address. */
147 
148 	/* 2nd-byte opcode */
149 	if (insn->opcode.nbytes == 2)
150 		return test_bit(insn->opcode.bytes[1],
151 				(unsigned long *)twobyte_is_boostable);
152 
153 	if (insn->opcode.nbytes != 1)
154 		return 0;
155 
156 	for_each_insn_prefix(insn, i, prefix) {
157 		insn_attr_t attr;
158 
159 		attr = inat_get_opcode_attribute(prefix);
160 		/* Can't boost Address-size override prefix and CS override prefix */
161 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
162 			return 0;
163 	}
164 
165 	opcode = insn->opcode.bytes[0];
166 
167 	switch (opcode) {
168 	case 0x62:		/* bound */
169 	case 0x70 ... 0x7f:	/* Conditional jumps */
170 	case 0x9a:		/* Call far */
171 	case 0xc0 ... 0xc1:	/* Grp2 */
172 	case 0xcc ... 0xce:	/* software exceptions */
173 	case 0xd0 ... 0xd3:	/* Grp2 */
174 	case 0xd6:		/* (UD) */
175 	case 0xd8 ... 0xdf:	/* ESC */
176 	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
177 	case 0xe8 ... 0xe9:	/* near Call, JMP */
178 	case 0xeb:		/* Short JMP */
179 	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
180 	case 0xf6 ... 0xf7:	/* Grp3 */
181 	case 0xfe:		/* Grp4 */
182 		/* ... are not boostable */
183 		return 0;
184 	case 0xff:		/* Grp5 */
185 		/* Only indirect jmp is boostable */
186 		return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
187 	default:
188 		return 1;
189 	}
190 }
191 
192 static unsigned long
193 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
194 {
195 	struct kprobe *kp;
196 	unsigned long faddr;
197 
198 	kp = get_kprobe((void *)addr);
199 	faddr = ftrace_location(addr);
200 	/*
201 	 * Addresses inside the ftrace location are refused by
202 	 * arch_check_ftrace_location(). Something went terribly wrong
203 	 * if such an address is checked here.
204 	 */
205 	if (WARN_ON(faddr && faddr != addr))
206 		return 0UL;
207 	/*
208 	 * Use the current code if it is not modified by Kprobe
209 	 * and it cannot be modified by ftrace.
210 	 */
211 	if (!kp && !faddr)
212 		return addr;
213 
214 	/*
215 	 * Basically, kp->ainsn.insn has an original instruction.
216 	 * However, RIP-relative instruction can not do single-stepping
217 	 * at different place, __copy_instruction() tweaks the displacement of
218 	 * that instruction. In that case, we can't recover the instruction
219 	 * from the kp->ainsn.insn.
220 	 *
221 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
222 	 * of the first byte of the probed instruction, which is overwritten
223 	 * by int3. And the instruction at kp->addr is not modified by kprobes
224 	 * except for the first byte, we can recover the original instruction
225 	 * from it and kp->opcode.
226 	 *
227 	 * In case of Kprobes using ftrace, we do not have a copy of
228 	 * the original instruction. In fact, the ftrace location might
229 	 * be modified at anytime and even could be in an inconsistent state.
230 	 * Fortunately, we know that the original code is the ideal 5-byte
231 	 * long NOP.
232 	 */
233 	if (copy_from_kernel_nofault(buf, (void *)addr,
234 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
235 		return 0UL;
236 
237 	if (faddr)
238 		memcpy(buf, x86_nops[5], 5);
239 	else
240 		buf[0] = kp->opcode;
241 	return (unsigned long)buf;
242 }
243 
244 /*
245  * Recover the probed instruction at addr for further analysis.
246  * Caller must lock kprobes by kprobe_mutex, or disable preemption
247  * for preventing to release referencing kprobes.
248  * Returns zero if the instruction can not get recovered (or access failed).
249  */
250 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
251 {
252 	unsigned long __addr;
253 
254 	__addr = __recover_optprobed_insn(buf, addr);
255 	if (__addr != addr)
256 		return __addr;
257 
258 	return __recover_probed_insn(buf, addr);
259 }
260 
261 /* Check if paddr is at an instruction boundary */
262 static int can_probe(unsigned long paddr)
263 {
264 	unsigned long addr, __addr, offset = 0;
265 	struct insn insn;
266 	kprobe_opcode_t buf[MAX_INSN_SIZE];
267 
268 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
269 		return 0;
270 
271 	/* Decode instructions */
272 	addr = paddr - offset;
273 	while (addr < paddr) {
274 		int ret;
275 
276 		/*
277 		 * Check if the instruction has been modified by another
278 		 * kprobe, in which case we replace the breakpoint by the
279 		 * original instruction in our buffer.
280 		 * Also, jump optimization will change the breakpoint to
281 		 * relative-jump. Since the relative-jump itself is
282 		 * normally used, we just go through if there is no kprobe.
283 		 */
284 		__addr = recover_probed_instruction(buf, addr);
285 		if (!__addr)
286 			return 0;
287 
288 		ret = insn_decode_kernel(&insn, (void *)__addr);
289 		if (ret < 0)
290 			return 0;
291 
292 		/*
293 		 * Another debugging subsystem might insert this breakpoint.
294 		 * In that case, we can't recover it.
295 		 */
296 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
297 			return 0;
298 		addr += insn.length;
299 	}
300 
301 	return (addr == paddr);
302 }
303 
304 /*
305  * Copy an instruction with recovering modified instruction by kprobes
306  * and adjust the displacement if the instruction uses the %rip-relative
307  * addressing mode. Note that since @real will be the final place of copied
308  * instruction, displacement must be adjust by @real, not @dest.
309  * This returns the length of copied instruction, or 0 if it has an error.
310  */
311 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
312 {
313 	kprobe_opcode_t buf[MAX_INSN_SIZE];
314 	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
315 	int ret;
316 
317 	if (!recovered_insn || !insn)
318 		return 0;
319 
320 	/* This can access kernel text if given address is not recovered */
321 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
322 			MAX_INSN_SIZE))
323 		return 0;
324 
325 	ret = insn_decode_kernel(insn, dest);
326 	if (ret < 0)
327 		return 0;
328 
329 	/* We can not probe force emulate prefixed instruction */
330 	if (insn_has_emulate_prefix(insn))
331 		return 0;
332 
333 	/* Another subsystem puts a breakpoint, failed to recover */
334 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
335 		return 0;
336 
337 	/* We should not singlestep on the exception masking instructions */
338 	if (insn_masking_exception(insn))
339 		return 0;
340 
341 #ifdef CONFIG_X86_64
342 	/* Only x86_64 has RIP relative instructions */
343 	if (insn_rip_relative(insn)) {
344 		s64 newdisp;
345 		u8 *disp;
346 		/*
347 		 * The copied instruction uses the %rip-relative addressing
348 		 * mode.  Adjust the displacement for the difference between
349 		 * the original location of this instruction and the location
350 		 * of the copy that will actually be run.  The tricky bit here
351 		 * is making sure that the sign extension happens correctly in
352 		 * this calculation, since we need a signed 32-bit result to
353 		 * be sign-extended to 64 bits when it's added to the %rip
354 		 * value and yield the same 64-bit result that the sign-
355 		 * extension of the original signed 32-bit displacement would
356 		 * have given.
357 		 */
358 		newdisp = (u8 *) src + (s64) insn->displacement.value
359 			  - (u8 *) real;
360 		if ((s64) (s32) newdisp != newdisp) {
361 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
362 			return 0;
363 		}
364 		disp = (u8 *) dest + insn_offset_displacement(insn);
365 		*(s32 *) disp = (s32) newdisp;
366 	}
367 #endif
368 	return insn->length;
369 }
370 
371 /* Prepare reljump or int3 right after instruction */
372 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
373 			      struct insn *insn)
374 {
375 	int len = insn->length;
376 
377 	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
378 	    !p->post_handler && can_boost(insn, p->addr) &&
379 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
380 		/*
381 		 * These instructions can be executed directly if it
382 		 * jumps back to correct address.
383 		 */
384 		synthesize_reljump(buf + len, p->ainsn.insn + len,
385 				   p->addr + insn->length);
386 		len += JMP32_INSN_SIZE;
387 		p->ainsn.boostable = 1;
388 	} else {
389 		/* Otherwise, put an int3 for trapping singlestep */
390 		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
391 			return -ENOSPC;
392 
393 		buf[len] = INT3_INSN_OPCODE;
394 		len += INT3_INSN_SIZE;
395 	}
396 
397 	return len;
398 }
399 
400 /* Make page to RO mode when allocate it */
401 void *alloc_insn_page(void)
402 {
403 	void *page;
404 
405 	page = module_alloc(PAGE_SIZE);
406 	if (!page)
407 		return NULL;
408 
409 	set_vm_flush_reset_perms(page);
410 	/*
411 	 * First make the page read-only, and only then make it executable to
412 	 * prevent it from being W+X in between.
413 	 */
414 	set_memory_ro((unsigned long)page, 1);
415 
416 	/*
417 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
418 	 * that the page was not maliciously altered and it is still zeroed.
419 	 */
420 	set_memory_x((unsigned long)page, 1);
421 
422 	return page;
423 }
424 
425 /* Recover page to RW mode before releasing it */
426 void free_insn_page(void *page)
427 {
428 	module_memfree(page);
429 }
430 
431 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
432 
433 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
434 {
435 	switch (p->ainsn.opcode) {
436 	case 0xfa:	/* cli */
437 		regs->flags &= ~(X86_EFLAGS_IF);
438 		break;
439 	case 0xfb:	/* sti */
440 		regs->flags |= X86_EFLAGS_IF;
441 		break;
442 	case 0x9c:	/* pushf */
443 		int3_emulate_push(regs, regs->flags);
444 		break;
445 	case 0x9d:	/* popf */
446 		regs->flags = int3_emulate_pop(regs);
447 		break;
448 	}
449 	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
450 }
451 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
452 
453 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
454 {
455 	int3_emulate_ret(regs);
456 }
457 NOKPROBE_SYMBOL(kprobe_emulate_ret);
458 
459 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
460 {
461 	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
462 
463 	func += p->ainsn.rel32;
464 	int3_emulate_call(regs, func);
465 }
466 NOKPROBE_SYMBOL(kprobe_emulate_call);
467 
468 static nokprobe_inline
469 void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond)
470 {
471 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
472 
473 	if (cond)
474 		ip += p->ainsn.rel32;
475 	int3_emulate_jmp(regs, ip);
476 }
477 
478 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
479 {
480 	__kprobe_emulate_jmp(p, regs, true);
481 }
482 NOKPROBE_SYMBOL(kprobe_emulate_jmp);
483 
484 static const unsigned long jcc_mask[6] = {
485 	[0] = X86_EFLAGS_OF,
486 	[1] = X86_EFLAGS_CF,
487 	[2] = X86_EFLAGS_ZF,
488 	[3] = X86_EFLAGS_CF | X86_EFLAGS_ZF,
489 	[4] = X86_EFLAGS_SF,
490 	[5] = X86_EFLAGS_PF,
491 };
492 
493 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
494 {
495 	bool invert = p->ainsn.jcc.type & 1;
496 	bool match;
497 
498 	if (p->ainsn.jcc.type < 0xc) {
499 		match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1];
500 	} else {
501 		match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^
502 			((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT);
503 		if (p->ainsn.jcc.type >= 0xe)
504 			match = match && (regs->flags & X86_EFLAGS_ZF);
505 	}
506 	__kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert));
507 }
508 NOKPROBE_SYMBOL(kprobe_emulate_jcc);
509 
510 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
511 {
512 	bool match;
513 
514 	if (p->ainsn.loop.type != 3) {	/* LOOP* */
515 		if (p->ainsn.loop.asize == 32)
516 			match = ((*(u32 *)&regs->cx)--) != 0;
517 #ifdef CONFIG_X86_64
518 		else if (p->ainsn.loop.asize == 64)
519 			match = ((*(u64 *)&regs->cx)--) != 0;
520 #endif
521 		else
522 			match = ((*(u16 *)&regs->cx)--) != 0;
523 	} else {			/* JCXZ */
524 		if (p->ainsn.loop.asize == 32)
525 			match = *(u32 *)(&regs->cx) == 0;
526 #ifdef CONFIG_X86_64
527 		else if (p->ainsn.loop.asize == 64)
528 			match = *(u64 *)(&regs->cx) == 0;
529 #endif
530 		else
531 			match = *(u16 *)(&regs->cx) == 0;
532 	}
533 
534 	if (p->ainsn.loop.type == 0)	/* LOOPNE */
535 		match = match && !(regs->flags & X86_EFLAGS_ZF);
536 	else if (p->ainsn.loop.type == 1)	/* LOOPE */
537 		match = match && (regs->flags & X86_EFLAGS_ZF);
538 
539 	__kprobe_emulate_jmp(p, regs, match);
540 }
541 NOKPROBE_SYMBOL(kprobe_emulate_loop);
542 
543 static const int addrmode_regoffs[] = {
544 	offsetof(struct pt_regs, ax),
545 	offsetof(struct pt_regs, cx),
546 	offsetof(struct pt_regs, dx),
547 	offsetof(struct pt_regs, bx),
548 	offsetof(struct pt_regs, sp),
549 	offsetof(struct pt_regs, bp),
550 	offsetof(struct pt_regs, si),
551 	offsetof(struct pt_regs, di),
552 #ifdef CONFIG_X86_64
553 	offsetof(struct pt_regs, r8),
554 	offsetof(struct pt_regs, r9),
555 	offsetof(struct pt_regs, r10),
556 	offsetof(struct pt_regs, r11),
557 	offsetof(struct pt_regs, r12),
558 	offsetof(struct pt_regs, r13),
559 	offsetof(struct pt_regs, r14),
560 	offsetof(struct pt_regs, r15),
561 #endif
562 };
563 
564 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
565 {
566 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
567 
568 	int3_emulate_call(regs, regs_get_register(regs, offs));
569 }
570 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
571 
572 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
573 {
574 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
575 
576 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
577 }
578 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
579 
580 static int prepare_emulation(struct kprobe *p, struct insn *insn)
581 {
582 	insn_byte_t opcode = insn->opcode.bytes[0];
583 
584 	switch (opcode) {
585 	case 0xfa:		/* cli */
586 	case 0xfb:		/* sti */
587 	case 0x9c:		/* pushfl */
588 	case 0x9d:		/* popf/popfd */
589 		/*
590 		 * IF modifiers must be emulated since it will enable interrupt while
591 		 * int3 single stepping.
592 		 */
593 		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
594 		p->ainsn.opcode = opcode;
595 		break;
596 	case 0xc2:	/* ret/lret */
597 	case 0xc3:
598 	case 0xca:
599 	case 0xcb:
600 		p->ainsn.emulate_op = kprobe_emulate_ret;
601 		break;
602 	case 0x9a:	/* far call absolute -- segment is not supported */
603 	case 0xea:	/* far jmp absolute -- segment is not supported */
604 	case 0xcc:	/* int3 */
605 	case 0xcf:	/* iret -- in-kernel IRET is not supported */
606 		return -EOPNOTSUPP;
607 		break;
608 	case 0xe8:	/* near call relative */
609 		p->ainsn.emulate_op = kprobe_emulate_call;
610 		if (insn->immediate.nbytes == 2)
611 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
612 		else
613 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
614 		break;
615 	case 0xeb:	/* short jump relative */
616 	case 0xe9:	/* near jump relative */
617 		p->ainsn.emulate_op = kprobe_emulate_jmp;
618 		if (insn->immediate.nbytes == 1)
619 			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
620 		else if (insn->immediate.nbytes == 2)
621 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
622 		else
623 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
624 		break;
625 	case 0x70 ... 0x7f:
626 		/* 1 byte conditional jump */
627 		p->ainsn.emulate_op = kprobe_emulate_jcc;
628 		p->ainsn.jcc.type = opcode & 0xf;
629 		p->ainsn.rel32 = *(char *)insn->immediate.bytes;
630 		break;
631 	case 0x0f:
632 		opcode = insn->opcode.bytes[1];
633 		if ((opcode & 0xf0) == 0x80) {
634 			/* 2 bytes Conditional Jump */
635 			p->ainsn.emulate_op = kprobe_emulate_jcc;
636 			p->ainsn.jcc.type = opcode & 0xf;
637 			if (insn->immediate.nbytes == 2)
638 				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
639 			else
640 				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
641 		} else if (opcode == 0x01 &&
642 			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
643 			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
644 			/* VM extensions - not supported */
645 			return -EOPNOTSUPP;
646 		}
647 		break;
648 	case 0xe0:	/* Loop NZ */
649 	case 0xe1:	/* Loop */
650 	case 0xe2:	/* Loop */
651 	case 0xe3:	/* J*CXZ */
652 		p->ainsn.emulate_op = kprobe_emulate_loop;
653 		p->ainsn.loop.type = opcode & 0x3;
654 		p->ainsn.loop.asize = insn->addr_bytes * 8;
655 		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
656 		break;
657 	case 0xff:
658 		/*
659 		 * Since the 0xff is an extended group opcode, the instruction
660 		 * is determined by the MOD/RM byte.
661 		 */
662 		opcode = insn->modrm.bytes[0];
663 		if ((opcode & 0x30) == 0x10) {
664 			if ((opcode & 0x8) == 0x8)
665 				return -EOPNOTSUPP;	/* far call */
666 			/* call absolute, indirect */
667 			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
668 		} else if ((opcode & 0x30) == 0x20) {
669 			if ((opcode & 0x8) == 0x8)
670 				return -EOPNOTSUPP;	/* far jmp */
671 			/* jmp near absolute indirect */
672 			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
673 		} else
674 			break;
675 
676 		if (insn->addr_bytes != sizeof(unsigned long))
677 			return -EOPNOTSUPP;	/* Don't support differnt size */
678 		if (X86_MODRM_MOD(opcode) != 3)
679 			return -EOPNOTSUPP;	/* TODO: support memory addressing */
680 
681 		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
682 #ifdef CONFIG_X86_64
683 		if (X86_REX_B(insn->rex_prefix.value))
684 			p->ainsn.indirect.reg += 8;
685 #endif
686 		break;
687 	default:
688 		break;
689 	}
690 	p->ainsn.size = insn->length;
691 
692 	return 0;
693 }
694 
695 static int arch_copy_kprobe(struct kprobe *p)
696 {
697 	struct insn insn;
698 	kprobe_opcode_t buf[MAX_INSN_SIZE];
699 	int ret, len;
700 
701 	/* Copy an instruction with recovering if other optprobe modifies it.*/
702 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
703 	if (!len)
704 		return -EINVAL;
705 
706 	/* Analyze the opcode and setup emulate functions */
707 	ret = prepare_emulation(p, &insn);
708 	if (ret < 0)
709 		return ret;
710 
711 	/* Add int3 for single-step or booster jmp */
712 	len = prepare_singlestep(buf, p, &insn);
713 	if (len < 0)
714 		return len;
715 
716 	/* Also, displacement change doesn't affect the first byte */
717 	p->opcode = buf[0];
718 
719 	p->ainsn.tp_len = len;
720 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
721 
722 	/* OK, write back the instruction(s) into ROX insn buffer */
723 	text_poke(p->ainsn.insn, buf, len);
724 
725 	return 0;
726 }
727 
728 int arch_prepare_kprobe(struct kprobe *p)
729 {
730 	int ret;
731 
732 	if (alternatives_text_reserved(p->addr, p->addr))
733 		return -EINVAL;
734 
735 	if (!can_probe((unsigned long)p->addr))
736 		return -EILSEQ;
737 
738 	memset(&p->ainsn, 0, sizeof(p->ainsn));
739 
740 	/* insn: must be on special executable page on x86. */
741 	p->ainsn.insn = get_insn_slot();
742 	if (!p->ainsn.insn)
743 		return -ENOMEM;
744 
745 	ret = arch_copy_kprobe(p);
746 	if (ret) {
747 		free_insn_slot(p->ainsn.insn, 0);
748 		p->ainsn.insn = NULL;
749 	}
750 
751 	return ret;
752 }
753 
754 void arch_arm_kprobe(struct kprobe *p)
755 {
756 	u8 int3 = INT3_INSN_OPCODE;
757 
758 	text_poke(p->addr, &int3, 1);
759 	text_poke_sync();
760 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
761 }
762 
763 void arch_disarm_kprobe(struct kprobe *p)
764 {
765 	u8 int3 = INT3_INSN_OPCODE;
766 
767 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
768 	text_poke(p->addr, &p->opcode, 1);
769 	text_poke_sync();
770 }
771 
772 void arch_remove_kprobe(struct kprobe *p)
773 {
774 	if (p->ainsn.insn) {
775 		/* Record the perf event before freeing the slot */
776 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
777 				     p->ainsn.tp_len, NULL, 0);
778 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
779 		p->ainsn.insn = NULL;
780 	}
781 }
782 
783 static nokprobe_inline void
784 save_previous_kprobe(struct kprobe_ctlblk *kcb)
785 {
786 	kcb->prev_kprobe.kp = kprobe_running();
787 	kcb->prev_kprobe.status = kcb->kprobe_status;
788 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
789 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
790 }
791 
792 static nokprobe_inline void
793 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
794 {
795 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
796 	kcb->kprobe_status = kcb->prev_kprobe.status;
797 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
798 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
799 }
800 
801 static nokprobe_inline void
802 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
803 		   struct kprobe_ctlblk *kcb)
804 {
805 	__this_cpu_write(current_kprobe, p);
806 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
807 		= (regs->flags & X86_EFLAGS_IF);
808 }
809 
810 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
811 {
812 	unsigned long *sara = stack_addr(regs);
813 
814 	ri->ret_addr = (kprobe_opcode_t *) *sara;
815 	ri->fp = sara;
816 
817 	/* Replace the return addr with trampoline addr */
818 	*sara = (unsigned long) &kretprobe_trampoline;
819 }
820 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
821 
822 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
823 			       struct kprobe_ctlblk *kcb)
824 {
825 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
826 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
827 		cur->post_handler(cur, regs, 0);
828 	}
829 
830 	/* Restore back the original saved kprobes variables and continue. */
831 	if (kcb->kprobe_status == KPROBE_REENTER)
832 		restore_previous_kprobe(kcb);
833 	else
834 		reset_current_kprobe();
835 }
836 NOKPROBE_SYMBOL(kprobe_post_process);
837 
838 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
839 			     struct kprobe_ctlblk *kcb, int reenter)
840 {
841 	if (setup_detour_execution(p, regs, reenter))
842 		return;
843 
844 #if !defined(CONFIG_PREEMPTION)
845 	if (p->ainsn.boostable) {
846 		/* Boost up -- we can execute copied instructions directly */
847 		if (!reenter)
848 			reset_current_kprobe();
849 		/*
850 		 * Reentering boosted probe doesn't reset current_kprobe,
851 		 * nor set current_kprobe, because it doesn't use single
852 		 * stepping.
853 		 */
854 		regs->ip = (unsigned long)p->ainsn.insn;
855 		return;
856 	}
857 #endif
858 	if (reenter) {
859 		save_previous_kprobe(kcb);
860 		set_current_kprobe(p, regs, kcb);
861 		kcb->kprobe_status = KPROBE_REENTER;
862 	} else
863 		kcb->kprobe_status = KPROBE_HIT_SS;
864 
865 	if (p->ainsn.emulate_op) {
866 		p->ainsn.emulate_op(p, regs);
867 		kprobe_post_process(p, regs, kcb);
868 		return;
869 	}
870 
871 	/* Disable interrupt, and set ip register on trampoline */
872 	regs->flags &= ~X86_EFLAGS_IF;
873 	regs->ip = (unsigned long)p->ainsn.insn;
874 }
875 NOKPROBE_SYMBOL(setup_singlestep);
876 
877 /*
878  * Called after single-stepping.  p->addr is the address of the
879  * instruction whose first byte has been replaced by the "int3"
880  * instruction.  To avoid the SMP problems that can occur when we
881  * temporarily put back the original opcode to single-step, we
882  * single-stepped a copy of the instruction.  The address of this
883  * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
884  * right after the copied instruction.
885  * Different from the trap single-step, "int3" single-step can not
886  * handle the instruction which changes the ip register, e.g. jmp,
887  * call, conditional jmp, and the instructions which changes the IF
888  * flags because interrupt must be disabled around the single-stepping.
889  * Such instructions are software emulated, but others are single-stepped
890  * using "int3".
891  *
892  * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
893  * be adjusted, so that we can resume execution on correct code.
894  */
895 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
896 			      struct kprobe_ctlblk *kcb)
897 {
898 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
899 	unsigned long orig_ip = (unsigned long)p->addr;
900 
901 	/* Restore saved interrupt flag and ip register */
902 	regs->flags |= kcb->kprobe_saved_flags;
903 	/* Note that regs->ip is executed int3 so must be a step back */
904 	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
905 }
906 NOKPROBE_SYMBOL(resume_singlestep);
907 
908 /*
909  * We have reentered the kprobe_handler(), since another probe was hit while
910  * within the handler. We save the original kprobes variables and just single
911  * step on the instruction of the new probe without calling any user handlers.
912  */
913 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
914 			  struct kprobe_ctlblk *kcb)
915 {
916 	switch (kcb->kprobe_status) {
917 	case KPROBE_HIT_SSDONE:
918 	case KPROBE_HIT_ACTIVE:
919 	case KPROBE_HIT_SS:
920 		kprobes_inc_nmissed_count(p);
921 		setup_singlestep(p, regs, kcb, 1);
922 		break;
923 	case KPROBE_REENTER:
924 		/* A probe has been hit in the codepath leading up to, or just
925 		 * after, single-stepping of a probed instruction. This entire
926 		 * codepath should strictly reside in .kprobes.text section.
927 		 * Raise a BUG or we'll continue in an endless reentering loop
928 		 * and eventually a stack overflow.
929 		 */
930 		pr_err("Unrecoverable kprobe detected.\n");
931 		dump_kprobe(p);
932 		BUG();
933 	default:
934 		/* impossible cases */
935 		WARN_ON(1);
936 		return 0;
937 	}
938 
939 	return 1;
940 }
941 NOKPROBE_SYMBOL(reenter_kprobe);
942 
943 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
944 {
945 	return (kcb->kprobe_status == KPROBE_HIT_SS ||
946 		kcb->kprobe_status == KPROBE_REENTER);
947 }
948 
949 /*
950  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
951  * remain disabled throughout this function.
952  */
953 int kprobe_int3_handler(struct pt_regs *regs)
954 {
955 	kprobe_opcode_t *addr;
956 	struct kprobe *p;
957 	struct kprobe_ctlblk *kcb;
958 
959 	if (user_mode(regs))
960 		return 0;
961 
962 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
963 	/*
964 	 * We don't want to be preempted for the entire duration of kprobe
965 	 * processing. Since int3 and debug trap disables irqs and we clear
966 	 * IF while singlestepping, it must be no preemptible.
967 	 */
968 
969 	kcb = get_kprobe_ctlblk();
970 	p = get_kprobe(addr);
971 
972 	if (p) {
973 		if (kprobe_running()) {
974 			if (reenter_kprobe(p, regs, kcb))
975 				return 1;
976 		} else {
977 			set_current_kprobe(p, regs, kcb);
978 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
979 
980 			/*
981 			 * If we have no pre-handler or it returned 0, we
982 			 * continue with normal processing.  If we have a
983 			 * pre-handler and it returned non-zero, that means
984 			 * user handler setup registers to exit to another
985 			 * instruction, we must skip the single stepping.
986 			 */
987 			if (!p->pre_handler || !p->pre_handler(p, regs))
988 				setup_singlestep(p, regs, kcb, 0);
989 			else
990 				reset_current_kprobe();
991 			return 1;
992 		}
993 	} else if (kprobe_is_ss(kcb)) {
994 		p = kprobe_running();
995 		if ((unsigned long)p->ainsn.insn < regs->ip &&
996 		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
997 			/* Most provably this is the second int3 for singlestep */
998 			resume_singlestep(p, regs, kcb);
999 			kprobe_post_process(p, regs, kcb);
1000 			return 1;
1001 		}
1002 	}
1003 
1004 	if (*addr != INT3_INSN_OPCODE) {
1005 		/*
1006 		 * The breakpoint instruction was removed right
1007 		 * after we hit it.  Another cpu has removed
1008 		 * either a probepoint or a debugger breakpoint
1009 		 * at this address.  In either case, no further
1010 		 * handling of this interrupt is appropriate.
1011 		 * Back up over the (now missing) int3 and run
1012 		 * the original instruction.
1013 		 */
1014 		regs->ip = (unsigned long)addr;
1015 		return 1;
1016 	} /* else: not a kprobe fault; let the kernel handle it */
1017 
1018 	return 0;
1019 }
1020 NOKPROBE_SYMBOL(kprobe_int3_handler);
1021 
1022 /*
1023  * When a retprobed function returns, this code saves registers and
1024  * calls trampoline_handler() runs, which calls the kretprobe's handler.
1025  */
1026 asm(
1027 	".text\n"
1028 	".global kretprobe_trampoline\n"
1029 	".type kretprobe_trampoline, @function\n"
1030 	"kretprobe_trampoline:\n"
1031 	/* We don't bother saving the ss register */
1032 #ifdef CONFIG_X86_64
1033 	"	pushq %rsp\n"
1034 	"	pushfq\n"
1035 	SAVE_REGS_STRING
1036 	"	movq %rsp, %rdi\n"
1037 	"	call trampoline_handler\n"
1038 	/* Replace saved sp with true return address. */
1039 	"	movq %rax, 19*8(%rsp)\n"
1040 	RESTORE_REGS_STRING
1041 	"	popfq\n"
1042 #else
1043 	"	pushl %esp\n"
1044 	"	pushfl\n"
1045 	SAVE_REGS_STRING
1046 	"	movl %esp, %eax\n"
1047 	"	call trampoline_handler\n"
1048 	/* Replace saved sp with true return address. */
1049 	"	movl %eax, 15*4(%esp)\n"
1050 	RESTORE_REGS_STRING
1051 	"	popfl\n"
1052 #endif
1053 	"	ret\n"
1054 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
1055 );
1056 NOKPROBE_SYMBOL(kretprobe_trampoline);
1057 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
1058 
1059 
1060 /*
1061  * Called from kretprobe_trampoline
1062  */
1063 __used __visible void *trampoline_handler(struct pt_regs *regs)
1064 {
1065 	/* fixup registers */
1066 	regs->cs = __KERNEL_CS;
1067 #ifdef CONFIG_X86_32
1068 	regs->gs = 0;
1069 #endif
1070 	regs->ip = (unsigned long)&kretprobe_trampoline;
1071 	regs->orig_ax = ~0UL;
1072 
1073 	return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, &regs->sp);
1074 }
1075 NOKPROBE_SYMBOL(trampoline_handler);
1076 
1077 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1078 {
1079 	struct kprobe *cur = kprobe_running();
1080 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1081 
1082 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1083 		/* This must happen on single-stepping */
1084 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1085 			kcb->kprobe_status != KPROBE_REENTER);
1086 		/*
1087 		 * We are here because the instruction being single
1088 		 * stepped caused a page fault. We reset the current
1089 		 * kprobe and the ip points back to the probe address
1090 		 * and allow the page fault handler to continue as a
1091 		 * normal page fault.
1092 		 */
1093 		regs->ip = (unsigned long)cur->addr;
1094 
1095 		/*
1096 		 * If the IF flag was set before the kprobe hit,
1097 		 * don't touch it:
1098 		 */
1099 		regs->flags |= kcb->kprobe_old_flags;
1100 
1101 		if (kcb->kprobe_status == KPROBE_REENTER)
1102 			restore_previous_kprobe(kcb);
1103 		else
1104 			reset_current_kprobe();
1105 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1106 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1107 		/*
1108 		 * We increment the nmissed count for accounting,
1109 		 * we can also use npre/npostfault count for accounting
1110 		 * these specific fault cases.
1111 		 */
1112 		kprobes_inc_nmissed_count(cur);
1113 
1114 		/*
1115 		 * We come here because instructions in the pre/post
1116 		 * handler caused the page_fault, this could happen
1117 		 * if handler tries to access user space by
1118 		 * copy_from_user(), get_user() etc. Let the
1119 		 * user-specified handler try to fix it first.
1120 		 */
1121 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1122 			return 1;
1123 	}
1124 
1125 	return 0;
1126 }
1127 NOKPROBE_SYMBOL(kprobe_fault_handler);
1128 
1129 int __init arch_populate_kprobe_blacklist(void)
1130 {
1131 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1132 					 (unsigned long)__entry_text_end);
1133 }
1134 
1135 int __init arch_init_kprobes(void)
1136 {
1137 	return 0;
1138 }
1139 
1140 int arch_trampoline_kprobe(struct kprobe *p)
1141 {
1142 	return 0;
1143 }
1144