1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 53 #include <asm/cacheflush.h> 54 #include <asm/desc.h> 55 #include <asm/pgtable.h> 56 #include <asm/uaccess.h> 57 #include <asm/alternative.h> 58 #include <asm/insn.h> 59 #include <asm/debugreg.h> 60 61 #include "common.h" 62 63 void jprobe_return_end(void); 64 65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 67 68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 69 70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 75 << (row % 32)) 76 /* 77 * Undefined/reserved opcodes, conditional jump, Opcode Extension 78 * Groups, and some special opcodes can not boost. 79 * This is non-const and volatile to keep gcc from statically 80 * optimizing it out, as variable_test_bit makes gcc think only 81 * *(unsigned long*) is used. 82 */ 83 static volatile u32 twobyte_is_boostable[256 / 32] = { 84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 85 /* ---------------------------------------------- */ 86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */ 88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 102 /* ----------------------------------------------- */ 103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 104 }; 105 #undef W 106 107 struct kretprobe_blackpoint kretprobe_blacklist[] = { 108 {"__switch_to", }, /* This function switches only current task, but 109 doesn't switch kernel stack.*/ 110 {NULL, NULL} /* Terminator */ 111 }; 112 113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 114 115 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op) 116 { 117 struct __arch_relative_insn { 118 u8 op; 119 s32 raddr; 120 } __packed *insn; 121 122 insn = (struct __arch_relative_insn *)from; 123 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 124 insn->op = op; 125 } 126 127 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 128 void __kprobes synthesize_reljump(void *from, void *to) 129 { 130 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 131 } 132 133 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 134 void __kprobes synthesize_relcall(void *from, void *to) 135 { 136 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 137 } 138 139 /* 140 * Skip the prefixes of the instruction. 141 */ 142 static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn) 143 { 144 insn_attr_t attr; 145 146 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 147 while (inat_is_legacy_prefix(attr)) { 148 insn++; 149 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 150 } 151 #ifdef CONFIG_X86_64 152 if (inat_is_rex_prefix(attr)) 153 insn++; 154 #endif 155 return insn; 156 } 157 158 /* 159 * Returns non-zero if opcode is boostable. 160 * RIP relative instructions are adjusted at copying time in 64 bits mode 161 */ 162 int __kprobes can_boost(kprobe_opcode_t *opcodes) 163 { 164 kprobe_opcode_t opcode; 165 kprobe_opcode_t *orig_opcodes = opcodes; 166 167 if (search_exception_tables((unsigned long)opcodes)) 168 return 0; /* Page fault may occur on this address. */ 169 170 retry: 171 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 172 return 0; 173 opcode = *(opcodes++); 174 175 /* 2nd-byte opcode */ 176 if (opcode == 0x0f) { 177 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 178 return 0; 179 return test_bit(*opcodes, 180 (unsigned long *)twobyte_is_boostable); 181 } 182 183 switch (opcode & 0xf0) { 184 #ifdef CONFIG_X86_64 185 case 0x40: 186 goto retry; /* REX prefix is boostable */ 187 #endif 188 case 0x60: 189 if (0x63 < opcode && opcode < 0x67) 190 goto retry; /* prefixes */ 191 /* can't boost Address-size override and bound */ 192 return (opcode != 0x62 && opcode != 0x67); 193 case 0x70: 194 return 0; /* can't boost conditional jump */ 195 case 0xc0: 196 /* can't boost software-interruptions */ 197 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 198 case 0xd0: 199 /* can boost AA* and XLAT */ 200 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 201 case 0xe0: 202 /* can boost in/out and absolute jmps */ 203 return ((opcode & 0x04) || opcode == 0xea); 204 case 0xf0: 205 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 206 goto retry; /* lock/rep(ne) prefix */ 207 /* clear and set flags are boostable */ 208 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 209 default: 210 /* segment override prefixes are boostable */ 211 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 212 goto retry; /* prefixes */ 213 /* CS override prefix and call are not boostable */ 214 return (opcode != 0x2e && opcode != 0x9a); 215 } 216 } 217 218 static unsigned long 219 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 220 { 221 struct kprobe *kp; 222 223 kp = get_kprobe((void *)addr); 224 /* There is no probe, return original address */ 225 if (!kp) 226 return addr; 227 228 /* 229 * Basically, kp->ainsn.insn has an original instruction. 230 * However, RIP-relative instruction can not do single-stepping 231 * at different place, __copy_instruction() tweaks the displacement of 232 * that instruction. In that case, we can't recover the instruction 233 * from the kp->ainsn.insn. 234 * 235 * On the other hand, kp->opcode has a copy of the first byte of 236 * the probed instruction, which is overwritten by int3. And 237 * the instruction at kp->addr is not modified by kprobes except 238 * for the first byte, we can recover the original instruction 239 * from it and kp->opcode. 240 */ 241 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 242 buf[0] = kp->opcode; 243 return (unsigned long)buf; 244 } 245 246 /* 247 * Recover the probed instruction at addr for further analysis. 248 * Caller must lock kprobes by kprobe_mutex, or disable preemption 249 * for preventing to release referencing kprobes. 250 */ 251 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 252 { 253 unsigned long __addr; 254 255 __addr = __recover_optprobed_insn(buf, addr); 256 if (__addr != addr) 257 return __addr; 258 259 return __recover_probed_insn(buf, addr); 260 } 261 262 /* Check if paddr is at an instruction boundary */ 263 static int __kprobes can_probe(unsigned long paddr) 264 { 265 unsigned long addr, __addr, offset = 0; 266 struct insn insn; 267 kprobe_opcode_t buf[MAX_INSN_SIZE]; 268 269 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 270 return 0; 271 272 /* Decode instructions */ 273 addr = paddr - offset; 274 while (addr < paddr) { 275 /* 276 * Check if the instruction has been modified by another 277 * kprobe, in which case we replace the breakpoint by the 278 * original instruction in our buffer. 279 * Also, jump optimization will change the breakpoint to 280 * relative-jump. Since the relative-jump itself is 281 * normally used, we just go through if there is no kprobe. 282 */ 283 __addr = recover_probed_instruction(buf, addr); 284 kernel_insn_init(&insn, (void *)__addr); 285 insn_get_length(&insn); 286 287 /* 288 * Another debugging subsystem might insert this breakpoint. 289 * In that case, we can't recover it. 290 */ 291 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 292 return 0; 293 addr += insn.length; 294 } 295 296 return (addr == paddr); 297 } 298 299 /* 300 * Returns non-zero if opcode modifies the interrupt flag. 301 */ 302 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn) 303 { 304 /* Skip prefixes */ 305 insn = skip_prefixes(insn); 306 307 switch (*insn) { 308 case 0xfa: /* cli */ 309 case 0xfb: /* sti */ 310 case 0xcf: /* iret/iretd */ 311 case 0x9d: /* popf/popfd */ 312 return 1; 313 } 314 315 return 0; 316 } 317 318 /* 319 * Copy an instruction and adjust the displacement if the instruction 320 * uses the %rip-relative addressing mode. 321 * If it does, Return the address of the 32-bit displacement word. 322 * If not, return null. 323 * Only applicable to 64-bit x86. 324 */ 325 int __kprobes __copy_instruction(u8 *dest, u8 *src) 326 { 327 struct insn insn; 328 kprobe_opcode_t buf[MAX_INSN_SIZE]; 329 330 kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src)); 331 insn_get_length(&insn); 332 /* Another subsystem puts a breakpoint, failed to recover */ 333 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 334 return 0; 335 memcpy(dest, insn.kaddr, insn.length); 336 337 #ifdef CONFIG_X86_64 338 if (insn_rip_relative(&insn)) { 339 s64 newdisp; 340 u8 *disp; 341 kernel_insn_init(&insn, dest); 342 insn_get_displacement(&insn); 343 /* 344 * The copied instruction uses the %rip-relative addressing 345 * mode. Adjust the displacement for the difference between 346 * the original location of this instruction and the location 347 * of the copy that will actually be run. The tricky bit here 348 * is making sure that the sign extension happens correctly in 349 * this calculation, since we need a signed 32-bit result to 350 * be sign-extended to 64 bits when it's added to the %rip 351 * value and yield the same 64-bit result that the sign- 352 * extension of the original signed 32-bit displacement would 353 * have given. 354 */ 355 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 356 if ((s64) (s32) newdisp != newdisp) { 357 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 358 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 359 return 0; 360 } 361 disp = (u8 *) dest + insn_offset_displacement(&insn); 362 *(s32 *) disp = (s32) newdisp; 363 } 364 #endif 365 return insn.length; 366 } 367 368 static int __kprobes arch_copy_kprobe(struct kprobe *p) 369 { 370 int ret; 371 372 /* Copy an instruction with recovering if other optprobe modifies it.*/ 373 ret = __copy_instruction(p->ainsn.insn, p->addr); 374 if (!ret) 375 return -EINVAL; 376 377 /* 378 * __copy_instruction can modify the displacement of the instruction, 379 * but it doesn't affect boostable check. 380 */ 381 if (can_boost(p->ainsn.insn)) 382 p->ainsn.boostable = 0; 383 else 384 p->ainsn.boostable = -1; 385 386 /* Check whether the instruction modifies Interrupt Flag or not */ 387 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 388 389 /* Also, displacement change doesn't affect the first byte */ 390 p->opcode = p->ainsn.insn[0]; 391 392 return 0; 393 } 394 395 int __kprobes arch_prepare_kprobe(struct kprobe *p) 396 { 397 if (alternatives_text_reserved(p->addr, p->addr)) 398 return -EINVAL; 399 400 if (!can_probe((unsigned long)p->addr)) 401 return -EILSEQ; 402 /* insn: must be on special executable page on x86. */ 403 p->ainsn.insn = get_insn_slot(); 404 if (!p->ainsn.insn) 405 return -ENOMEM; 406 407 return arch_copy_kprobe(p); 408 } 409 410 void __kprobes arch_arm_kprobe(struct kprobe *p) 411 { 412 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 413 } 414 415 void __kprobes arch_disarm_kprobe(struct kprobe *p) 416 { 417 text_poke(p->addr, &p->opcode, 1); 418 } 419 420 void __kprobes arch_remove_kprobe(struct kprobe *p) 421 { 422 if (p->ainsn.insn) { 423 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 424 p->ainsn.insn = NULL; 425 } 426 } 427 428 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 429 { 430 kcb->prev_kprobe.kp = kprobe_running(); 431 kcb->prev_kprobe.status = kcb->kprobe_status; 432 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 433 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 434 } 435 436 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 437 { 438 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 439 kcb->kprobe_status = kcb->prev_kprobe.status; 440 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 441 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 442 } 443 444 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 445 struct kprobe_ctlblk *kcb) 446 { 447 __this_cpu_write(current_kprobe, p); 448 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 449 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 450 if (p->ainsn.if_modifier) 451 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 452 } 453 454 static void __kprobes clear_btf(void) 455 { 456 if (test_thread_flag(TIF_BLOCKSTEP)) { 457 unsigned long debugctl = get_debugctlmsr(); 458 459 debugctl &= ~DEBUGCTLMSR_BTF; 460 update_debugctlmsr(debugctl); 461 } 462 } 463 464 static void __kprobes restore_btf(void) 465 { 466 if (test_thread_flag(TIF_BLOCKSTEP)) { 467 unsigned long debugctl = get_debugctlmsr(); 468 469 debugctl |= DEBUGCTLMSR_BTF; 470 update_debugctlmsr(debugctl); 471 } 472 } 473 474 void __kprobes 475 arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 476 { 477 unsigned long *sara = stack_addr(regs); 478 479 ri->ret_addr = (kprobe_opcode_t *) *sara; 480 481 /* Replace the return addr with trampoline addr */ 482 *sara = (unsigned long) &kretprobe_trampoline; 483 } 484 485 static void __kprobes 486 setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) 487 { 488 if (setup_detour_execution(p, regs, reenter)) 489 return; 490 491 #if !defined(CONFIG_PREEMPT) 492 if (p->ainsn.boostable == 1 && !p->post_handler) { 493 /* Boost up -- we can execute copied instructions directly */ 494 if (!reenter) 495 reset_current_kprobe(); 496 /* 497 * Reentering boosted probe doesn't reset current_kprobe, 498 * nor set current_kprobe, because it doesn't use single 499 * stepping. 500 */ 501 regs->ip = (unsigned long)p->ainsn.insn; 502 preempt_enable_no_resched(); 503 return; 504 } 505 #endif 506 if (reenter) { 507 save_previous_kprobe(kcb); 508 set_current_kprobe(p, regs, kcb); 509 kcb->kprobe_status = KPROBE_REENTER; 510 } else 511 kcb->kprobe_status = KPROBE_HIT_SS; 512 /* Prepare real single stepping */ 513 clear_btf(); 514 regs->flags |= X86_EFLAGS_TF; 515 regs->flags &= ~X86_EFLAGS_IF; 516 /* single step inline if the instruction is an int3 */ 517 if (p->opcode == BREAKPOINT_INSTRUCTION) 518 regs->ip = (unsigned long)p->addr; 519 else 520 regs->ip = (unsigned long)p->ainsn.insn; 521 } 522 523 /* 524 * We have reentered the kprobe_handler(), since another probe was hit while 525 * within the handler. We save the original kprobes variables and just single 526 * step on the instruction of the new probe without calling any user handlers. 527 */ 528 static int __kprobes 529 reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 530 { 531 switch (kcb->kprobe_status) { 532 case KPROBE_HIT_SSDONE: 533 case KPROBE_HIT_ACTIVE: 534 kprobes_inc_nmissed_count(p); 535 setup_singlestep(p, regs, kcb, 1); 536 break; 537 case KPROBE_HIT_SS: 538 /* A probe has been hit in the codepath leading up to, or just 539 * after, single-stepping of a probed instruction. This entire 540 * codepath should strictly reside in .kprobes.text section. 541 * Raise a BUG or we'll continue in an endless reentering loop 542 * and eventually a stack overflow. 543 */ 544 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 545 p->addr); 546 dump_kprobe(p); 547 BUG(); 548 default: 549 /* impossible cases */ 550 WARN_ON(1); 551 return 0; 552 } 553 554 return 1; 555 } 556 557 /* 558 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 559 * remain disabled throughout this function. 560 */ 561 static int __kprobes kprobe_handler(struct pt_regs *regs) 562 { 563 kprobe_opcode_t *addr; 564 struct kprobe *p; 565 struct kprobe_ctlblk *kcb; 566 567 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 568 /* 569 * We don't want to be preempted for the entire 570 * duration of kprobe processing. We conditionally 571 * re-enable preemption at the end of this function, 572 * and also in reenter_kprobe() and setup_singlestep(). 573 */ 574 preempt_disable(); 575 576 kcb = get_kprobe_ctlblk(); 577 p = get_kprobe(addr); 578 579 if (p) { 580 if (kprobe_running()) { 581 if (reenter_kprobe(p, regs, kcb)) 582 return 1; 583 } else { 584 set_current_kprobe(p, regs, kcb); 585 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 586 587 /* 588 * If we have no pre-handler or it returned 0, we 589 * continue with normal processing. If we have a 590 * pre-handler and it returned non-zero, it prepped 591 * for calling the break_handler below on re-entry 592 * for jprobe processing, so get out doing nothing 593 * more here. 594 */ 595 if (!p->pre_handler || !p->pre_handler(p, regs)) 596 setup_singlestep(p, regs, kcb, 0); 597 return 1; 598 } 599 } else if (*addr != BREAKPOINT_INSTRUCTION) { 600 /* 601 * The breakpoint instruction was removed right 602 * after we hit it. Another cpu has removed 603 * either a probepoint or a debugger breakpoint 604 * at this address. In either case, no further 605 * handling of this interrupt is appropriate. 606 * Back up over the (now missing) int3 and run 607 * the original instruction. 608 */ 609 regs->ip = (unsigned long)addr; 610 preempt_enable_no_resched(); 611 return 1; 612 } else if (kprobe_running()) { 613 p = __this_cpu_read(current_kprobe); 614 if (p->break_handler && p->break_handler(p, regs)) { 615 if (!skip_singlestep(p, regs, kcb)) 616 setup_singlestep(p, regs, kcb, 0); 617 return 1; 618 } 619 } /* else: not a kprobe fault; let the kernel handle it */ 620 621 preempt_enable_no_resched(); 622 return 0; 623 } 624 625 /* 626 * When a retprobed function returns, this code saves registers and 627 * calls trampoline_handler() runs, which calls the kretprobe's handler. 628 */ 629 static void __used __kprobes kretprobe_trampoline_holder(void) 630 { 631 asm volatile ( 632 ".global kretprobe_trampoline\n" 633 "kretprobe_trampoline: \n" 634 #ifdef CONFIG_X86_64 635 /* We don't bother saving the ss register */ 636 " pushq %rsp\n" 637 " pushfq\n" 638 SAVE_REGS_STRING 639 " movq %rsp, %rdi\n" 640 " call trampoline_handler\n" 641 /* Replace saved sp with true return address. */ 642 " movq %rax, 152(%rsp)\n" 643 RESTORE_REGS_STRING 644 " popfq\n" 645 #else 646 " pushf\n" 647 SAVE_REGS_STRING 648 " movl %esp, %eax\n" 649 " call trampoline_handler\n" 650 /* Move flags to cs */ 651 " movl 56(%esp), %edx\n" 652 " movl %edx, 52(%esp)\n" 653 /* Replace saved flags with true return address. */ 654 " movl %eax, 56(%esp)\n" 655 RESTORE_REGS_STRING 656 " popf\n" 657 #endif 658 " ret\n"); 659 } 660 661 /* 662 * Called from kretprobe_trampoline 663 */ 664 __visible __used __kprobes void *trampoline_handler(struct pt_regs *regs) 665 { 666 struct kretprobe_instance *ri = NULL; 667 struct hlist_head *head, empty_rp; 668 struct hlist_node *tmp; 669 unsigned long flags, orig_ret_address = 0; 670 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 671 kprobe_opcode_t *correct_ret_addr = NULL; 672 673 INIT_HLIST_HEAD(&empty_rp); 674 kretprobe_hash_lock(current, &head, &flags); 675 /* fixup registers */ 676 #ifdef CONFIG_X86_64 677 regs->cs = __KERNEL_CS; 678 #else 679 regs->cs = __KERNEL_CS | get_kernel_rpl(); 680 regs->gs = 0; 681 #endif 682 regs->ip = trampoline_address; 683 regs->orig_ax = ~0UL; 684 685 /* 686 * It is possible to have multiple instances associated with a given 687 * task either because multiple functions in the call path have 688 * return probes installed on them, and/or more than one 689 * return probe was registered for a target function. 690 * 691 * We can handle this because: 692 * - instances are always pushed into the head of the list 693 * - when multiple return probes are registered for the same 694 * function, the (chronologically) first instance's ret_addr 695 * will be the real return address, and all the rest will 696 * point to kretprobe_trampoline. 697 */ 698 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 699 if (ri->task != current) 700 /* another task is sharing our hash bucket */ 701 continue; 702 703 orig_ret_address = (unsigned long)ri->ret_addr; 704 705 if (orig_ret_address != trampoline_address) 706 /* 707 * This is the real return address. Any other 708 * instances associated with this task are for 709 * other calls deeper on the call stack 710 */ 711 break; 712 } 713 714 kretprobe_assert(ri, orig_ret_address, trampoline_address); 715 716 correct_ret_addr = ri->ret_addr; 717 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 718 if (ri->task != current) 719 /* another task is sharing our hash bucket */ 720 continue; 721 722 orig_ret_address = (unsigned long)ri->ret_addr; 723 if (ri->rp && ri->rp->handler) { 724 __this_cpu_write(current_kprobe, &ri->rp->kp); 725 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 726 ri->ret_addr = correct_ret_addr; 727 ri->rp->handler(ri, regs); 728 __this_cpu_write(current_kprobe, NULL); 729 } 730 731 recycle_rp_inst(ri, &empty_rp); 732 733 if (orig_ret_address != trampoline_address) 734 /* 735 * This is the real return address. Any other 736 * instances associated with this task are for 737 * other calls deeper on the call stack 738 */ 739 break; 740 } 741 742 kretprobe_hash_unlock(current, &flags); 743 744 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 745 hlist_del(&ri->hlist); 746 kfree(ri); 747 } 748 return (void *)orig_ret_address; 749 } 750 751 /* 752 * Called after single-stepping. p->addr is the address of the 753 * instruction whose first byte has been replaced by the "int 3" 754 * instruction. To avoid the SMP problems that can occur when we 755 * temporarily put back the original opcode to single-step, we 756 * single-stepped a copy of the instruction. The address of this 757 * copy is p->ainsn.insn. 758 * 759 * This function prepares to return from the post-single-step 760 * interrupt. We have to fix up the stack as follows: 761 * 762 * 0) Except in the case of absolute or indirect jump or call instructions, 763 * the new ip is relative to the copied instruction. We need to make 764 * it relative to the original instruction. 765 * 766 * 1) If the single-stepped instruction was pushfl, then the TF and IF 767 * flags are set in the just-pushed flags, and may need to be cleared. 768 * 769 * 2) If the single-stepped instruction was a call, the return address 770 * that is atop the stack is the address following the copied instruction. 771 * We need to make it the address following the original instruction. 772 * 773 * If this is the first time we've single-stepped the instruction at 774 * this probepoint, and the instruction is boostable, boost it: add a 775 * jump instruction after the copied instruction, that jumps to the next 776 * instruction after the probepoint. 777 */ 778 static void __kprobes 779 resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 780 { 781 unsigned long *tos = stack_addr(regs); 782 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 783 unsigned long orig_ip = (unsigned long)p->addr; 784 kprobe_opcode_t *insn = p->ainsn.insn; 785 786 /* Skip prefixes */ 787 insn = skip_prefixes(insn); 788 789 regs->flags &= ~X86_EFLAGS_TF; 790 switch (*insn) { 791 case 0x9c: /* pushfl */ 792 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 793 *tos |= kcb->kprobe_old_flags; 794 break; 795 case 0xc2: /* iret/ret/lret */ 796 case 0xc3: 797 case 0xca: 798 case 0xcb: 799 case 0xcf: 800 case 0xea: /* jmp absolute -- ip is correct */ 801 /* ip is already adjusted, no more changes required */ 802 p->ainsn.boostable = 1; 803 goto no_change; 804 case 0xe8: /* call relative - Fix return addr */ 805 *tos = orig_ip + (*tos - copy_ip); 806 break; 807 #ifdef CONFIG_X86_32 808 case 0x9a: /* call absolute -- same as call absolute, indirect */ 809 *tos = orig_ip + (*tos - copy_ip); 810 goto no_change; 811 #endif 812 case 0xff: 813 if ((insn[1] & 0x30) == 0x10) { 814 /* 815 * call absolute, indirect 816 * Fix return addr; ip is correct. 817 * But this is not boostable 818 */ 819 *tos = orig_ip + (*tos - copy_ip); 820 goto no_change; 821 } else if (((insn[1] & 0x31) == 0x20) || 822 ((insn[1] & 0x31) == 0x21)) { 823 /* 824 * jmp near and far, absolute indirect 825 * ip is correct. And this is boostable 826 */ 827 p->ainsn.boostable = 1; 828 goto no_change; 829 } 830 default: 831 break; 832 } 833 834 if (p->ainsn.boostable == 0) { 835 if ((regs->ip > copy_ip) && 836 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 837 /* 838 * These instructions can be executed directly if it 839 * jumps back to correct address. 840 */ 841 synthesize_reljump((void *)regs->ip, 842 (void *)orig_ip + (regs->ip - copy_ip)); 843 p->ainsn.boostable = 1; 844 } else { 845 p->ainsn.boostable = -1; 846 } 847 } 848 849 regs->ip += orig_ip - copy_ip; 850 851 no_change: 852 restore_btf(); 853 } 854 855 /* 856 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 857 * remain disabled throughout this function. 858 */ 859 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 860 { 861 struct kprobe *cur = kprobe_running(); 862 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 863 864 if (!cur) 865 return 0; 866 867 resume_execution(cur, regs, kcb); 868 regs->flags |= kcb->kprobe_saved_flags; 869 870 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 871 kcb->kprobe_status = KPROBE_HIT_SSDONE; 872 cur->post_handler(cur, regs, 0); 873 } 874 875 /* Restore back the original saved kprobes variables and continue. */ 876 if (kcb->kprobe_status == KPROBE_REENTER) { 877 restore_previous_kprobe(kcb); 878 goto out; 879 } 880 reset_current_kprobe(); 881 out: 882 preempt_enable_no_resched(); 883 884 /* 885 * if somebody else is singlestepping across a probe point, flags 886 * will have TF set, in which case, continue the remaining processing 887 * of do_debug, as if this is not a probe hit. 888 */ 889 if (regs->flags & X86_EFLAGS_TF) 890 return 0; 891 892 return 1; 893 } 894 895 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 896 { 897 struct kprobe *cur = kprobe_running(); 898 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 899 900 switch (kcb->kprobe_status) { 901 case KPROBE_HIT_SS: 902 case KPROBE_REENTER: 903 /* 904 * We are here because the instruction being single 905 * stepped caused a page fault. We reset the current 906 * kprobe and the ip points back to the probe address 907 * and allow the page fault handler to continue as a 908 * normal page fault. 909 */ 910 regs->ip = (unsigned long)cur->addr; 911 regs->flags |= kcb->kprobe_old_flags; 912 if (kcb->kprobe_status == KPROBE_REENTER) 913 restore_previous_kprobe(kcb); 914 else 915 reset_current_kprobe(); 916 preempt_enable_no_resched(); 917 break; 918 case KPROBE_HIT_ACTIVE: 919 case KPROBE_HIT_SSDONE: 920 /* 921 * We increment the nmissed count for accounting, 922 * we can also use npre/npostfault count for accounting 923 * these specific fault cases. 924 */ 925 kprobes_inc_nmissed_count(cur); 926 927 /* 928 * We come here because instructions in the pre/post 929 * handler caused the page_fault, this could happen 930 * if handler tries to access user space by 931 * copy_from_user(), get_user() etc. Let the 932 * user-specified handler try to fix it first. 933 */ 934 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 935 return 1; 936 937 /* 938 * In case the user-specified fault handler returned 939 * zero, try to fix up. 940 */ 941 if (fixup_exception(regs)) 942 return 1; 943 944 /* 945 * fixup routine could not handle it, 946 * Let do_page_fault() fix it. 947 */ 948 break; 949 default: 950 break; 951 } 952 return 0; 953 } 954 955 /* 956 * Wrapper routine for handling exceptions. 957 */ 958 int __kprobes 959 kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) 960 { 961 struct die_args *args = data; 962 int ret = NOTIFY_DONE; 963 964 if (args->regs && user_mode_vm(args->regs)) 965 return ret; 966 967 switch (val) { 968 case DIE_INT3: 969 if (kprobe_handler(args->regs)) 970 ret = NOTIFY_STOP; 971 break; 972 case DIE_DEBUG: 973 if (post_kprobe_handler(args->regs)) { 974 /* 975 * Reset the BS bit in dr6 (pointed by args->err) to 976 * denote completion of processing 977 */ 978 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP; 979 ret = NOTIFY_STOP; 980 } 981 break; 982 case DIE_GPF: 983 /* 984 * To be potentially processing a kprobe fault and to 985 * trust the result from kprobe_running(), we have 986 * be non-preemptible. 987 */ 988 if (!preemptible() && kprobe_running() && 989 kprobe_fault_handler(args->regs, args->trapnr)) 990 ret = NOTIFY_STOP; 991 break; 992 default: 993 break; 994 } 995 return ret; 996 } 997 998 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 999 { 1000 struct jprobe *jp = container_of(p, struct jprobe, kp); 1001 unsigned long addr; 1002 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1003 1004 kcb->jprobe_saved_regs = *regs; 1005 kcb->jprobe_saved_sp = stack_addr(regs); 1006 addr = (unsigned long)(kcb->jprobe_saved_sp); 1007 1008 /* 1009 * As Linus pointed out, gcc assumes that the callee 1010 * owns the argument space and could overwrite it, e.g. 1011 * tailcall optimization. So, to be absolutely safe 1012 * we also save and restore enough stack bytes to cover 1013 * the argument area. 1014 */ 1015 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1016 MIN_STACK_SIZE(addr)); 1017 regs->flags &= ~X86_EFLAGS_IF; 1018 trace_hardirqs_off(); 1019 regs->ip = (unsigned long)(jp->entry); 1020 return 1; 1021 } 1022 1023 void __kprobes jprobe_return(void) 1024 { 1025 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1026 1027 asm volatile ( 1028 #ifdef CONFIG_X86_64 1029 " xchg %%rbx,%%rsp \n" 1030 #else 1031 " xchgl %%ebx,%%esp \n" 1032 #endif 1033 " int3 \n" 1034 " .globl jprobe_return_end\n" 1035 " jprobe_return_end: \n" 1036 " nop \n"::"b" 1037 (kcb->jprobe_saved_sp):"memory"); 1038 } 1039 1040 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1041 { 1042 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1043 u8 *addr = (u8 *) (regs->ip - 1); 1044 struct jprobe *jp = container_of(p, struct jprobe, kp); 1045 1046 if ((addr > (u8 *) jprobe_return) && 1047 (addr < (u8 *) jprobe_return_end)) { 1048 if (stack_addr(regs) != kcb->jprobe_saved_sp) { 1049 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1050 printk(KERN_ERR 1051 "current sp %p does not match saved sp %p\n", 1052 stack_addr(regs), kcb->jprobe_saved_sp); 1053 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1054 show_regs(saved_regs); 1055 printk(KERN_ERR "Current registers\n"); 1056 show_regs(regs); 1057 BUG(); 1058 } 1059 *regs = kcb->jprobe_saved_regs; 1060 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp), 1061 kcb->jprobes_stack, 1062 MIN_STACK_SIZE(kcb->jprobe_saved_sp)); 1063 preempt_enable_no_resched(); 1064 return 1; 1065 } 1066 return 0; 1067 } 1068 1069 int __init arch_init_kprobes(void) 1070 { 1071 return 0; 1072 } 1073 1074 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 1075 { 1076 return 0; 1077 } 1078