xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision d236d361)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 
56 #include <asm/text-patching.h>
57 #include <asm/cacheflush.h>
58 #include <asm/desc.h>
59 #include <asm/pgtable.h>
60 #include <linux/uaccess.h>
61 #include <asm/alternative.h>
62 #include <asm/insn.h>
63 #include <asm/debugreg.h>
64 #include <asm/set_memory.h>
65 
66 #include "common.h"
67 
68 void jprobe_return_end(void);
69 
70 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
71 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
72 
73 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
74 
75 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
76 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
77 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
78 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
79 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
80 	 << (row % 32))
81 	/*
82 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
83 	 * Groups, and some special opcodes can not boost.
84 	 * This is non-const and volatile to keep gcc from statically
85 	 * optimizing it out, as variable_test_bit makes gcc think only
86 	 * *(unsigned long*) is used.
87 	 */
88 static volatile u32 twobyte_is_boostable[256 / 32] = {
89 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
90 	/*      ----------------------------------------------          */
91 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
92 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
93 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
94 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
95 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
96 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
97 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
98 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
99 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
100 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
101 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
102 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
103 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
104 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
105 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
106 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
107 	/*      -----------------------------------------------         */
108 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
109 };
110 #undef W
111 
112 struct kretprobe_blackpoint kretprobe_blacklist[] = {
113 	{"__switch_to", }, /* This function switches only current task, but
114 			      doesn't switch kernel stack.*/
115 	{NULL, NULL}	/* Terminator */
116 };
117 
118 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
119 
120 static nokprobe_inline void
121 __synthesize_relative_insn(void *from, void *to, u8 op)
122 {
123 	struct __arch_relative_insn {
124 		u8 op;
125 		s32 raddr;
126 	} __packed *insn;
127 
128 	insn = (struct __arch_relative_insn *)from;
129 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
130 	insn->op = op;
131 }
132 
133 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
134 void synthesize_reljump(void *from, void *to)
135 {
136 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
137 }
138 NOKPROBE_SYMBOL(synthesize_reljump);
139 
140 /* Insert a call instruction at address 'from', which calls address 'to'.*/
141 void synthesize_relcall(void *from, void *to)
142 {
143 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
144 }
145 NOKPROBE_SYMBOL(synthesize_relcall);
146 
147 /*
148  * Skip the prefixes of the instruction.
149  */
150 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
151 {
152 	insn_attr_t attr;
153 
154 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
155 	while (inat_is_legacy_prefix(attr)) {
156 		insn++;
157 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
158 	}
159 #ifdef CONFIG_X86_64
160 	if (inat_is_rex_prefix(attr))
161 		insn++;
162 #endif
163 	return insn;
164 }
165 NOKPROBE_SYMBOL(skip_prefixes);
166 
167 /*
168  * Returns non-zero if INSN is boostable.
169  * RIP relative instructions are adjusted at copying time in 64 bits mode
170  */
171 int can_boost(struct insn *insn, void *addr)
172 {
173 	kprobe_opcode_t opcode;
174 
175 	if (search_exception_tables((unsigned long)addr))
176 		return 0;	/* Page fault may occur on this address. */
177 
178 	/* 2nd-byte opcode */
179 	if (insn->opcode.nbytes == 2)
180 		return test_bit(insn->opcode.bytes[1],
181 				(unsigned long *)twobyte_is_boostable);
182 
183 	if (insn->opcode.nbytes != 1)
184 		return 0;
185 
186 	/* Can't boost Address-size override prefix */
187 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
188 		return 0;
189 
190 	opcode = insn->opcode.bytes[0];
191 
192 	switch (opcode & 0xf0) {
193 	case 0x60:
194 		/* can't boost "bound" */
195 		return (opcode != 0x62);
196 	case 0x70:
197 		return 0; /* can't boost conditional jump */
198 	case 0x90:
199 		return opcode != 0x9a;	/* can't boost call far */
200 	case 0xc0:
201 		/* can't boost software-interruptions */
202 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
203 	case 0xd0:
204 		/* can boost AA* and XLAT */
205 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
206 	case 0xe0:
207 		/* can boost in/out and absolute jmps */
208 		return ((opcode & 0x04) || opcode == 0xea);
209 	case 0xf0:
210 		/* clear and set flags are boostable */
211 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
212 	default:
213 		/* CS override prefix and call are not boostable */
214 		return (opcode != 0x2e && opcode != 0x9a);
215 	}
216 }
217 
218 static unsigned long
219 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
220 {
221 	struct kprobe *kp;
222 	unsigned long faddr;
223 
224 	kp = get_kprobe((void *)addr);
225 	faddr = ftrace_location(addr);
226 	/*
227 	 * Addresses inside the ftrace location are refused by
228 	 * arch_check_ftrace_location(). Something went terribly wrong
229 	 * if such an address is checked here.
230 	 */
231 	if (WARN_ON(faddr && faddr != addr))
232 		return 0UL;
233 	/*
234 	 * Use the current code if it is not modified by Kprobe
235 	 * and it cannot be modified by ftrace.
236 	 */
237 	if (!kp && !faddr)
238 		return addr;
239 
240 	/*
241 	 * Basically, kp->ainsn.insn has an original instruction.
242 	 * However, RIP-relative instruction can not do single-stepping
243 	 * at different place, __copy_instruction() tweaks the displacement of
244 	 * that instruction. In that case, we can't recover the instruction
245 	 * from the kp->ainsn.insn.
246 	 *
247 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
248 	 * of the first byte of the probed instruction, which is overwritten
249 	 * by int3. And the instruction at kp->addr is not modified by kprobes
250 	 * except for the first byte, we can recover the original instruction
251 	 * from it and kp->opcode.
252 	 *
253 	 * In case of Kprobes using ftrace, we do not have a copy of
254 	 * the original instruction. In fact, the ftrace location might
255 	 * be modified at anytime and even could be in an inconsistent state.
256 	 * Fortunately, we know that the original code is the ideal 5-byte
257 	 * long NOP.
258 	 */
259 	if (probe_kernel_read(buf, (void *)addr,
260 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
261 		return 0UL;
262 
263 	if (faddr)
264 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
265 	else
266 		buf[0] = kp->opcode;
267 	return (unsigned long)buf;
268 }
269 
270 /*
271  * Recover the probed instruction at addr for further analysis.
272  * Caller must lock kprobes by kprobe_mutex, or disable preemption
273  * for preventing to release referencing kprobes.
274  * Returns zero if the instruction can not get recovered (or access failed).
275  */
276 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
277 {
278 	unsigned long __addr;
279 
280 	__addr = __recover_optprobed_insn(buf, addr);
281 	if (__addr != addr)
282 		return __addr;
283 
284 	return __recover_probed_insn(buf, addr);
285 }
286 
287 /* Check if paddr is at an instruction boundary */
288 static int can_probe(unsigned long paddr)
289 {
290 	unsigned long addr, __addr, offset = 0;
291 	struct insn insn;
292 	kprobe_opcode_t buf[MAX_INSN_SIZE];
293 
294 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
295 		return 0;
296 
297 	/* Decode instructions */
298 	addr = paddr - offset;
299 	while (addr < paddr) {
300 		/*
301 		 * Check if the instruction has been modified by another
302 		 * kprobe, in which case we replace the breakpoint by the
303 		 * original instruction in our buffer.
304 		 * Also, jump optimization will change the breakpoint to
305 		 * relative-jump. Since the relative-jump itself is
306 		 * normally used, we just go through if there is no kprobe.
307 		 */
308 		__addr = recover_probed_instruction(buf, addr);
309 		if (!__addr)
310 			return 0;
311 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
312 		insn_get_length(&insn);
313 
314 		/*
315 		 * Another debugging subsystem might insert this breakpoint.
316 		 * In that case, we can't recover it.
317 		 */
318 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
319 			return 0;
320 		addr += insn.length;
321 	}
322 
323 	return (addr == paddr);
324 }
325 
326 /*
327  * Returns non-zero if opcode modifies the interrupt flag.
328  */
329 static int is_IF_modifier(kprobe_opcode_t *insn)
330 {
331 	/* Skip prefixes */
332 	insn = skip_prefixes(insn);
333 
334 	switch (*insn) {
335 	case 0xfa:		/* cli */
336 	case 0xfb:		/* sti */
337 	case 0xcf:		/* iret/iretd */
338 	case 0x9d:		/* popf/popfd */
339 		return 1;
340 	}
341 
342 	return 0;
343 }
344 
345 /*
346  * Copy an instruction with recovering modified instruction by kprobes
347  * and adjust the displacement if the instruction uses the %rip-relative
348  * addressing mode.
349  * This returns the length of copied instruction, or 0 if it has an error.
350  */
351 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
352 {
353 	kprobe_opcode_t buf[MAX_INSN_SIZE];
354 	unsigned long recovered_insn =
355 		recover_probed_instruction(buf, (unsigned long)src);
356 
357 	if (!recovered_insn || !insn)
358 		return 0;
359 
360 	/* This can access kernel text if given address is not recovered */
361 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
362 		return 0;
363 
364 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
365 	insn_get_length(insn);
366 
367 	/* Another subsystem puts a breakpoint, failed to recover */
368 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
369 		return 0;
370 
371 #ifdef CONFIG_X86_64
372 	/* Only x86_64 has RIP relative instructions */
373 	if (insn_rip_relative(insn)) {
374 		s64 newdisp;
375 		u8 *disp;
376 		/*
377 		 * The copied instruction uses the %rip-relative addressing
378 		 * mode.  Adjust the displacement for the difference between
379 		 * the original location of this instruction and the location
380 		 * of the copy that will actually be run.  The tricky bit here
381 		 * is making sure that the sign extension happens correctly in
382 		 * this calculation, since we need a signed 32-bit result to
383 		 * be sign-extended to 64 bits when it's added to the %rip
384 		 * value and yield the same 64-bit result that the sign-
385 		 * extension of the original signed 32-bit displacement would
386 		 * have given.
387 		 */
388 		newdisp = (u8 *) src + (s64) insn->displacement.value
389 			  - (u8 *) dest;
390 		if ((s64) (s32) newdisp != newdisp) {
391 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
392 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n",
393 				src, dest, insn->displacement.value);
394 			return 0;
395 		}
396 		disp = (u8 *) dest + insn_offset_displacement(insn);
397 		*(s32 *) disp = (s32) newdisp;
398 	}
399 #endif
400 	return insn->length;
401 }
402 
403 /* Prepare reljump right after instruction to boost */
404 static void prepare_boost(struct kprobe *p, struct insn *insn)
405 {
406 	if (can_boost(insn, p->addr) &&
407 	    MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
408 		/*
409 		 * These instructions can be executed directly if it
410 		 * jumps back to correct address.
411 		 */
412 		synthesize_reljump(p->ainsn.insn + insn->length,
413 				   p->addr + insn->length);
414 		p->ainsn.boostable = true;
415 	} else {
416 		p->ainsn.boostable = false;
417 	}
418 }
419 
420 static int arch_copy_kprobe(struct kprobe *p)
421 {
422 	struct insn insn;
423 	int len;
424 
425 	set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
426 
427 	/* Copy an instruction with recovering if other optprobe modifies it.*/
428 	len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
429 	if (!len)
430 		return -EINVAL;
431 
432 	/*
433 	 * __copy_instruction can modify the displacement of the instruction,
434 	 * but it doesn't affect boostable check.
435 	 */
436 	prepare_boost(p, &insn);
437 
438 	set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
439 
440 	/* Check whether the instruction modifies Interrupt Flag or not */
441 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
442 
443 	/* Also, displacement change doesn't affect the first byte */
444 	p->opcode = p->ainsn.insn[0];
445 
446 	return 0;
447 }
448 
449 int arch_prepare_kprobe(struct kprobe *p)
450 {
451 	if (alternatives_text_reserved(p->addr, p->addr))
452 		return -EINVAL;
453 
454 	if (!can_probe((unsigned long)p->addr))
455 		return -EILSEQ;
456 	/* insn: must be on special executable page on x86. */
457 	p->ainsn.insn = get_insn_slot();
458 	if (!p->ainsn.insn)
459 		return -ENOMEM;
460 
461 	return arch_copy_kprobe(p);
462 }
463 
464 void arch_arm_kprobe(struct kprobe *p)
465 {
466 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
467 }
468 
469 void arch_disarm_kprobe(struct kprobe *p)
470 {
471 	text_poke(p->addr, &p->opcode, 1);
472 }
473 
474 void arch_remove_kprobe(struct kprobe *p)
475 {
476 	if (p->ainsn.insn) {
477 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
478 		p->ainsn.insn = NULL;
479 	}
480 }
481 
482 static nokprobe_inline void
483 save_previous_kprobe(struct kprobe_ctlblk *kcb)
484 {
485 	kcb->prev_kprobe.kp = kprobe_running();
486 	kcb->prev_kprobe.status = kcb->kprobe_status;
487 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
488 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
489 }
490 
491 static nokprobe_inline void
492 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
493 {
494 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
495 	kcb->kprobe_status = kcb->prev_kprobe.status;
496 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
497 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
498 }
499 
500 static nokprobe_inline void
501 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
502 		   struct kprobe_ctlblk *kcb)
503 {
504 	__this_cpu_write(current_kprobe, p);
505 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
506 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
507 	if (p->ainsn.if_modifier)
508 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
509 }
510 
511 static nokprobe_inline void clear_btf(void)
512 {
513 	if (test_thread_flag(TIF_BLOCKSTEP)) {
514 		unsigned long debugctl = get_debugctlmsr();
515 
516 		debugctl &= ~DEBUGCTLMSR_BTF;
517 		update_debugctlmsr(debugctl);
518 	}
519 }
520 
521 static nokprobe_inline void restore_btf(void)
522 {
523 	if (test_thread_flag(TIF_BLOCKSTEP)) {
524 		unsigned long debugctl = get_debugctlmsr();
525 
526 		debugctl |= DEBUGCTLMSR_BTF;
527 		update_debugctlmsr(debugctl);
528 	}
529 }
530 
531 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
532 {
533 	unsigned long *sara = stack_addr(regs);
534 
535 	ri->ret_addr = (kprobe_opcode_t *) *sara;
536 
537 	/* Replace the return addr with trampoline addr */
538 	*sara = (unsigned long) &kretprobe_trampoline;
539 }
540 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
541 
542 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
543 			     struct kprobe_ctlblk *kcb, int reenter)
544 {
545 	if (setup_detour_execution(p, regs, reenter))
546 		return;
547 
548 #if !defined(CONFIG_PREEMPT)
549 	if (p->ainsn.boostable && !p->post_handler) {
550 		/* Boost up -- we can execute copied instructions directly */
551 		if (!reenter)
552 			reset_current_kprobe();
553 		/*
554 		 * Reentering boosted probe doesn't reset current_kprobe,
555 		 * nor set current_kprobe, because it doesn't use single
556 		 * stepping.
557 		 */
558 		regs->ip = (unsigned long)p->ainsn.insn;
559 		preempt_enable_no_resched();
560 		return;
561 	}
562 #endif
563 	if (reenter) {
564 		save_previous_kprobe(kcb);
565 		set_current_kprobe(p, regs, kcb);
566 		kcb->kprobe_status = KPROBE_REENTER;
567 	} else
568 		kcb->kprobe_status = KPROBE_HIT_SS;
569 	/* Prepare real single stepping */
570 	clear_btf();
571 	regs->flags |= X86_EFLAGS_TF;
572 	regs->flags &= ~X86_EFLAGS_IF;
573 	/* single step inline if the instruction is an int3 */
574 	if (p->opcode == BREAKPOINT_INSTRUCTION)
575 		regs->ip = (unsigned long)p->addr;
576 	else
577 		regs->ip = (unsigned long)p->ainsn.insn;
578 }
579 NOKPROBE_SYMBOL(setup_singlestep);
580 
581 /*
582  * We have reentered the kprobe_handler(), since another probe was hit while
583  * within the handler. We save the original kprobes variables and just single
584  * step on the instruction of the new probe without calling any user handlers.
585  */
586 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
587 			  struct kprobe_ctlblk *kcb)
588 {
589 	switch (kcb->kprobe_status) {
590 	case KPROBE_HIT_SSDONE:
591 	case KPROBE_HIT_ACTIVE:
592 	case KPROBE_HIT_SS:
593 		kprobes_inc_nmissed_count(p);
594 		setup_singlestep(p, regs, kcb, 1);
595 		break;
596 	case KPROBE_REENTER:
597 		/* A probe has been hit in the codepath leading up to, or just
598 		 * after, single-stepping of a probed instruction. This entire
599 		 * codepath should strictly reside in .kprobes.text section.
600 		 * Raise a BUG or we'll continue in an endless reentering loop
601 		 * and eventually a stack overflow.
602 		 */
603 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
604 		       p->addr);
605 		dump_kprobe(p);
606 		BUG();
607 	default:
608 		/* impossible cases */
609 		WARN_ON(1);
610 		return 0;
611 	}
612 
613 	return 1;
614 }
615 NOKPROBE_SYMBOL(reenter_kprobe);
616 
617 /*
618  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
619  * remain disabled throughout this function.
620  */
621 int kprobe_int3_handler(struct pt_regs *regs)
622 {
623 	kprobe_opcode_t *addr;
624 	struct kprobe *p;
625 	struct kprobe_ctlblk *kcb;
626 
627 	if (user_mode(regs))
628 		return 0;
629 
630 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
631 	/*
632 	 * We don't want to be preempted for the entire
633 	 * duration of kprobe processing. We conditionally
634 	 * re-enable preemption at the end of this function,
635 	 * and also in reenter_kprobe() and setup_singlestep().
636 	 */
637 	preempt_disable();
638 
639 	kcb = get_kprobe_ctlblk();
640 	p = get_kprobe(addr);
641 
642 	if (p) {
643 		if (kprobe_running()) {
644 			if (reenter_kprobe(p, regs, kcb))
645 				return 1;
646 		} else {
647 			set_current_kprobe(p, regs, kcb);
648 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
649 
650 			/*
651 			 * If we have no pre-handler or it returned 0, we
652 			 * continue with normal processing.  If we have a
653 			 * pre-handler and it returned non-zero, it prepped
654 			 * for calling the break_handler below on re-entry
655 			 * for jprobe processing, so get out doing nothing
656 			 * more here.
657 			 */
658 			if (!p->pre_handler || !p->pre_handler(p, regs))
659 				setup_singlestep(p, regs, kcb, 0);
660 			return 1;
661 		}
662 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
663 		/*
664 		 * The breakpoint instruction was removed right
665 		 * after we hit it.  Another cpu has removed
666 		 * either a probepoint or a debugger breakpoint
667 		 * at this address.  In either case, no further
668 		 * handling of this interrupt is appropriate.
669 		 * Back up over the (now missing) int3 and run
670 		 * the original instruction.
671 		 */
672 		regs->ip = (unsigned long)addr;
673 		preempt_enable_no_resched();
674 		return 1;
675 	} else if (kprobe_running()) {
676 		p = __this_cpu_read(current_kprobe);
677 		if (p->break_handler && p->break_handler(p, regs)) {
678 			if (!skip_singlestep(p, regs, kcb))
679 				setup_singlestep(p, regs, kcb, 0);
680 			return 1;
681 		}
682 	} /* else: not a kprobe fault; let the kernel handle it */
683 
684 	preempt_enable_no_resched();
685 	return 0;
686 }
687 NOKPROBE_SYMBOL(kprobe_int3_handler);
688 
689 /*
690  * When a retprobed function returns, this code saves registers and
691  * calls trampoline_handler() runs, which calls the kretprobe's handler.
692  */
693 asm(
694 	".global kretprobe_trampoline\n"
695 	".type kretprobe_trampoline, @function\n"
696 	"kretprobe_trampoline:\n"
697 #ifdef CONFIG_X86_64
698 	/* We don't bother saving the ss register */
699 	"	pushq %rsp\n"
700 	"	pushfq\n"
701 	SAVE_REGS_STRING
702 	"	movq %rsp, %rdi\n"
703 	"	call trampoline_handler\n"
704 	/* Replace saved sp with true return address. */
705 	"	movq %rax, 152(%rsp)\n"
706 	RESTORE_REGS_STRING
707 	"	popfq\n"
708 #else
709 	"	pushf\n"
710 	SAVE_REGS_STRING
711 	"	movl %esp, %eax\n"
712 	"	call trampoline_handler\n"
713 	/* Move flags to cs */
714 	"	movl 56(%esp), %edx\n"
715 	"	movl %edx, 52(%esp)\n"
716 	/* Replace saved flags with true return address. */
717 	"	movl %eax, 56(%esp)\n"
718 	RESTORE_REGS_STRING
719 	"	popf\n"
720 #endif
721 	"	ret\n"
722 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
723 );
724 NOKPROBE_SYMBOL(kretprobe_trampoline);
725 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
726 
727 /*
728  * Called from kretprobe_trampoline
729  */
730 __visible __used void *trampoline_handler(struct pt_regs *regs)
731 {
732 	struct kretprobe_instance *ri = NULL;
733 	struct hlist_head *head, empty_rp;
734 	struct hlist_node *tmp;
735 	unsigned long flags, orig_ret_address = 0;
736 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737 	kprobe_opcode_t *correct_ret_addr = NULL;
738 
739 	INIT_HLIST_HEAD(&empty_rp);
740 	kretprobe_hash_lock(current, &head, &flags);
741 	/* fixup registers */
742 #ifdef CONFIG_X86_64
743 	regs->cs = __KERNEL_CS;
744 #else
745 	regs->cs = __KERNEL_CS | get_kernel_rpl();
746 	regs->gs = 0;
747 #endif
748 	regs->ip = trampoline_address;
749 	regs->orig_ax = ~0UL;
750 
751 	/*
752 	 * It is possible to have multiple instances associated with a given
753 	 * task either because multiple functions in the call path have
754 	 * return probes installed on them, and/or more than one
755 	 * return probe was registered for a target function.
756 	 *
757 	 * We can handle this because:
758 	 *     - instances are always pushed into the head of the list
759 	 *     - when multiple return probes are registered for the same
760 	 *	 function, the (chronologically) first instance's ret_addr
761 	 *	 will be the real return address, and all the rest will
762 	 *	 point to kretprobe_trampoline.
763 	 */
764 	hlist_for_each_entry(ri, head, hlist) {
765 		if (ri->task != current)
766 			/* another task is sharing our hash bucket */
767 			continue;
768 
769 		orig_ret_address = (unsigned long)ri->ret_addr;
770 
771 		if (orig_ret_address != trampoline_address)
772 			/*
773 			 * This is the real return address. Any other
774 			 * instances associated with this task are for
775 			 * other calls deeper on the call stack
776 			 */
777 			break;
778 	}
779 
780 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
781 
782 	correct_ret_addr = ri->ret_addr;
783 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
784 		if (ri->task != current)
785 			/* another task is sharing our hash bucket */
786 			continue;
787 
788 		orig_ret_address = (unsigned long)ri->ret_addr;
789 		if (ri->rp && ri->rp->handler) {
790 			__this_cpu_write(current_kprobe, &ri->rp->kp);
791 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
792 			ri->ret_addr = correct_ret_addr;
793 			ri->rp->handler(ri, regs);
794 			__this_cpu_write(current_kprobe, NULL);
795 		}
796 
797 		recycle_rp_inst(ri, &empty_rp);
798 
799 		if (orig_ret_address != trampoline_address)
800 			/*
801 			 * This is the real return address. Any other
802 			 * instances associated with this task are for
803 			 * other calls deeper on the call stack
804 			 */
805 			break;
806 	}
807 
808 	kretprobe_hash_unlock(current, &flags);
809 
810 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
811 		hlist_del(&ri->hlist);
812 		kfree(ri);
813 	}
814 	return (void *)orig_ret_address;
815 }
816 NOKPROBE_SYMBOL(trampoline_handler);
817 
818 /*
819  * Called after single-stepping.  p->addr is the address of the
820  * instruction whose first byte has been replaced by the "int 3"
821  * instruction.  To avoid the SMP problems that can occur when we
822  * temporarily put back the original opcode to single-step, we
823  * single-stepped a copy of the instruction.  The address of this
824  * copy is p->ainsn.insn.
825  *
826  * This function prepares to return from the post-single-step
827  * interrupt.  We have to fix up the stack as follows:
828  *
829  * 0) Except in the case of absolute or indirect jump or call instructions,
830  * the new ip is relative to the copied instruction.  We need to make
831  * it relative to the original instruction.
832  *
833  * 1) If the single-stepped instruction was pushfl, then the TF and IF
834  * flags are set in the just-pushed flags, and may need to be cleared.
835  *
836  * 2) If the single-stepped instruction was a call, the return address
837  * that is atop the stack is the address following the copied instruction.
838  * We need to make it the address following the original instruction.
839  *
840  * If this is the first time we've single-stepped the instruction at
841  * this probepoint, and the instruction is boostable, boost it: add a
842  * jump instruction after the copied instruction, that jumps to the next
843  * instruction after the probepoint.
844  */
845 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
846 			     struct kprobe_ctlblk *kcb)
847 {
848 	unsigned long *tos = stack_addr(regs);
849 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
850 	unsigned long orig_ip = (unsigned long)p->addr;
851 	kprobe_opcode_t *insn = p->ainsn.insn;
852 
853 	/* Skip prefixes */
854 	insn = skip_prefixes(insn);
855 
856 	regs->flags &= ~X86_EFLAGS_TF;
857 	switch (*insn) {
858 	case 0x9c:	/* pushfl */
859 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
860 		*tos |= kcb->kprobe_old_flags;
861 		break;
862 	case 0xc2:	/* iret/ret/lret */
863 	case 0xc3:
864 	case 0xca:
865 	case 0xcb:
866 	case 0xcf:
867 	case 0xea:	/* jmp absolute -- ip is correct */
868 		/* ip is already adjusted, no more changes required */
869 		p->ainsn.boostable = true;
870 		goto no_change;
871 	case 0xe8:	/* call relative - Fix return addr */
872 		*tos = orig_ip + (*tos - copy_ip);
873 		break;
874 #ifdef CONFIG_X86_32
875 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
876 		*tos = orig_ip + (*tos - copy_ip);
877 		goto no_change;
878 #endif
879 	case 0xff:
880 		if ((insn[1] & 0x30) == 0x10) {
881 			/*
882 			 * call absolute, indirect
883 			 * Fix return addr; ip is correct.
884 			 * But this is not boostable
885 			 */
886 			*tos = orig_ip + (*tos - copy_ip);
887 			goto no_change;
888 		} else if (((insn[1] & 0x31) == 0x20) ||
889 			   ((insn[1] & 0x31) == 0x21)) {
890 			/*
891 			 * jmp near and far, absolute indirect
892 			 * ip is correct. And this is boostable
893 			 */
894 			p->ainsn.boostable = true;
895 			goto no_change;
896 		}
897 	default:
898 		break;
899 	}
900 
901 	regs->ip += orig_ip - copy_ip;
902 
903 no_change:
904 	restore_btf();
905 }
906 NOKPROBE_SYMBOL(resume_execution);
907 
908 /*
909  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
910  * remain disabled throughout this function.
911  */
912 int kprobe_debug_handler(struct pt_regs *regs)
913 {
914 	struct kprobe *cur = kprobe_running();
915 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
916 
917 	if (!cur)
918 		return 0;
919 
920 	resume_execution(cur, regs, kcb);
921 	regs->flags |= kcb->kprobe_saved_flags;
922 
923 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
924 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
925 		cur->post_handler(cur, regs, 0);
926 	}
927 
928 	/* Restore back the original saved kprobes variables and continue. */
929 	if (kcb->kprobe_status == KPROBE_REENTER) {
930 		restore_previous_kprobe(kcb);
931 		goto out;
932 	}
933 	reset_current_kprobe();
934 out:
935 	preempt_enable_no_resched();
936 
937 	/*
938 	 * if somebody else is singlestepping across a probe point, flags
939 	 * will have TF set, in which case, continue the remaining processing
940 	 * of do_debug, as if this is not a probe hit.
941 	 */
942 	if (regs->flags & X86_EFLAGS_TF)
943 		return 0;
944 
945 	return 1;
946 }
947 NOKPROBE_SYMBOL(kprobe_debug_handler);
948 
949 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
950 {
951 	struct kprobe *cur = kprobe_running();
952 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
953 
954 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
955 		/* This must happen on single-stepping */
956 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
957 			kcb->kprobe_status != KPROBE_REENTER);
958 		/*
959 		 * We are here because the instruction being single
960 		 * stepped caused a page fault. We reset the current
961 		 * kprobe and the ip points back to the probe address
962 		 * and allow the page fault handler to continue as a
963 		 * normal page fault.
964 		 */
965 		regs->ip = (unsigned long)cur->addr;
966 		/*
967 		 * Trap flag (TF) has been set here because this fault
968 		 * happened where the single stepping will be done.
969 		 * So clear it by resetting the current kprobe:
970 		 */
971 		regs->flags &= ~X86_EFLAGS_TF;
972 
973 		/*
974 		 * If the TF flag was set before the kprobe hit,
975 		 * don't touch it:
976 		 */
977 		regs->flags |= kcb->kprobe_old_flags;
978 
979 		if (kcb->kprobe_status == KPROBE_REENTER)
980 			restore_previous_kprobe(kcb);
981 		else
982 			reset_current_kprobe();
983 		preempt_enable_no_resched();
984 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
985 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
986 		/*
987 		 * We increment the nmissed count for accounting,
988 		 * we can also use npre/npostfault count for accounting
989 		 * these specific fault cases.
990 		 */
991 		kprobes_inc_nmissed_count(cur);
992 
993 		/*
994 		 * We come here because instructions in the pre/post
995 		 * handler caused the page_fault, this could happen
996 		 * if handler tries to access user space by
997 		 * copy_from_user(), get_user() etc. Let the
998 		 * user-specified handler try to fix it first.
999 		 */
1000 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1001 			return 1;
1002 
1003 		/*
1004 		 * In case the user-specified fault handler returned
1005 		 * zero, try to fix up.
1006 		 */
1007 		if (fixup_exception(regs, trapnr))
1008 			return 1;
1009 
1010 		/*
1011 		 * fixup routine could not handle it,
1012 		 * Let do_page_fault() fix it.
1013 		 */
1014 	}
1015 
1016 	return 0;
1017 }
1018 NOKPROBE_SYMBOL(kprobe_fault_handler);
1019 
1020 /*
1021  * Wrapper routine for handling exceptions.
1022  */
1023 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1024 			     void *data)
1025 {
1026 	struct die_args *args = data;
1027 	int ret = NOTIFY_DONE;
1028 
1029 	if (args->regs && user_mode(args->regs))
1030 		return ret;
1031 
1032 	if (val == DIE_GPF) {
1033 		/*
1034 		 * To be potentially processing a kprobe fault and to
1035 		 * trust the result from kprobe_running(), we have
1036 		 * be non-preemptible.
1037 		 */
1038 		if (!preemptible() && kprobe_running() &&
1039 		    kprobe_fault_handler(args->regs, args->trapnr))
1040 			ret = NOTIFY_STOP;
1041 	}
1042 	return ret;
1043 }
1044 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1045 
1046 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047 {
1048 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1049 	unsigned long addr;
1050 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1051 
1052 	kcb->jprobe_saved_regs = *regs;
1053 	kcb->jprobe_saved_sp = stack_addr(regs);
1054 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1055 
1056 	/*
1057 	 * As Linus pointed out, gcc assumes that the callee
1058 	 * owns the argument space and could overwrite it, e.g.
1059 	 * tailcall optimization. So, to be absolutely safe
1060 	 * we also save and restore enough stack bytes to cover
1061 	 * the argument area.
1062 	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1063 	 * raw stack chunk with redzones:
1064 	 */
1065 	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1066 	regs->flags &= ~X86_EFLAGS_IF;
1067 	trace_hardirqs_off();
1068 	regs->ip = (unsigned long)(jp->entry);
1069 
1070 	/*
1071 	 * jprobes use jprobe_return() which skips the normal return
1072 	 * path of the function, and this messes up the accounting of the
1073 	 * function graph tracer to get messed up.
1074 	 *
1075 	 * Pause function graph tracing while performing the jprobe function.
1076 	 */
1077 	pause_graph_tracing();
1078 	return 1;
1079 }
1080 NOKPROBE_SYMBOL(setjmp_pre_handler);
1081 
1082 void jprobe_return(void)
1083 {
1084 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1085 
1086 	/* Unpoison stack redzones in the frames we are going to jump over. */
1087 	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1088 
1089 	asm volatile (
1090 #ifdef CONFIG_X86_64
1091 			"       xchg   %%rbx,%%rsp	\n"
1092 #else
1093 			"       xchgl   %%ebx,%%esp	\n"
1094 #endif
1095 			"       int3			\n"
1096 			"       .globl jprobe_return_end\n"
1097 			"       jprobe_return_end:	\n"
1098 			"       nop			\n"::"b"
1099 			(kcb->jprobe_saved_sp):"memory");
1100 }
1101 NOKPROBE_SYMBOL(jprobe_return);
1102 NOKPROBE_SYMBOL(jprobe_return_end);
1103 
1104 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1105 {
1106 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1107 	u8 *addr = (u8 *) (regs->ip - 1);
1108 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1109 	void *saved_sp = kcb->jprobe_saved_sp;
1110 
1111 	if ((addr > (u8 *) jprobe_return) &&
1112 	    (addr < (u8 *) jprobe_return_end)) {
1113 		if (stack_addr(regs) != saved_sp) {
1114 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1115 			printk(KERN_ERR
1116 			       "current sp %p does not match saved sp %p\n",
1117 			       stack_addr(regs), saved_sp);
1118 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1119 			show_regs(saved_regs);
1120 			printk(KERN_ERR "Current registers\n");
1121 			show_regs(regs);
1122 			BUG();
1123 		}
1124 		/* It's OK to start function graph tracing again */
1125 		unpause_graph_tracing();
1126 		*regs = kcb->jprobe_saved_regs;
1127 		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1128 		preempt_enable_no_resched();
1129 		return 1;
1130 	}
1131 	return 0;
1132 }
1133 NOKPROBE_SYMBOL(longjmp_break_handler);
1134 
1135 bool arch_within_kprobe_blacklist(unsigned long addr)
1136 {
1137 	return  (addr >= (unsigned long)__kprobes_text_start &&
1138 		 addr < (unsigned long)__kprobes_text_end) ||
1139 		(addr >= (unsigned long)__entry_text_start &&
1140 		 addr < (unsigned long)__entry_text_end);
1141 }
1142 
1143 int __init arch_init_kprobes(void)
1144 {
1145 	return 0;
1146 }
1147 
1148 int arch_trampoline_kprobe(struct kprobe *p)
1149 {
1150 	return 0;
1151 }
1152