1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 56 #include <asm/text-patching.h> 57 #include <asm/cacheflush.h> 58 #include <asm/desc.h> 59 #include <asm/pgtable.h> 60 #include <linux/uaccess.h> 61 #include <asm/alternative.h> 62 #include <asm/insn.h> 63 #include <asm/debugreg.h> 64 #include <asm/set_memory.h> 65 66 #include "common.h" 67 68 void jprobe_return_end(void); 69 70 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 71 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 72 73 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 74 75 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 76 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 77 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 78 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 79 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 80 << (row % 32)) 81 /* 82 * Undefined/reserved opcodes, conditional jump, Opcode Extension 83 * Groups, and some special opcodes can not boost. 84 * This is non-const and volatile to keep gcc from statically 85 * optimizing it out, as variable_test_bit makes gcc think only 86 * *(unsigned long*) is used. 87 */ 88 static volatile u32 twobyte_is_boostable[256 / 32] = { 89 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 90 /* ---------------------------------------------- */ 91 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 92 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 93 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 94 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 95 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 96 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 97 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 98 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 99 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 100 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 101 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 102 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 103 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 104 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 105 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 106 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 107 /* ----------------------------------------------- */ 108 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 109 }; 110 #undef W 111 112 struct kretprobe_blackpoint kretprobe_blacklist[] = { 113 {"__switch_to", }, /* This function switches only current task, but 114 doesn't switch kernel stack.*/ 115 {NULL, NULL} /* Terminator */ 116 }; 117 118 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 119 120 static nokprobe_inline void 121 __synthesize_relative_insn(void *from, void *to, u8 op) 122 { 123 struct __arch_relative_insn { 124 u8 op; 125 s32 raddr; 126 } __packed *insn; 127 128 insn = (struct __arch_relative_insn *)from; 129 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 130 insn->op = op; 131 } 132 133 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 134 void synthesize_reljump(void *from, void *to) 135 { 136 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 137 } 138 NOKPROBE_SYMBOL(synthesize_reljump); 139 140 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 141 void synthesize_relcall(void *from, void *to) 142 { 143 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 144 } 145 NOKPROBE_SYMBOL(synthesize_relcall); 146 147 /* 148 * Skip the prefixes of the instruction. 149 */ 150 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 151 { 152 insn_attr_t attr; 153 154 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 155 while (inat_is_legacy_prefix(attr)) { 156 insn++; 157 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 158 } 159 #ifdef CONFIG_X86_64 160 if (inat_is_rex_prefix(attr)) 161 insn++; 162 #endif 163 return insn; 164 } 165 NOKPROBE_SYMBOL(skip_prefixes); 166 167 /* 168 * Returns non-zero if INSN is boostable. 169 * RIP relative instructions are adjusted at copying time in 64 bits mode 170 */ 171 int can_boost(struct insn *insn, void *addr) 172 { 173 kprobe_opcode_t opcode; 174 175 if (search_exception_tables((unsigned long)addr)) 176 return 0; /* Page fault may occur on this address. */ 177 178 /* 2nd-byte opcode */ 179 if (insn->opcode.nbytes == 2) 180 return test_bit(insn->opcode.bytes[1], 181 (unsigned long *)twobyte_is_boostable); 182 183 if (insn->opcode.nbytes != 1) 184 return 0; 185 186 /* Can't boost Address-size override prefix */ 187 if (unlikely(inat_is_address_size_prefix(insn->attr))) 188 return 0; 189 190 opcode = insn->opcode.bytes[0]; 191 192 switch (opcode & 0xf0) { 193 case 0x60: 194 /* can't boost "bound" */ 195 return (opcode != 0x62); 196 case 0x70: 197 return 0; /* can't boost conditional jump */ 198 case 0x90: 199 return opcode != 0x9a; /* can't boost call far */ 200 case 0xc0: 201 /* can't boost software-interruptions */ 202 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 203 case 0xd0: 204 /* can boost AA* and XLAT */ 205 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 206 case 0xe0: 207 /* can boost in/out and absolute jmps */ 208 return ((opcode & 0x04) || opcode == 0xea); 209 case 0xf0: 210 /* clear and set flags are boostable */ 211 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 212 default: 213 /* CS override prefix and call are not boostable */ 214 return (opcode != 0x2e && opcode != 0x9a); 215 } 216 } 217 218 static unsigned long 219 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 220 { 221 struct kprobe *kp; 222 unsigned long faddr; 223 224 kp = get_kprobe((void *)addr); 225 faddr = ftrace_location(addr); 226 /* 227 * Addresses inside the ftrace location are refused by 228 * arch_check_ftrace_location(). Something went terribly wrong 229 * if such an address is checked here. 230 */ 231 if (WARN_ON(faddr && faddr != addr)) 232 return 0UL; 233 /* 234 * Use the current code if it is not modified by Kprobe 235 * and it cannot be modified by ftrace. 236 */ 237 if (!kp && !faddr) 238 return addr; 239 240 /* 241 * Basically, kp->ainsn.insn has an original instruction. 242 * However, RIP-relative instruction can not do single-stepping 243 * at different place, __copy_instruction() tweaks the displacement of 244 * that instruction. In that case, we can't recover the instruction 245 * from the kp->ainsn.insn. 246 * 247 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 248 * of the first byte of the probed instruction, which is overwritten 249 * by int3. And the instruction at kp->addr is not modified by kprobes 250 * except for the first byte, we can recover the original instruction 251 * from it and kp->opcode. 252 * 253 * In case of Kprobes using ftrace, we do not have a copy of 254 * the original instruction. In fact, the ftrace location might 255 * be modified at anytime and even could be in an inconsistent state. 256 * Fortunately, we know that the original code is the ideal 5-byte 257 * long NOP. 258 */ 259 if (probe_kernel_read(buf, (void *)addr, 260 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 261 return 0UL; 262 263 if (faddr) 264 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 265 else 266 buf[0] = kp->opcode; 267 return (unsigned long)buf; 268 } 269 270 /* 271 * Recover the probed instruction at addr for further analysis. 272 * Caller must lock kprobes by kprobe_mutex, or disable preemption 273 * for preventing to release referencing kprobes. 274 * Returns zero if the instruction can not get recovered (or access failed). 275 */ 276 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 277 { 278 unsigned long __addr; 279 280 __addr = __recover_optprobed_insn(buf, addr); 281 if (__addr != addr) 282 return __addr; 283 284 return __recover_probed_insn(buf, addr); 285 } 286 287 /* Check if paddr is at an instruction boundary */ 288 static int can_probe(unsigned long paddr) 289 { 290 unsigned long addr, __addr, offset = 0; 291 struct insn insn; 292 kprobe_opcode_t buf[MAX_INSN_SIZE]; 293 294 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 295 return 0; 296 297 /* Decode instructions */ 298 addr = paddr - offset; 299 while (addr < paddr) { 300 /* 301 * Check if the instruction has been modified by another 302 * kprobe, in which case we replace the breakpoint by the 303 * original instruction in our buffer. 304 * Also, jump optimization will change the breakpoint to 305 * relative-jump. Since the relative-jump itself is 306 * normally used, we just go through if there is no kprobe. 307 */ 308 __addr = recover_probed_instruction(buf, addr); 309 if (!__addr) 310 return 0; 311 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 312 insn_get_length(&insn); 313 314 /* 315 * Another debugging subsystem might insert this breakpoint. 316 * In that case, we can't recover it. 317 */ 318 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 319 return 0; 320 addr += insn.length; 321 } 322 323 return (addr == paddr); 324 } 325 326 /* 327 * Returns non-zero if opcode modifies the interrupt flag. 328 */ 329 static int is_IF_modifier(kprobe_opcode_t *insn) 330 { 331 /* Skip prefixes */ 332 insn = skip_prefixes(insn); 333 334 switch (*insn) { 335 case 0xfa: /* cli */ 336 case 0xfb: /* sti */ 337 case 0xcf: /* iret/iretd */ 338 case 0x9d: /* popf/popfd */ 339 return 1; 340 } 341 342 return 0; 343 } 344 345 /* 346 * Copy an instruction with recovering modified instruction by kprobes 347 * and adjust the displacement if the instruction uses the %rip-relative 348 * addressing mode. 349 * This returns the length of copied instruction, or 0 if it has an error. 350 */ 351 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn) 352 { 353 kprobe_opcode_t buf[MAX_INSN_SIZE]; 354 unsigned long recovered_insn = 355 recover_probed_instruction(buf, (unsigned long)src); 356 357 if (!recovered_insn || !insn) 358 return 0; 359 360 /* This can access kernel text if given address is not recovered */ 361 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 362 return 0; 363 364 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 365 insn_get_length(insn); 366 367 /* Another subsystem puts a breakpoint, failed to recover */ 368 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 369 return 0; 370 371 #ifdef CONFIG_X86_64 372 /* Only x86_64 has RIP relative instructions */ 373 if (insn_rip_relative(insn)) { 374 s64 newdisp; 375 u8 *disp; 376 /* 377 * The copied instruction uses the %rip-relative addressing 378 * mode. Adjust the displacement for the difference between 379 * the original location of this instruction and the location 380 * of the copy that will actually be run. The tricky bit here 381 * is making sure that the sign extension happens correctly in 382 * this calculation, since we need a signed 32-bit result to 383 * be sign-extended to 64 bits when it's added to the %rip 384 * value and yield the same 64-bit result that the sign- 385 * extension of the original signed 32-bit displacement would 386 * have given. 387 */ 388 newdisp = (u8 *) src + (s64) insn->displacement.value 389 - (u8 *) dest; 390 if ((s64) (s32) newdisp != newdisp) { 391 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 392 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", 393 src, dest, insn->displacement.value); 394 return 0; 395 } 396 disp = (u8 *) dest + insn_offset_displacement(insn); 397 *(s32 *) disp = (s32) newdisp; 398 } 399 #endif 400 return insn->length; 401 } 402 403 /* Prepare reljump right after instruction to boost */ 404 static void prepare_boost(struct kprobe *p, struct insn *insn) 405 { 406 if (can_boost(insn, p->addr) && 407 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) { 408 /* 409 * These instructions can be executed directly if it 410 * jumps back to correct address. 411 */ 412 synthesize_reljump(p->ainsn.insn + insn->length, 413 p->addr + insn->length); 414 p->ainsn.boostable = true; 415 } else { 416 p->ainsn.boostable = false; 417 } 418 } 419 420 static int arch_copy_kprobe(struct kprobe *p) 421 { 422 struct insn insn; 423 int len; 424 425 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 426 427 /* Copy an instruction with recovering if other optprobe modifies it.*/ 428 len = __copy_instruction(p->ainsn.insn, p->addr, &insn); 429 if (!len) 430 return -EINVAL; 431 432 /* 433 * __copy_instruction can modify the displacement of the instruction, 434 * but it doesn't affect boostable check. 435 */ 436 prepare_boost(p, &insn); 437 438 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 439 440 /* Check whether the instruction modifies Interrupt Flag or not */ 441 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 442 443 /* Also, displacement change doesn't affect the first byte */ 444 p->opcode = p->ainsn.insn[0]; 445 446 return 0; 447 } 448 449 int arch_prepare_kprobe(struct kprobe *p) 450 { 451 if (alternatives_text_reserved(p->addr, p->addr)) 452 return -EINVAL; 453 454 if (!can_probe((unsigned long)p->addr)) 455 return -EILSEQ; 456 /* insn: must be on special executable page on x86. */ 457 p->ainsn.insn = get_insn_slot(); 458 if (!p->ainsn.insn) 459 return -ENOMEM; 460 461 return arch_copy_kprobe(p); 462 } 463 464 void arch_arm_kprobe(struct kprobe *p) 465 { 466 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 467 } 468 469 void arch_disarm_kprobe(struct kprobe *p) 470 { 471 text_poke(p->addr, &p->opcode, 1); 472 } 473 474 void arch_remove_kprobe(struct kprobe *p) 475 { 476 if (p->ainsn.insn) { 477 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 478 p->ainsn.insn = NULL; 479 } 480 } 481 482 static nokprobe_inline void 483 save_previous_kprobe(struct kprobe_ctlblk *kcb) 484 { 485 kcb->prev_kprobe.kp = kprobe_running(); 486 kcb->prev_kprobe.status = kcb->kprobe_status; 487 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 488 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 489 } 490 491 static nokprobe_inline void 492 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 493 { 494 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 495 kcb->kprobe_status = kcb->prev_kprobe.status; 496 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 497 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 498 } 499 500 static nokprobe_inline void 501 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 502 struct kprobe_ctlblk *kcb) 503 { 504 __this_cpu_write(current_kprobe, p); 505 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 506 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 507 if (p->ainsn.if_modifier) 508 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 509 } 510 511 static nokprobe_inline void clear_btf(void) 512 { 513 if (test_thread_flag(TIF_BLOCKSTEP)) { 514 unsigned long debugctl = get_debugctlmsr(); 515 516 debugctl &= ~DEBUGCTLMSR_BTF; 517 update_debugctlmsr(debugctl); 518 } 519 } 520 521 static nokprobe_inline void restore_btf(void) 522 { 523 if (test_thread_flag(TIF_BLOCKSTEP)) { 524 unsigned long debugctl = get_debugctlmsr(); 525 526 debugctl |= DEBUGCTLMSR_BTF; 527 update_debugctlmsr(debugctl); 528 } 529 } 530 531 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 532 { 533 unsigned long *sara = stack_addr(regs); 534 535 ri->ret_addr = (kprobe_opcode_t *) *sara; 536 537 /* Replace the return addr with trampoline addr */ 538 *sara = (unsigned long) &kretprobe_trampoline; 539 } 540 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 541 542 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 543 struct kprobe_ctlblk *kcb, int reenter) 544 { 545 if (setup_detour_execution(p, regs, reenter)) 546 return; 547 548 #if !defined(CONFIG_PREEMPT) 549 if (p->ainsn.boostable && !p->post_handler) { 550 /* Boost up -- we can execute copied instructions directly */ 551 if (!reenter) 552 reset_current_kprobe(); 553 /* 554 * Reentering boosted probe doesn't reset current_kprobe, 555 * nor set current_kprobe, because it doesn't use single 556 * stepping. 557 */ 558 regs->ip = (unsigned long)p->ainsn.insn; 559 preempt_enable_no_resched(); 560 return; 561 } 562 #endif 563 if (reenter) { 564 save_previous_kprobe(kcb); 565 set_current_kprobe(p, regs, kcb); 566 kcb->kprobe_status = KPROBE_REENTER; 567 } else 568 kcb->kprobe_status = KPROBE_HIT_SS; 569 /* Prepare real single stepping */ 570 clear_btf(); 571 regs->flags |= X86_EFLAGS_TF; 572 regs->flags &= ~X86_EFLAGS_IF; 573 /* single step inline if the instruction is an int3 */ 574 if (p->opcode == BREAKPOINT_INSTRUCTION) 575 regs->ip = (unsigned long)p->addr; 576 else 577 regs->ip = (unsigned long)p->ainsn.insn; 578 } 579 NOKPROBE_SYMBOL(setup_singlestep); 580 581 /* 582 * We have reentered the kprobe_handler(), since another probe was hit while 583 * within the handler. We save the original kprobes variables and just single 584 * step on the instruction of the new probe without calling any user handlers. 585 */ 586 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 587 struct kprobe_ctlblk *kcb) 588 { 589 switch (kcb->kprobe_status) { 590 case KPROBE_HIT_SSDONE: 591 case KPROBE_HIT_ACTIVE: 592 case KPROBE_HIT_SS: 593 kprobes_inc_nmissed_count(p); 594 setup_singlestep(p, regs, kcb, 1); 595 break; 596 case KPROBE_REENTER: 597 /* A probe has been hit in the codepath leading up to, or just 598 * after, single-stepping of a probed instruction. This entire 599 * codepath should strictly reside in .kprobes.text section. 600 * Raise a BUG or we'll continue in an endless reentering loop 601 * and eventually a stack overflow. 602 */ 603 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 604 p->addr); 605 dump_kprobe(p); 606 BUG(); 607 default: 608 /* impossible cases */ 609 WARN_ON(1); 610 return 0; 611 } 612 613 return 1; 614 } 615 NOKPROBE_SYMBOL(reenter_kprobe); 616 617 /* 618 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 619 * remain disabled throughout this function. 620 */ 621 int kprobe_int3_handler(struct pt_regs *regs) 622 { 623 kprobe_opcode_t *addr; 624 struct kprobe *p; 625 struct kprobe_ctlblk *kcb; 626 627 if (user_mode(regs)) 628 return 0; 629 630 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 631 /* 632 * We don't want to be preempted for the entire 633 * duration of kprobe processing. We conditionally 634 * re-enable preemption at the end of this function, 635 * and also in reenter_kprobe() and setup_singlestep(). 636 */ 637 preempt_disable(); 638 639 kcb = get_kprobe_ctlblk(); 640 p = get_kprobe(addr); 641 642 if (p) { 643 if (kprobe_running()) { 644 if (reenter_kprobe(p, regs, kcb)) 645 return 1; 646 } else { 647 set_current_kprobe(p, regs, kcb); 648 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 649 650 /* 651 * If we have no pre-handler or it returned 0, we 652 * continue with normal processing. If we have a 653 * pre-handler and it returned non-zero, it prepped 654 * for calling the break_handler below on re-entry 655 * for jprobe processing, so get out doing nothing 656 * more here. 657 */ 658 if (!p->pre_handler || !p->pre_handler(p, regs)) 659 setup_singlestep(p, regs, kcb, 0); 660 return 1; 661 } 662 } else if (*addr != BREAKPOINT_INSTRUCTION) { 663 /* 664 * The breakpoint instruction was removed right 665 * after we hit it. Another cpu has removed 666 * either a probepoint or a debugger breakpoint 667 * at this address. In either case, no further 668 * handling of this interrupt is appropriate. 669 * Back up over the (now missing) int3 and run 670 * the original instruction. 671 */ 672 regs->ip = (unsigned long)addr; 673 preempt_enable_no_resched(); 674 return 1; 675 } else if (kprobe_running()) { 676 p = __this_cpu_read(current_kprobe); 677 if (p->break_handler && p->break_handler(p, regs)) { 678 if (!skip_singlestep(p, regs, kcb)) 679 setup_singlestep(p, regs, kcb, 0); 680 return 1; 681 } 682 } /* else: not a kprobe fault; let the kernel handle it */ 683 684 preempt_enable_no_resched(); 685 return 0; 686 } 687 NOKPROBE_SYMBOL(kprobe_int3_handler); 688 689 /* 690 * When a retprobed function returns, this code saves registers and 691 * calls trampoline_handler() runs, which calls the kretprobe's handler. 692 */ 693 asm( 694 ".global kretprobe_trampoline\n" 695 ".type kretprobe_trampoline, @function\n" 696 "kretprobe_trampoline:\n" 697 #ifdef CONFIG_X86_64 698 /* We don't bother saving the ss register */ 699 " pushq %rsp\n" 700 " pushfq\n" 701 SAVE_REGS_STRING 702 " movq %rsp, %rdi\n" 703 " call trampoline_handler\n" 704 /* Replace saved sp with true return address. */ 705 " movq %rax, 152(%rsp)\n" 706 RESTORE_REGS_STRING 707 " popfq\n" 708 #else 709 " pushf\n" 710 SAVE_REGS_STRING 711 " movl %esp, %eax\n" 712 " call trampoline_handler\n" 713 /* Move flags to cs */ 714 " movl 56(%esp), %edx\n" 715 " movl %edx, 52(%esp)\n" 716 /* Replace saved flags with true return address. */ 717 " movl %eax, 56(%esp)\n" 718 RESTORE_REGS_STRING 719 " popf\n" 720 #endif 721 " ret\n" 722 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 723 ); 724 NOKPROBE_SYMBOL(kretprobe_trampoline); 725 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 726 727 /* 728 * Called from kretprobe_trampoline 729 */ 730 __visible __used void *trampoline_handler(struct pt_regs *regs) 731 { 732 struct kretprobe_instance *ri = NULL; 733 struct hlist_head *head, empty_rp; 734 struct hlist_node *tmp; 735 unsigned long flags, orig_ret_address = 0; 736 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 737 kprobe_opcode_t *correct_ret_addr = NULL; 738 739 INIT_HLIST_HEAD(&empty_rp); 740 kretprobe_hash_lock(current, &head, &flags); 741 /* fixup registers */ 742 #ifdef CONFIG_X86_64 743 regs->cs = __KERNEL_CS; 744 #else 745 regs->cs = __KERNEL_CS | get_kernel_rpl(); 746 regs->gs = 0; 747 #endif 748 regs->ip = trampoline_address; 749 regs->orig_ax = ~0UL; 750 751 /* 752 * It is possible to have multiple instances associated with a given 753 * task either because multiple functions in the call path have 754 * return probes installed on them, and/or more than one 755 * return probe was registered for a target function. 756 * 757 * We can handle this because: 758 * - instances are always pushed into the head of the list 759 * - when multiple return probes are registered for the same 760 * function, the (chronologically) first instance's ret_addr 761 * will be the real return address, and all the rest will 762 * point to kretprobe_trampoline. 763 */ 764 hlist_for_each_entry(ri, head, hlist) { 765 if (ri->task != current) 766 /* another task is sharing our hash bucket */ 767 continue; 768 769 orig_ret_address = (unsigned long)ri->ret_addr; 770 771 if (orig_ret_address != trampoline_address) 772 /* 773 * This is the real return address. Any other 774 * instances associated with this task are for 775 * other calls deeper on the call stack 776 */ 777 break; 778 } 779 780 kretprobe_assert(ri, orig_ret_address, trampoline_address); 781 782 correct_ret_addr = ri->ret_addr; 783 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 784 if (ri->task != current) 785 /* another task is sharing our hash bucket */ 786 continue; 787 788 orig_ret_address = (unsigned long)ri->ret_addr; 789 if (ri->rp && ri->rp->handler) { 790 __this_cpu_write(current_kprobe, &ri->rp->kp); 791 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 792 ri->ret_addr = correct_ret_addr; 793 ri->rp->handler(ri, regs); 794 __this_cpu_write(current_kprobe, NULL); 795 } 796 797 recycle_rp_inst(ri, &empty_rp); 798 799 if (orig_ret_address != trampoline_address) 800 /* 801 * This is the real return address. Any other 802 * instances associated with this task are for 803 * other calls deeper on the call stack 804 */ 805 break; 806 } 807 808 kretprobe_hash_unlock(current, &flags); 809 810 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 811 hlist_del(&ri->hlist); 812 kfree(ri); 813 } 814 return (void *)orig_ret_address; 815 } 816 NOKPROBE_SYMBOL(trampoline_handler); 817 818 /* 819 * Called after single-stepping. p->addr is the address of the 820 * instruction whose first byte has been replaced by the "int 3" 821 * instruction. To avoid the SMP problems that can occur when we 822 * temporarily put back the original opcode to single-step, we 823 * single-stepped a copy of the instruction. The address of this 824 * copy is p->ainsn.insn. 825 * 826 * This function prepares to return from the post-single-step 827 * interrupt. We have to fix up the stack as follows: 828 * 829 * 0) Except in the case of absolute or indirect jump or call instructions, 830 * the new ip is relative to the copied instruction. We need to make 831 * it relative to the original instruction. 832 * 833 * 1) If the single-stepped instruction was pushfl, then the TF and IF 834 * flags are set in the just-pushed flags, and may need to be cleared. 835 * 836 * 2) If the single-stepped instruction was a call, the return address 837 * that is atop the stack is the address following the copied instruction. 838 * We need to make it the address following the original instruction. 839 * 840 * If this is the first time we've single-stepped the instruction at 841 * this probepoint, and the instruction is boostable, boost it: add a 842 * jump instruction after the copied instruction, that jumps to the next 843 * instruction after the probepoint. 844 */ 845 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 846 struct kprobe_ctlblk *kcb) 847 { 848 unsigned long *tos = stack_addr(regs); 849 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 850 unsigned long orig_ip = (unsigned long)p->addr; 851 kprobe_opcode_t *insn = p->ainsn.insn; 852 853 /* Skip prefixes */ 854 insn = skip_prefixes(insn); 855 856 regs->flags &= ~X86_EFLAGS_TF; 857 switch (*insn) { 858 case 0x9c: /* pushfl */ 859 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 860 *tos |= kcb->kprobe_old_flags; 861 break; 862 case 0xc2: /* iret/ret/lret */ 863 case 0xc3: 864 case 0xca: 865 case 0xcb: 866 case 0xcf: 867 case 0xea: /* jmp absolute -- ip is correct */ 868 /* ip is already adjusted, no more changes required */ 869 p->ainsn.boostable = true; 870 goto no_change; 871 case 0xe8: /* call relative - Fix return addr */ 872 *tos = orig_ip + (*tos - copy_ip); 873 break; 874 #ifdef CONFIG_X86_32 875 case 0x9a: /* call absolute -- same as call absolute, indirect */ 876 *tos = orig_ip + (*tos - copy_ip); 877 goto no_change; 878 #endif 879 case 0xff: 880 if ((insn[1] & 0x30) == 0x10) { 881 /* 882 * call absolute, indirect 883 * Fix return addr; ip is correct. 884 * But this is not boostable 885 */ 886 *tos = orig_ip + (*tos - copy_ip); 887 goto no_change; 888 } else if (((insn[1] & 0x31) == 0x20) || 889 ((insn[1] & 0x31) == 0x21)) { 890 /* 891 * jmp near and far, absolute indirect 892 * ip is correct. And this is boostable 893 */ 894 p->ainsn.boostable = true; 895 goto no_change; 896 } 897 default: 898 break; 899 } 900 901 regs->ip += orig_ip - copy_ip; 902 903 no_change: 904 restore_btf(); 905 } 906 NOKPROBE_SYMBOL(resume_execution); 907 908 /* 909 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 910 * remain disabled throughout this function. 911 */ 912 int kprobe_debug_handler(struct pt_regs *regs) 913 { 914 struct kprobe *cur = kprobe_running(); 915 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 916 917 if (!cur) 918 return 0; 919 920 resume_execution(cur, regs, kcb); 921 regs->flags |= kcb->kprobe_saved_flags; 922 923 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 924 kcb->kprobe_status = KPROBE_HIT_SSDONE; 925 cur->post_handler(cur, regs, 0); 926 } 927 928 /* Restore back the original saved kprobes variables and continue. */ 929 if (kcb->kprobe_status == KPROBE_REENTER) { 930 restore_previous_kprobe(kcb); 931 goto out; 932 } 933 reset_current_kprobe(); 934 out: 935 preempt_enable_no_resched(); 936 937 /* 938 * if somebody else is singlestepping across a probe point, flags 939 * will have TF set, in which case, continue the remaining processing 940 * of do_debug, as if this is not a probe hit. 941 */ 942 if (regs->flags & X86_EFLAGS_TF) 943 return 0; 944 945 return 1; 946 } 947 NOKPROBE_SYMBOL(kprobe_debug_handler); 948 949 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 950 { 951 struct kprobe *cur = kprobe_running(); 952 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 953 954 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 955 /* This must happen on single-stepping */ 956 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 957 kcb->kprobe_status != KPROBE_REENTER); 958 /* 959 * We are here because the instruction being single 960 * stepped caused a page fault. We reset the current 961 * kprobe and the ip points back to the probe address 962 * and allow the page fault handler to continue as a 963 * normal page fault. 964 */ 965 regs->ip = (unsigned long)cur->addr; 966 /* 967 * Trap flag (TF) has been set here because this fault 968 * happened where the single stepping will be done. 969 * So clear it by resetting the current kprobe: 970 */ 971 regs->flags &= ~X86_EFLAGS_TF; 972 973 /* 974 * If the TF flag was set before the kprobe hit, 975 * don't touch it: 976 */ 977 regs->flags |= kcb->kprobe_old_flags; 978 979 if (kcb->kprobe_status == KPROBE_REENTER) 980 restore_previous_kprobe(kcb); 981 else 982 reset_current_kprobe(); 983 preempt_enable_no_resched(); 984 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 985 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 986 /* 987 * We increment the nmissed count for accounting, 988 * we can also use npre/npostfault count for accounting 989 * these specific fault cases. 990 */ 991 kprobes_inc_nmissed_count(cur); 992 993 /* 994 * We come here because instructions in the pre/post 995 * handler caused the page_fault, this could happen 996 * if handler tries to access user space by 997 * copy_from_user(), get_user() etc. Let the 998 * user-specified handler try to fix it first. 999 */ 1000 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1001 return 1; 1002 1003 /* 1004 * In case the user-specified fault handler returned 1005 * zero, try to fix up. 1006 */ 1007 if (fixup_exception(regs, trapnr)) 1008 return 1; 1009 1010 /* 1011 * fixup routine could not handle it, 1012 * Let do_page_fault() fix it. 1013 */ 1014 } 1015 1016 return 0; 1017 } 1018 NOKPROBE_SYMBOL(kprobe_fault_handler); 1019 1020 /* 1021 * Wrapper routine for handling exceptions. 1022 */ 1023 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1024 void *data) 1025 { 1026 struct die_args *args = data; 1027 int ret = NOTIFY_DONE; 1028 1029 if (args->regs && user_mode(args->regs)) 1030 return ret; 1031 1032 if (val == DIE_GPF) { 1033 /* 1034 * To be potentially processing a kprobe fault and to 1035 * trust the result from kprobe_running(), we have 1036 * be non-preemptible. 1037 */ 1038 if (!preemptible() && kprobe_running() && 1039 kprobe_fault_handler(args->regs, args->trapnr)) 1040 ret = NOTIFY_STOP; 1041 } 1042 return ret; 1043 } 1044 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1045 1046 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1047 { 1048 struct jprobe *jp = container_of(p, struct jprobe, kp); 1049 unsigned long addr; 1050 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1051 1052 kcb->jprobe_saved_regs = *regs; 1053 kcb->jprobe_saved_sp = stack_addr(regs); 1054 addr = (unsigned long)(kcb->jprobe_saved_sp); 1055 1056 /* 1057 * As Linus pointed out, gcc assumes that the callee 1058 * owns the argument space and could overwrite it, e.g. 1059 * tailcall optimization. So, to be absolutely safe 1060 * we also save and restore enough stack bytes to cover 1061 * the argument area. 1062 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1063 * raw stack chunk with redzones: 1064 */ 1065 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1066 regs->flags &= ~X86_EFLAGS_IF; 1067 trace_hardirqs_off(); 1068 regs->ip = (unsigned long)(jp->entry); 1069 1070 /* 1071 * jprobes use jprobe_return() which skips the normal return 1072 * path of the function, and this messes up the accounting of the 1073 * function graph tracer to get messed up. 1074 * 1075 * Pause function graph tracing while performing the jprobe function. 1076 */ 1077 pause_graph_tracing(); 1078 return 1; 1079 } 1080 NOKPROBE_SYMBOL(setjmp_pre_handler); 1081 1082 void jprobe_return(void) 1083 { 1084 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1085 1086 /* Unpoison stack redzones in the frames we are going to jump over. */ 1087 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1088 1089 asm volatile ( 1090 #ifdef CONFIG_X86_64 1091 " xchg %%rbx,%%rsp \n" 1092 #else 1093 " xchgl %%ebx,%%esp \n" 1094 #endif 1095 " int3 \n" 1096 " .globl jprobe_return_end\n" 1097 " jprobe_return_end: \n" 1098 " nop \n"::"b" 1099 (kcb->jprobe_saved_sp):"memory"); 1100 } 1101 NOKPROBE_SYMBOL(jprobe_return); 1102 NOKPROBE_SYMBOL(jprobe_return_end); 1103 1104 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1105 { 1106 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1107 u8 *addr = (u8 *) (regs->ip - 1); 1108 struct jprobe *jp = container_of(p, struct jprobe, kp); 1109 void *saved_sp = kcb->jprobe_saved_sp; 1110 1111 if ((addr > (u8 *) jprobe_return) && 1112 (addr < (u8 *) jprobe_return_end)) { 1113 if (stack_addr(regs) != saved_sp) { 1114 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1115 printk(KERN_ERR 1116 "current sp %p does not match saved sp %p\n", 1117 stack_addr(regs), saved_sp); 1118 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1119 show_regs(saved_regs); 1120 printk(KERN_ERR "Current registers\n"); 1121 show_regs(regs); 1122 BUG(); 1123 } 1124 /* It's OK to start function graph tracing again */ 1125 unpause_graph_tracing(); 1126 *regs = kcb->jprobe_saved_regs; 1127 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1128 preempt_enable_no_resched(); 1129 return 1; 1130 } 1131 return 0; 1132 } 1133 NOKPROBE_SYMBOL(longjmp_break_handler); 1134 1135 bool arch_within_kprobe_blacklist(unsigned long addr) 1136 { 1137 return (addr >= (unsigned long)__kprobes_text_start && 1138 addr < (unsigned long)__kprobes_text_end) || 1139 (addr >= (unsigned long)__entry_text_start && 1140 addr < (unsigned long)__entry_text_end); 1141 } 1142 1143 int __init arch_init_kprobes(void) 1144 { 1145 return 0; 1146 } 1147 1148 int arch_trampoline_kprobe(struct kprobe *p) 1149 { 1150 return 0; 1151 } 1152