1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/ftrace.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/objtool.h> 44 #include <linux/vmalloc.h> 45 #include <linux/pgtable.h> 46 #include <linux/set_memory.h> 47 48 #include <asm/text-patching.h> 49 #include <asm/cacheflush.h> 50 #include <asm/desc.h> 51 #include <linux/uaccess.h> 52 #include <asm/alternative.h> 53 #include <asm/insn.h> 54 #include <asm/debugreg.h> 55 #include <asm/ibt.h> 56 57 #include "common.h" 58 59 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 60 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 61 62 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 63 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 64 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 65 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 66 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 67 << (row % 32)) 68 /* 69 * Undefined/reserved opcodes, conditional jump, Opcode Extension 70 * Groups, and some special opcodes can not boost. 71 * This is non-const and volatile to keep gcc from statically 72 * optimizing it out, as variable_test_bit makes gcc think only 73 * *(unsigned long*) is used. 74 */ 75 static volatile u32 twobyte_is_boostable[256 / 32] = { 76 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 77 /* ---------------------------------------------- */ 78 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 79 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 80 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 81 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 82 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 83 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 84 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 85 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 86 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 87 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 88 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 89 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 90 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 91 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 92 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 93 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 94 /* ----------------------------------------------- */ 95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 96 }; 97 #undef W 98 99 struct kretprobe_blackpoint kretprobe_blacklist[] = { 100 {"__switch_to", }, /* This function switches only current task, but 101 doesn't switch kernel stack.*/ 102 {NULL, NULL} /* Terminator */ 103 }; 104 105 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 106 107 static nokprobe_inline void 108 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 109 { 110 struct __arch_relative_insn { 111 u8 op; 112 s32 raddr; 113 } __packed *insn; 114 115 insn = (struct __arch_relative_insn *)dest; 116 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 117 insn->op = op; 118 } 119 120 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 121 void synthesize_reljump(void *dest, void *from, void *to) 122 { 123 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 124 } 125 NOKPROBE_SYMBOL(synthesize_reljump); 126 127 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 128 void synthesize_relcall(void *dest, void *from, void *to) 129 { 130 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 131 } 132 NOKPROBE_SYMBOL(synthesize_relcall); 133 134 /* 135 * Returns non-zero if INSN is boostable. 136 * RIP relative instructions are adjusted at copying time in 64 bits mode 137 */ 138 int can_boost(struct insn *insn, void *addr) 139 { 140 kprobe_opcode_t opcode; 141 insn_byte_t prefix; 142 int i; 143 144 if (search_exception_tables((unsigned long)addr)) 145 return 0; /* Page fault may occur on this address. */ 146 147 /* 2nd-byte opcode */ 148 if (insn->opcode.nbytes == 2) 149 return test_bit(insn->opcode.bytes[1], 150 (unsigned long *)twobyte_is_boostable); 151 152 if (insn->opcode.nbytes != 1) 153 return 0; 154 155 for_each_insn_prefix(insn, i, prefix) { 156 insn_attr_t attr; 157 158 attr = inat_get_opcode_attribute(prefix); 159 /* Can't boost Address-size override prefix and CS override prefix */ 160 if (prefix == 0x2e || inat_is_address_size_prefix(attr)) 161 return 0; 162 } 163 164 opcode = insn->opcode.bytes[0]; 165 166 switch (opcode) { 167 case 0x62: /* bound */ 168 case 0x70 ... 0x7f: /* Conditional jumps */ 169 case 0x9a: /* Call far */ 170 case 0xc0 ... 0xc1: /* Grp2 */ 171 case 0xcc ... 0xce: /* software exceptions */ 172 case 0xd0 ... 0xd3: /* Grp2 */ 173 case 0xd6: /* (UD) */ 174 case 0xd8 ... 0xdf: /* ESC */ 175 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ 176 case 0xe8 ... 0xe9: /* near Call, JMP */ 177 case 0xeb: /* Short JMP */ 178 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ 179 case 0xf6 ... 0xf7: /* Grp3 */ 180 case 0xfe: /* Grp4 */ 181 /* ... are not boostable */ 182 return 0; 183 case 0xff: /* Grp5 */ 184 /* Only indirect jmp is boostable */ 185 return X86_MODRM_REG(insn->modrm.bytes[0]) == 4; 186 default: 187 return 1; 188 } 189 } 190 191 static unsigned long 192 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 193 { 194 struct kprobe *kp; 195 bool faddr; 196 197 kp = get_kprobe((void *)addr); 198 faddr = ftrace_location(addr) == addr; 199 /* 200 * Use the current code if it is not modified by Kprobe 201 * and it cannot be modified by ftrace. 202 */ 203 if (!kp && !faddr) 204 return addr; 205 206 /* 207 * Basically, kp->ainsn.insn has an original instruction. 208 * However, RIP-relative instruction can not do single-stepping 209 * at different place, __copy_instruction() tweaks the displacement of 210 * that instruction. In that case, we can't recover the instruction 211 * from the kp->ainsn.insn. 212 * 213 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 214 * of the first byte of the probed instruction, which is overwritten 215 * by int3. And the instruction at kp->addr is not modified by kprobes 216 * except for the first byte, we can recover the original instruction 217 * from it and kp->opcode. 218 * 219 * In case of Kprobes using ftrace, we do not have a copy of 220 * the original instruction. In fact, the ftrace location might 221 * be modified at anytime and even could be in an inconsistent state. 222 * Fortunately, we know that the original code is the ideal 5-byte 223 * long NOP. 224 */ 225 if (copy_from_kernel_nofault(buf, (void *)addr, 226 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 227 return 0UL; 228 229 if (faddr) 230 memcpy(buf, x86_nops[5], 5); 231 else 232 buf[0] = kp->opcode; 233 return (unsigned long)buf; 234 } 235 236 /* 237 * Recover the probed instruction at addr for further analysis. 238 * Caller must lock kprobes by kprobe_mutex, or disable preemption 239 * for preventing to release referencing kprobes. 240 * Returns zero if the instruction can not get recovered (or access failed). 241 */ 242 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 243 { 244 unsigned long __addr; 245 246 __addr = __recover_optprobed_insn(buf, addr); 247 if (__addr != addr) 248 return __addr; 249 250 return __recover_probed_insn(buf, addr); 251 } 252 253 /* Check if paddr is at an instruction boundary */ 254 static int can_probe(unsigned long paddr) 255 { 256 unsigned long addr, __addr, offset = 0; 257 struct insn insn; 258 kprobe_opcode_t buf[MAX_INSN_SIZE]; 259 260 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 261 return 0; 262 263 /* Decode instructions */ 264 addr = paddr - offset; 265 while (addr < paddr) { 266 int ret; 267 268 /* 269 * Check if the instruction has been modified by another 270 * kprobe, in which case we replace the breakpoint by the 271 * original instruction in our buffer. 272 * Also, jump optimization will change the breakpoint to 273 * relative-jump. Since the relative-jump itself is 274 * normally used, we just go through if there is no kprobe. 275 */ 276 __addr = recover_probed_instruction(buf, addr); 277 if (!__addr) 278 return 0; 279 280 ret = insn_decode_kernel(&insn, (void *)__addr); 281 if (ret < 0) 282 return 0; 283 284 /* 285 * Another debugging subsystem might insert this breakpoint. 286 * In that case, we can't recover it. 287 */ 288 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 289 return 0; 290 addr += insn.length; 291 } 292 293 return (addr == paddr); 294 } 295 296 /* If x86 supports IBT (ENDBR) it must be skipped. */ 297 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset, 298 bool *on_func_entry) 299 { 300 if (is_endbr(*(u32 *)addr)) { 301 *on_func_entry = !offset || offset == 4; 302 if (*on_func_entry) 303 offset = 4; 304 305 } else { 306 *on_func_entry = !offset; 307 } 308 309 return (kprobe_opcode_t *)(addr + offset); 310 } 311 312 /* 313 * Copy an instruction with recovering modified instruction by kprobes 314 * and adjust the displacement if the instruction uses the %rip-relative 315 * addressing mode. Note that since @real will be the final place of copied 316 * instruction, displacement must be adjust by @real, not @dest. 317 * This returns the length of copied instruction, or 0 if it has an error. 318 */ 319 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 320 { 321 kprobe_opcode_t buf[MAX_INSN_SIZE]; 322 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); 323 int ret; 324 325 if (!recovered_insn || !insn) 326 return 0; 327 328 /* This can access kernel text if given address is not recovered */ 329 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 330 MAX_INSN_SIZE)) 331 return 0; 332 333 ret = insn_decode_kernel(insn, dest); 334 if (ret < 0) 335 return 0; 336 337 /* We can not probe force emulate prefixed instruction */ 338 if (insn_has_emulate_prefix(insn)) 339 return 0; 340 341 /* Another subsystem puts a breakpoint, failed to recover */ 342 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 343 return 0; 344 345 /* We should not singlestep on the exception masking instructions */ 346 if (insn_masking_exception(insn)) 347 return 0; 348 349 #ifdef CONFIG_X86_64 350 /* Only x86_64 has RIP relative instructions */ 351 if (insn_rip_relative(insn)) { 352 s64 newdisp; 353 u8 *disp; 354 /* 355 * The copied instruction uses the %rip-relative addressing 356 * mode. Adjust the displacement for the difference between 357 * the original location of this instruction and the location 358 * of the copy that will actually be run. The tricky bit here 359 * is making sure that the sign extension happens correctly in 360 * this calculation, since we need a signed 32-bit result to 361 * be sign-extended to 64 bits when it's added to the %rip 362 * value and yield the same 64-bit result that the sign- 363 * extension of the original signed 32-bit displacement would 364 * have given. 365 */ 366 newdisp = (u8 *) src + (s64) insn->displacement.value 367 - (u8 *) real; 368 if ((s64) (s32) newdisp != newdisp) { 369 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 370 return 0; 371 } 372 disp = (u8 *) dest + insn_offset_displacement(insn); 373 *(s32 *) disp = (s32) newdisp; 374 } 375 #endif 376 return insn->length; 377 } 378 379 /* Prepare reljump or int3 right after instruction */ 380 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, 381 struct insn *insn) 382 { 383 int len = insn->length; 384 385 if (!IS_ENABLED(CONFIG_PREEMPTION) && 386 !p->post_handler && can_boost(insn, p->addr) && 387 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 388 /* 389 * These instructions can be executed directly if it 390 * jumps back to correct address. 391 */ 392 synthesize_reljump(buf + len, p->ainsn.insn + len, 393 p->addr + insn->length); 394 len += JMP32_INSN_SIZE; 395 p->ainsn.boostable = 1; 396 } else { 397 /* Otherwise, put an int3 for trapping singlestep */ 398 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) 399 return -ENOSPC; 400 401 buf[len] = INT3_INSN_OPCODE; 402 len += INT3_INSN_SIZE; 403 } 404 405 return len; 406 } 407 408 /* Make page to RO mode when allocate it */ 409 void *alloc_insn_page(void) 410 { 411 void *page; 412 413 page = module_alloc(PAGE_SIZE); 414 if (!page) 415 return NULL; 416 417 /* 418 * TODO: Once additional kernel code protection mechanisms are set, ensure 419 * that the page was not maliciously altered and it is still zeroed. 420 */ 421 set_memory_rox((unsigned long)page, 1); 422 423 return page; 424 } 425 426 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ 427 428 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) 429 { 430 switch (p->ainsn.opcode) { 431 case 0xfa: /* cli */ 432 regs->flags &= ~(X86_EFLAGS_IF); 433 break; 434 case 0xfb: /* sti */ 435 regs->flags |= X86_EFLAGS_IF; 436 break; 437 case 0x9c: /* pushf */ 438 int3_emulate_push(regs, regs->flags); 439 break; 440 case 0x9d: /* popf */ 441 regs->flags = int3_emulate_pop(regs); 442 break; 443 } 444 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 445 } 446 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); 447 448 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) 449 { 450 int3_emulate_ret(regs); 451 } 452 NOKPROBE_SYMBOL(kprobe_emulate_ret); 453 454 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) 455 { 456 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 457 458 func += p->ainsn.rel32; 459 int3_emulate_call(regs, func); 460 } 461 NOKPROBE_SYMBOL(kprobe_emulate_call); 462 463 static nokprobe_inline 464 void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond) 465 { 466 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 467 468 if (cond) 469 ip += p->ainsn.rel32; 470 int3_emulate_jmp(regs, ip); 471 } 472 473 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) 474 { 475 __kprobe_emulate_jmp(p, regs, true); 476 } 477 NOKPROBE_SYMBOL(kprobe_emulate_jmp); 478 479 static const unsigned long jcc_mask[6] = { 480 [0] = X86_EFLAGS_OF, 481 [1] = X86_EFLAGS_CF, 482 [2] = X86_EFLAGS_ZF, 483 [3] = X86_EFLAGS_CF | X86_EFLAGS_ZF, 484 [4] = X86_EFLAGS_SF, 485 [5] = X86_EFLAGS_PF, 486 }; 487 488 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) 489 { 490 bool invert = p->ainsn.jcc.type & 1; 491 bool match; 492 493 if (p->ainsn.jcc.type < 0xc) { 494 match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1]; 495 } else { 496 match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^ 497 ((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT); 498 if (p->ainsn.jcc.type >= 0xe) 499 match = match || (regs->flags & X86_EFLAGS_ZF); 500 } 501 __kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert)); 502 } 503 NOKPROBE_SYMBOL(kprobe_emulate_jcc); 504 505 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) 506 { 507 bool match; 508 509 if (p->ainsn.loop.type != 3) { /* LOOP* */ 510 if (p->ainsn.loop.asize == 32) 511 match = ((*(u32 *)®s->cx)--) != 0; 512 #ifdef CONFIG_X86_64 513 else if (p->ainsn.loop.asize == 64) 514 match = ((*(u64 *)®s->cx)--) != 0; 515 #endif 516 else 517 match = ((*(u16 *)®s->cx)--) != 0; 518 } else { /* JCXZ */ 519 if (p->ainsn.loop.asize == 32) 520 match = *(u32 *)(®s->cx) == 0; 521 #ifdef CONFIG_X86_64 522 else if (p->ainsn.loop.asize == 64) 523 match = *(u64 *)(®s->cx) == 0; 524 #endif 525 else 526 match = *(u16 *)(®s->cx) == 0; 527 } 528 529 if (p->ainsn.loop.type == 0) /* LOOPNE */ 530 match = match && !(regs->flags & X86_EFLAGS_ZF); 531 else if (p->ainsn.loop.type == 1) /* LOOPE */ 532 match = match && (regs->flags & X86_EFLAGS_ZF); 533 534 __kprobe_emulate_jmp(p, regs, match); 535 } 536 NOKPROBE_SYMBOL(kprobe_emulate_loop); 537 538 static const int addrmode_regoffs[] = { 539 offsetof(struct pt_regs, ax), 540 offsetof(struct pt_regs, cx), 541 offsetof(struct pt_regs, dx), 542 offsetof(struct pt_regs, bx), 543 offsetof(struct pt_regs, sp), 544 offsetof(struct pt_regs, bp), 545 offsetof(struct pt_regs, si), 546 offsetof(struct pt_regs, di), 547 #ifdef CONFIG_X86_64 548 offsetof(struct pt_regs, r8), 549 offsetof(struct pt_regs, r9), 550 offsetof(struct pt_regs, r10), 551 offsetof(struct pt_regs, r11), 552 offsetof(struct pt_regs, r12), 553 offsetof(struct pt_regs, r13), 554 offsetof(struct pt_regs, r14), 555 offsetof(struct pt_regs, r15), 556 #endif 557 }; 558 559 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) 560 { 561 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 562 563 int3_emulate_call(regs, regs_get_register(regs, offs)); 564 } 565 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); 566 567 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) 568 { 569 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 570 571 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 572 } 573 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); 574 575 static int prepare_emulation(struct kprobe *p, struct insn *insn) 576 { 577 insn_byte_t opcode = insn->opcode.bytes[0]; 578 579 switch (opcode) { 580 case 0xfa: /* cli */ 581 case 0xfb: /* sti */ 582 case 0x9c: /* pushfl */ 583 case 0x9d: /* popf/popfd */ 584 /* 585 * IF modifiers must be emulated since it will enable interrupt while 586 * int3 single stepping. 587 */ 588 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; 589 p->ainsn.opcode = opcode; 590 break; 591 case 0xc2: /* ret/lret */ 592 case 0xc3: 593 case 0xca: 594 case 0xcb: 595 p->ainsn.emulate_op = kprobe_emulate_ret; 596 break; 597 case 0x9a: /* far call absolute -- segment is not supported */ 598 case 0xea: /* far jmp absolute -- segment is not supported */ 599 case 0xcc: /* int3 */ 600 case 0xcf: /* iret -- in-kernel IRET is not supported */ 601 return -EOPNOTSUPP; 602 break; 603 case 0xe8: /* near call relative */ 604 p->ainsn.emulate_op = kprobe_emulate_call; 605 if (insn->immediate.nbytes == 2) 606 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 607 else 608 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 609 break; 610 case 0xeb: /* short jump relative */ 611 case 0xe9: /* near jump relative */ 612 p->ainsn.emulate_op = kprobe_emulate_jmp; 613 if (insn->immediate.nbytes == 1) 614 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 615 else if (insn->immediate.nbytes == 2) 616 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 617 else 618 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 619 break; 620 case 0x70 ... 0x7f: 621 /* 1 byte conditional jump */ 622 p->ainsn.emulate_op = kprobe_emulate_jcc; 623 p->ainsn.jcc.type = opcode & 0xf; 624 p->ainsn.rel32 = *(char *)insn->immediate.bytes; 625 break; 626 case 0x0f: 627 opcode = insn->opcode.bytes[1]; 628 if ((opcode & 0xf0) == 0x80) { 629 /* 2 bytes Conditional Jump */ 630 p->ainsn.emulate_op = kprobe_emulate_jcc; 631 p->ainsn.jcc.type = opcode & 0xf; 632 if (insn->immediate.nbytes == 2) 633 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 634 else 635 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 636 } else if (opcode == 0x01 && 637 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && 638 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { 639 /* VM extensions - not supported */ 640 return -EOPNOTSUPP; 641 } 642 break; 643 case 0xe0: /* Loop NZ */ 644 case 0xe1: /* Loop */ 645 case 0xe2: /* Loop */ 646 case 0xe3: /* J*CXZ */ 647 p->ainsn.emulate_op = kprobe_emulate_loop; 648 p->ainsn.loop.type = opcode & 0x3; 649 p->ainsn.loop.asize = insn->addr_bytes * 8; 650 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 651 break; 652 case 0xff: 653 /* 654 * Since the 0xff is an extended group opcode, the instruction 655 * is determined by the MOD/RM byte. 656 */ 657 opcode = insn->modrm.bytes[0]; 658 if ((opcode & 0x30) == 0x10) { 659 if ((opcode & 0x8) == 0x8) 660 return -EOPNOTSUPP; /* far call */ 661 /* call absolute, indirect */ 662 p->ainsn.emulate_op = kprobe_emulate_call_indirect; 663 } else if ((opcode & 0x30) == 0x20) { 664 if ((opcode & 0x8) == 0x8) 665 return -EOPNOTSUPP; /* far jmp */ 666 /* jmp near absolute indirect */ 667 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; 668 } else 669 break; 670 671 if (insn->addr_bytes != sizeof(unsigned long)) 672 return -EOPNOTSUPP; /* Don't support different size */ 673 if (X86_MODRM_MOD(opcode) != 3) 674 return -EOPNOTSUPP; /* TODO: support memory addressing */ 675 676 p->ainsn.indirect.reg = X86_MODRM_RM(opcode); 677 #ifdef CONFIG_X86_64 678 if (X86_REX_B(insn->rex_prefix.value)) 679 p->ainsn.indirect.reg += 8; 680 #endif 681 break; 682 default: 683 break; 684 } 685 p->ainsn.size = insn->length; 686 687 return 0; 688 } 689 690 static int arch_copy_kprobe(struct kprobe *p) 691 { 692 struct insn insn; 693 kprobe_opcode_t buf[MAX_INSN_SIZE]; 694 int ret, len; 695 696 /* Copy an instruction with recovering if other optprobe modifies it.*/ 697 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 698 if (!len) 699 return -EINVAL; 700 701 /* Analyze the opcode and setup emulate functions */ 702 ret = prepare_emulation(p, &insn); 703 if (ret < 0) 704 return ret; 705 706 /* Add int3 for single-step or booster jmp */ 707 len = prepare_singlestep(buf, p, &insn); 708 if (len < 0) 709 return len; 710 711 /* Also, displacement change doesn't affect the first byte */ 712 p->opcode = buf[0]; 713 714 p->ainsn.tp_len = len; 715 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 716 717 /* OK, write back the instruction(s) into ROX insn buffer */ 718 text_poke(p->ainsn.insn, buf, len); 719 720 return 0; 721 } 722 723 int arch_prepare_kprobe(struct kprobe *p) 724 { 725 int ret; 726 727 if (alternatives_text_reserved(p->addr, p->addr)) 728 return -EINVAL; 729 730 if (!can_probe((unsigned long)p->addr)) 731 return -EILSEQ; 732 733 memset(&p->ainsn, 0, sizeof(p->ainsn)); 734 735 /* insn: must be on special executable page on x86. */ 736 p->ainsn.insn = get_insn_slot(); 737 if (!p->ainsn.insn) 738 return -ENOMEM; 739 740 ret = arch_copy_kprobe(p); 741 if (ret) { 742 free_insn_slot(p->ainsn.insn, 0); 743 p->ainsn.insn = NULL; 744 } 745 746 return ret; 747 } 748 749 void arch_arm_kprobe(struct kprobe *p) 750 { 751 u8 int3 = INT3_INSN_OPCODE; 752 753 text_poke(p->addr, &int3, 1); 754 text_poke_sync(); 755 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 756 } 757 758 void arch_disarm_kprobe(struct kprobe *p) 759 { 760 u8 int3 = INT3_INSN_OPCODE; 761 762 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 763 text_poke(p->addr, &p->opcode, 1); 764 text_poke_sync(); 765 } 766 767 void arch_remove_kprobe(struct kprobe *p) 768 { 769 if (p->ainsn.insn) { 770 /* Record the perf event before freeing the slot */ 771 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 772 p->ainsn.tp_len, NULL, 0); 773 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 774 p->ainsn.insn = NULL; 775 } 776 } 777 778 static nokprobe_inline void 779 save_previous_kprobe(struct kprobe_ctlblk *kcb) 780 { 781 kcb->prev_kprobe.kp = kprobe_running(); 782 kcb->prev_kprobe.status = kcb->kprobe_status; 783 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 784 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 785 } 786 787 static nokprobe_inline void 788 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 789 { 790 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 791 kcb->kprobe_status = kcb->prev_kprobe.status; 792 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 793 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 794 } 795 796 static nokprobe_inline void 797 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 798 struct kprobe_ctlblk *kcb) 799 { 800 __this_cpu_write(current_kprobe, p); 801 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 802 = (regs->flags & X86_EFLAGS_IF); 803 } 804 805 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, 806 struct kprobe_ctlblk *kcb) 807 { 808 /* Restore back the original saved kprobes variables and continue. */ 809 if (kcb->kprobe_status == KPROBE_REENTER) { 810 /* This will restore both kcb and current_kprobe */ 811 restore_previous_kprobe(kcb); 812 } else { 813 /* 814 * Always update the kcb status because 815 * reset_curent_kprobe() doesn't update kcb. 816 */ 817 kcb->kprobe_status = KPROBE_HIT_SSDONE; 818 if (cur->post_handler) 819 cur->post_handler(cur, regs, 0); 820 reset_current_kprobe(); 821 } 822 } 823 NOKPROBE_SYMBOL(kprobe_post_process); 824 825 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 826 struct kprobe_ctlblk *kcb, int reenter) 827 { 828 if (setup_detour_execution(p, regs, reenter)) 829 return; 830 831 #if !defined(CONFIG_PREEMPTION) 832 if (p->ainsn.boostable) { 833 /* Boost up -- we can execute copied instructions directly */ 834 if (!reenter) 835 reset_current_kprobe(); 836 /* 837 * Reentering boosted probe doesn't reset current_kprobe, 838 * nor set current_kprobe, because it doesn't use single 839 * stepping. 840 */ 841 regs->ip = (unsigned long)p->ainsn.insn; 842 return; 843 } 844 #endif 845 if (reenter) { 846 save_previous_kprobe(kcb); 847 set_current_kprobe(p, regs, kcb); 848 kcb->kprobe_status = KPROBE_REENTER; 849 } else 850 kcb->kprobe_status = KPROBE_HIT_SS; 851 852 if (p->ainsn.emulate_op) { 853 p->ainsn.emulate_op(p, regs); 854 kprobe_post_process(p, regs, kcb); 855 return; 856 } 857 858 /* Disable interrupt, and set ip register on trampoline */ 859 regs->flags &= ~X86_EFLAGS_IF; 860 regs->ip = (unsigned long)p->ainsn.insn; 861 } 862 NOKPROBE_SYMBOL(setup_singlestep); 863 864 /* 865 * Called after single-stepping. p->addr is the address of the 866 * instruction whose first byte has been replaced by the "int3" 867 * instruction. To avoid the SMP problems that can occur when we 868 * temporarily put back the original opcode to single-step, we 869 * single-stepped a copy of the instruction. The address of this 870 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again 871 * right after the copied instruction. 872 * Different from the trap single-step, "int3" single-step can not 873 * handle the instruction which changes the ip register, e.g. jmp, 874 * call, conditional jmp, and the instructions which changes the IF 875 * flags because interrupt must be disabled around the single-stepping. 876 * Such instructions are software emulated, but others are single-stepped 877 * using "int3". 878 * 879 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to 880 * be adjusted, so that we can resume execution on correct code. 881 */ 882 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, 883 struct kprobe_ctlblk *kcb) 884 { 885 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 886 unsigned long orig_ip = (unsigned long)p->addr; 887 888 /* Restore saved interrupt flag and ip register */ 889 regs->flags |= kcb->kprobe_saved_flags; 890 /* Note that regs->ip is executed int3 so must be a step back */ 891 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; 892 } 893 NOKPROBE_SYMBOL(resume_singlestep); 894 895 /* 896 * We have reentered the kprobe_handler(), since another probe was hit while 897 * within the handler. We save the original kprobes variables and just single 898 * step on the instruction of the new probe without calling any user handlers. 899 */ 900 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 901 struct kprobe_ctlblk *kcb) 902 { 903 switch (kcb->kprobe_status) { 904 case KPROBE_HIT_SSDONE: 905 case KPROBE_HIT_ACTIVE: 906 case KPROBE_HIT_SS: 907 kprobes_inc_nmissed_count(p); 908 setup_singlestep(p, regs, kcb, 1); 909 break; 910 case KPROBE_REENTER: 911 /* A probe has been hit in the codepath leading up to, or just 912 * after, single-stepping of a probed instruction. This entire 913 * codepath should strictly reside in .kprobes.text section. 914 * Raise a BUG or we'll continue in an endless reentering loop 915 * and eventually a stack overflow. 916 */ 917 pr_err("Unrecoverable kprobe detected.\n"); 918 dump_kprobe(p); 919 BUG(); 920 default: 921 /* impossible cases */ 922 WARN_ON(1); 923 return 0; 924 } 925 926 return 1; 927 } 928 NOKPROBE_SYMBOL(reenter_kprobe); 929 930 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) 931 { 932 return (kcb->kprobe_status == KPROBE_HIT_SS || 933 kcb->kprobe_status == KPROBE_REENTER); 934 } 935 936 /* 937 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 938 * remain disabled throughout this function. 939 */ 940 int kprobe_int3_handler(struct pt_regs *regs) 941 { 942 kprobe_opcode_t *addr; 943 struct kprobe *p; 944 struct kprobe_ctlblk *kcb; 945 946 if (user_mode(regs)) 947 return 0; 948 949 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 950 /* 951 * We don't want to be preempted for the entire duration of kprobe 952 * processing. Since int3 and debug trap disables irqs and we clear 953 * IF while singlestepping, it must be no preemptible. 954 */ 955 956 kcb = get_kprobe_ctlblk(); 957 p = get_kprobe(addr); 958 959 if (p) { 960 if (kprobe_running()) { 961 if (reenter_kprobe(p, regs, kcb)) 962 return 1; 963 } else { 964 set_current_kprobe(p, regs, kcb); 965 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 966 967 /* 968 * If we have no pre-handler or it returned 0, we 969 * continue with normal processing. If we have a 970 * pre-handler and it returned non-zero, that means 971 * user handler setup registers to exit to another 972 * instruction, we must skip the single stepping. 973 */ 974 if (!p->pre_handler || !p->pre_handler(p, regs)) 975 setup_singlestep(p, regs, kcb, 0); 976 else 977 reset_current_kprobe(); 978 return 1; 979 } 980 } else if (kprobe_is_ss(kcb)) { 981 p = kprobe_running(); 982 if ((unsigned long)p->ainsn.insn < regs->ip && 983 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { 984 /* Most provably this is the second int3 for singlestep */ 985 resume_singlestep(p, regs, kcb); 986 kprobe_post_process(p, regs, kcb); 987 return 1; 988 } 989 } 990 991 if (*addr != INT3_INSN_OPCODE) { 992 /* 993 * The breakpoint instruction was removed right 994 * after we hit it. Another cpu has removed 995 * either a probepoint or a debugger breakpoint 996 * at this address. In either case, no further 997 * handling of this interrupt is appropriate. 998 * Back up over the (now missing) int3 and run 999 * the original instruction. 1000 */ 1001 regs->ip = (unsigned long)addr; 1002 return 1; 1003 } /* else: not a kprobe fault; let the kernel handle it */ 1004 1005 return 0; 1006 } 1007 NOKPROBE_SYMBOL(kprobe_int3_handler); 1008 1009 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1010 { 1011 struct kprobe *cur = kprobe_running(); 1012 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1013 1014 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1015 /* This must happen on single-stepping */ 1016 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1017 kcb->kprobe_status != KPROBE_REENTER); 1018 /* 1019 * We are here because the instruction being single 1020 * stepped caused a page fault. We reset the current 1021 * kprobe and the ip points back to the probe address 1022 * and allow the page fault handler to continue as a 1023 * normal page fault. 1024 */ 1025 regs->ip = (unsigned long)cur->addr; 1026 1027 /* 1028 * If the IF flag was set before the kprobe hit, 1029 * don't touch it: 1030 */ 1031 regs->flags |= kcb->kprobe_old_flags; 1032 1033 if (kcb->kprobe_status == KPROBE_REENTER) 1034 restore_previous_kprobe(kcb); 1035 else 1036 reset_current_kprobe(); 1037 } 1038 1039 return 0; 1040 } 1041 NOKPROBE_SYMBOL(kprobe_fault_handler); 1042 1043 int __init arch_populate_kprobe_blacklist(void) 1044 { 1045 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1046 (unsigned long)__entry_text_end); 1047 } 1048 1049 int __init arch_init_kprobes(void) 1050 { 1051 return 0; 1052 } 1053 1054 int arch_trampoline_kprobe(struct kprobe *p) 1055 { 1056 return 0; 1057 } 1058