xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/extable.h>
37 #include <linux/kdebug.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ftrace.h>
40 #include <linux/frame.h>
41 #include <linux/kasan.h>
42 #include <linux/moduleloader.h>
43 
44 #include <asm/text-patching.h>
45 #include <asm/cacheflush.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <linux/uaccess.h>
49 #include <asm/alternative.h>
50 #include <asm/insn.h>
51 #include <asm/debugreg.h>
52 #include <asm/set_memory.h>
53 
54 #include "common.h"
55 
56 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
57 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
58 
59 #define stack_addr(regs) ((unsigned long *)regs->sp)
60 
61 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
62 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
63 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
64 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
65 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
66 	 << (row % 32))
67 	/*
68 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 	 * Groups, and some special opcodes can not boost.
70 	 * This is non-const and volatile to keep gcc from statically
71 	 * optimizing it out, as variable_test_bit makes gcc think only
72 	 * *(unsigned long*) is used.
73 	 */
74 static volatile u32 twobyte_is_boostable[256 / 32] = {
75 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
76 	/*      ----------------------------------------------          */
77 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
78 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
79 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
80 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
81 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
82 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
83 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
84 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
85 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
86 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
87 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
88 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
89 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
90 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
91 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
92 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
93 	/*      -----------------------------------------------         */
94 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
95 };
96 #undef W
97 
98 struct kretprobe_blackpoint kretprobe_blacklist[] = {
99 	{"__switch_to", }, /* This function switches only current task, but
100 			      doesn't switch kernel stack.*/
101 	{NULL, NULL}	/* Terminator */
102 };
103 
104 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
105 
106 static nokprobe_inline void
107 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
108 {
109 	struct __arch_relative_insn {
110 		u8 op;
111 		s32 raddr;
112 	} __packed *insn;
113 
114 	insn = (struct __arch_relative_insn *)dest;
115 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
116 	insn->op = op;
117 }
118 
119 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
120 void synthesize_reljump(void *dest, void *from, void *to)
121 {
122 	__synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
123 }
124 NOKPROBE_SYMBOL(synthesize_reljump);
125 
126 /* Insert a call instruction at address 'from', which calls address 'to'.*/
127 void synthesize_relcall(void *dest, void *from, void *to)
128 {
129 	__synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
130 }
131 NOKPROBE_SYMBOL(synthesize_relcall);
132 
133 /*
134  * Skip the prefixes of the instruction.
135  */
136 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
137 {
138 	insn_attr_t attr;
139 
140 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
141 	while (inat_is_legacy_prefix(attr)) {
142 		insn++;
143 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
144 	}
145 #ifdef CONFIG_X86_64
146 	if (inat_is_rex_prefix(attr))
147 		insn++;
148 #endif
149 	return insn;
150 }
151 NOKPROBE_SYMBOL(skip_prefixes);
152 
153 /*
154  * Returns non-zero if INSN is boostable.
155  * RIP relative instructions are adjusted at copying time in 64 bits mode
156  */
157 int can_boost(struct insn *insn, void *addr)
158 {
159 	kprobe_opcode_t opcode;
160 
161 	if (search_exception_tables((unsigned long)addr))
162 		return 0;	/* Page fault may occur on this address. */
163 
164 	/* 2nd-byte opcode */
165 	if (insn->opcode.nbytes == 2)
166 		return test_bit(insn->opcode.bytes[1],
167 				(unsigned long *)twobyte_is_boostable);
168 
169 	if (insn->opcode.nbytes != 1)
170 		return 0;
171 
172 	/* Can't boost Address-size override prefix */
173 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
174 		return 0;
175 
176 	opcode = insn->opcode.bytes[0];
177 
178 	switch (opcode & 0xf0) {
179 	case 0x60:
180 		/* can't boost "bound" */
181 		return (opcode != 0x62);
182 	case 0x70:
183 		return 0; /* can't boost conditional jump */
184 	case 0x90:
185 		return opcode != 0x9a;	/* can't boost call far */
186 	case 0xc0:
187 		/* can't boost software-interruptions */
188 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
189 	case 0xd0:
190 		/* can boost AA* and XLAT */
191 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
192 	case 0xe0:
193 		/* can boost in/out and absolute jmps */
194 		return ((opcode & 0x04) || opcode == 0xea);
195 	case 0xf0:
196 		/* clear and set flags are boostable */
197 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 	default:
199 		/* CS override prefix and call are not boostable */
200 		return (opcode != 0x2e && opcode != 0x9a);
201 	}
202 }
203 
204 static unsigned long
205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
206 {
207 	struct kprobe *kp;
208 	unsigned long faddr;
209 
210 	kp = get_kprobe((void *)addr);
211 	faddr = ftrace_location(addr);
212 	/*
213 	 * Addresses inside the ftrace location are refused by
214 	 * arch_check_ftrace_location(). Something went terribly wrong
215 	 * if such an address is checked here.
216 	 */
217 	if (WARN_ON(faddr && faddr != addr))
218 		return 0UL;
219 	/*
220 	 * Use the current code if it is not modified by Kprobe
221 	 * and it cannot be modified by ftrace.
222 	 */
223 	if (!kp && !faddr)
224 		return addr;
225 
226 	/*
227 	 * Basically, kp->ainsn.insn has an original instruction.
228 	 * However, RIP-relative instruction can not do single-stepping
229 	 * at different place, __copy_instruction() tweaks the displacement of
230 	 * that instruction. In that case, we can't recover the instruction
231 	 * from the kp->ainsn.insn.
232 	 *
233 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
234 	 * of the first byte of the probed instruction, which is overwritten
235 	 * by int3. And the instruction at kp->addr is not modified by kprobes
236 	 * except for the first byte, we can recover the original instruction
237 	 * from it and kp->opcode.
238 	 *
239 	 * In case of Kprobes using ftrace, we do not have a copy of
240 	 * the original instruction. In fact, the ftrace location might
241 	 * be modified at anytime and even could be in an inconsistent state.
242 	 * Fortunately, we know that the original code is the ideal 5-byte
243 	 * long NOP.
244 	 */
245 	if (probe_kernel_read(buf, (void *)addr,
246 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
247 		return 0UL;
248 
249 	if (faddr)
250 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
251 	else
252 		buf[0] = kp->opcode;
253 	return (unsigned long)buf;
254 }
255 
256 /*
257  * Recover the probed instruction at addr for further analysis.
258  * Caller must lock kprobes by kprobe_mutex, or disable preemption
259  * for preventing to release referencing kprobes.
260  * Returns zero if the instruction can not get recovered (or access failed).
261  */
262 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
263 {
264 	unsigned long __addr;
265 
266 	__addr = __recover_optprobed_insn(buf, addr);
267 	if (__addr != addr)
268 		return __addr;
269 
270 	return __recover_probed_insn(buf, addr);
271 }
272 
273 /* Check if paddr is at an instruction boundary */
274 static int can_probe(unsigned long paddr)
275 {
276 	unsigned long addr, __addr, offset = 0;
277 	struct insn insn;
278 	kprobe_opcode_t buf[MAX_INSN_SIZE];
279 
280 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
281 		return 0;
282 
283 	/* Decode instructions */
284 	addr = paddr - offset;
285 	while (addr < paddr) {
286 		/*
287 		 * Check if the instruction has been modified by another
288 		 * kprobe, in which case we replace the breakpoint by the
289 		 * original instruction in our buffer.
290 		 * Also, jump optimization will change the breakpoint to
291 		 * relative-jump. Since the relative-jump itself is
292 		 * normally used, we just go through if there is no kprobe.
293 		 */
294 		__addr = recover_probed_instruction(buf, addr);
295 		if (!__addr)
296 			return 0;
297 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
298 		insn_get_length(&insn);
299 
300 		/*
301 		 * Another debugging subsystem might insert this breakpoint.
302 		 * In that case, we can't recover it.
303 		 */
304 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
305 			return 0;
306 		addr += insn.length;
307 	}
308 
309 	return (addr == paddr);
310 }
311 
312 /*
313  * Returns non-zero if opcode modifies the interrupt flag.
314  */
315 static int is_IF_modifier(kprobe_opcode_t *insn)
316 {
317 	/* Skip prefixes */
318 	insn = skip_prefixes(insn);
319 
320 	switch (*insn) {
321 	case 0xfa:		/* cli */
322 	case 0xfb:		/* sti */
323 	case 0xcf:		/* iret/iretd */
324 	case 0x9d:		/* popf/popfd */
325 		return 1;
326 	}
327 
328 	return 0;
329 }
330 
331 /*
332  * Copy an instruction with recovering modified instruction by kprobes
333  * and adjust the displacement if the instruction uses the %rip-relative
334  * addressing mode. Note that since @real will be the final place of copied
335  * instruction, displacement must be adjust by @real, not @dest.
336  * This returns the length of copied instruction, or 0 if it has an error.
337  */
338 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
339 {
340 	kprobe_opcode_t buf[MAX_INSN_SIZE];
341 	unsigned long recovered_insn =
342 		recover_probed_instruction(buf, (unsigned long)src);
343 
344 	if (!recovered_insn || !insn)
345 		return 0;
346 
347 	/* This can access kernel text if given address is not recovered */
348 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
349 		return 0;
350 
351 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
352 	insn_get_length(insn);
353 
354 	/* Another subsystem puts a breakpoint, failed to recover */
355 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
356 		return 0;
357 
358 	/* We should not singlestep on the exception masking instructions */
359 	if (insn_masking_exception(insn))
360 		return 0;
361 
362 #ifdef CONFIG_X86_64
363 	/* Only x86_64 has RIP relative instructions */
364 	if (insn_rip_relative(insn)) {
365 		s64 newdisp;
366 		u8 *disp;
367 		/*
368 		 * The copied instruction uses the %rip-relative addressing
369 		 * mode.  Adjust the displacement for the difference between
370 		 * the original location of this instruction and the location
371 		 * of the copy that will actually be run.  The tricky bit here
372 		 * is making sure that the sign extension happens correctly in
373 		 * this calculation, since we need a signed 32-bit result to
374 		 * be sign-extended to 64 bits when it's added to the %rip
375 		 * value and yield the same 64-bit result that the sign-
376 		 * extension of the original signed 32-bit displacement would
377 		 * have given.
378 		 */
379 		newdisp = (u8 *) src + (s64) insn->displacement.value
380 			  - (u8 *) real;
381 		if ((s64) (s32) newdisp != newdisp) {
382 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
383 			return 0;
384 		}
385 		disp = (u8 *) dest + insn_offset_displacement(insn);
386 		*(s32 *) disp = (s32) newdisp;
387 	}
388 #endif
389 	return insn->length;
390 }
391 
392 /* Prepare reljump right after instruction to boost */
393 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
394 			  struct insn *insn)
395 {
396 	int len = insn->length;
397 
398 	if (can_boost(insn, p->addr) &&
399 	    MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
400 		/*
401 		 * These instructions can be executed directly if it
402 		 * jumps back to correct address.
403 		 */
404 		synthesize_reljump(buf + len, p->ainsn.insn + len,
405 				   p->addr + insn->length);
406 		len += RELATIVEJUMP_SIZE;
407 		p->ainsn.boostable = true;
408 	} else {
409 		p->ainsn.boostable = false;
410 	}
411 
412 	return len;
413 }
414 
415 /* Make page to RO mode when allocate it */
416 void *alloc_insn_page(void)
417 {
418 	void *page;
419 
420 	page = module_alloc(PAGE_SIZE);
421 	if (!page)
422 		return NULL;
423 
424 	set_vm_flush_reset_perms(page);
425 	/*
426 	 * First make the page read-only, and only then make it executable to
427 	 * prevent it from being W+X in between.
428 	 */
429 	set_memory_ro((unsigned long)page, 1);
430 
431 	/*
432 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
433 	 * that the page was not maliciously altered and it is still zeroed.
434 	 */
435 	set_memory_x((unsigned long)page, 1);
436 
437 	return page;
438 }
439 
440 /* Recover page to RW mode before releasing it */
441 void free_insn_page(void *page)
442 {
443 	module_memfree(page);
444 }
445 
446 static int arch_copy_kprobe(struct kprobe *p)
447 {
448 	struct insn insn;
449 	kprobe_opcode_t buf[MAX_INSN_SIZE];
450 	int len;
451 
452 	/* Copy an instruction with recovering if other optprobe modifies it.*/
453 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
454 	if (!len)
455 		return -EINVAL;
456 
457 	/*
458 	 * __copy_instruction can modify the displacement of the instruction,
459 	 * but it doesn't affect boostable check.
460 	 */
461 	len = prepare_boost(buf, p, &insn);
462 
463 	/* Check whether the instruction modifies Interrupt Flag or not */
464 	p->ainsn.if_modifier = is_IF_modifier(buf);
465 
466 	/* Also, displacement change doesn't affect the first byte */
467 	p->opcode = buf[0];
468 
469 	/* OK, write back the instruction(s) into ROX insn buffer */
470 	text_poke(p->ainsn.insn, buf, len);
471 
472 	return 0;
473 }
474 
475 int arch_prepare_kprobe(struct kprobe *p)
476 {
477 	int ret;
478 
479 	if (alternatives_text_reserved(p->addr, p->addr))
480 		return -EINVAL;
481 
482 	if (!can_probe((unsigned long)p->addr))
483 		return -EILSEQ;
484 	/* insn: must be on special executable page on x86. */
485 	p->ainsn.insn = get_insn_slot();
486 	if (!p->ainsn.insn)
487 		return -ENOMEM;
488 
489 	ret = arch_copy_kprobe(p);
490 	if (ret) {
491 		free_insn_slot(p->ainsn.insn, 0);
492 		p->ainsn.insn = NULL;
493 	}
494 
495 	return ret;
496 }
497 
498 void arch_arm_kprobe(struct kprobe *p)
499 {
500 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
501 }
502 
503 void arch_disarm_kprobe(struct kprobe *p)
504 {
505 	text_poke(p->addr, &p->opcode, 1);
506 }
507 
508 void arch_remove_kprobe(struct kprobe *p)
509 {
510 	if (p->ainsn.insn) {
511 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
512 		p->ainsn.insn = NULL;
513 	}
514 }
515 
516 static nokprobe_inline void
517 save_previous_kprobe(struct kprobe_ctlblk *kcb)
518 {
519 	kcb->prev_kprobe.kp = kprobe_running();
520 	kcb->prev_kprobe.status = kcb->kprobe_status;
521 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
522 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
523 }
524 
525 static nokprobe_inline void
526 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
527 {
528 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
529 	kcb->kprobe_status = kcb->prev_kprobe.status;
530 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
531 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
532 }
533 
534 static nokprobe_inline void
535 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
536 		   struct kprobe_ctlblk *kcb)
537 {
538 	__this_cpu_write(current_kprobe, p);
539 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
540 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
541 	if (p->ainsn.if_modifier)
542 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
543 }
544 
545 static nokprobe_inline void clear_btf(void)
546 {
547 	if (test_thread_flag(TIF_BLOCKSTEP)) {
548 		unsigned long debugctl = get_debugctlmsr();
549 
550 		debugctl &= ~DEBUGCTLMSR_BTF;
551 		update_debugctlmsr(debugctl);
552 	}
553 }
554 
555 static nokprobe_inline void restore_btf(void)
556 {
557 	if (test_thread_flag(TIF_BLOCKSTEP)) {
558 		unsigned long debugctl = get_debugctlmsr();
559 
560 		debugctl |= DEBUGCTLMSR_BTF;
561 		update_debugctlmsr(debugctl);
562 	}
563 }
564 
565 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
566 {
567 	unsigned long *sara = stack_addr(regs);
568 
569 	ri->ret_addr = (kprobe_opcode_t *) *sara;
570 	ri->fp = sara;
571 
572 	/* Replace the return addr with trampoline addr */
573 	*sara = (unsigned long) &kretprobe_trampoline;
574 }
575 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
576 
577 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
578 			     struct kprobe_ctlblk *kcb, int reenter)
579 {
580 	if (setup_detour_execution(p, regs, reenter))
581 		return;
582 
583 #if !defined(CONFIG_PREEMPT)
584 	if (p->ainsn.boostable && !p->post_handler) {
585 		/* Boost up -- we can execute copied instructions directly */
586 		if (!reenter)
587 			reset_current_kprobe();
588 		/*
589 		 * Reentering boosted probe doesn't reset current_kprobe,
590 		 * nor set current_kprobe, because it doesn't use single
591 		 * stepping.
592 		 */
593 		regs->ip = (unsigned long)p->ainsn.insn;
594 		return;
595 	}
596 #endif
597 	if (reenter) {
598 		save_previous_kprobe(kcb);
599 		set_current_kprobe(p, regs, kcb);
600 		kcb->kprobe_status = KPROBE_REENTER;
601 	} else
602 		kcb->kprobe_status = KPROBE_HIT_SS;
603 	/* Prepare real single stepping */
604 	clear_btf();
605 	regs->flags |= X86_EFLAGS_TF;
606 	regs->flags &= ~X86_EFLAGS_IF;
607 	/* single step inline if the instruction is an int3 */
608 	if (p->opcode == BREAKPOINT_INSTRUCTION)
609 		regs->ip = (unsigned long)p->addr;
610 	else
611 		regs->ip = (unsigned long)p->ainsn.insn;
612 }
613 NOKPROBE_SYMBOL(setup_singlestep);
614 
615 /*
616  * We have reentered the kprobe_handler(), since another probe was hit while
617  * within the handler. We save the original kprobes variables and just single
618  * step on the instruction of the new probe without calling any user handlers.
619  */
620 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
621 			  struct kprobe_ctlblk *kcb)
622 {
623 	switch (kcb->kprobe_status) {
624 	case KPROBE_HIT_SSDONE:
625 	case KPROBE_HIT_ACTIVE:
626 	case KPROBE_HIT_SS:
627 		kprobes_inc_nmissed_count(p);
628 		setup_singlestep(p, regs, kcb, 1);
629 		break;
630 	case KPROBE_REENTER:
631 		/* A probe has been hit in the codepath leading up to, or just
632 		 * after, single-stepping of a probed instruction. This entire
633 		 * codepath should strictly reside in .kprobes.text section.
634 		 * Raise a BUG or we'll continue in an endless reentering loop
635 		 * and eventually a stack overflow.
636 		 */
637 		pr_err("Unrecoverable kprobe detected.\n");
638 		dump_kprobe(p);
639 		BUG();
640 	default:
641 		/* impossible cases */
642 		WARN_ON(1);
643 		return 0;
644 	}
645 
646 	return 1;
647 }
648 NOKPROBE_SYMBOL(reenter_kprobe);
649 
650 /*
651  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
652  * remain disabled throughout this function.
653  */
654 int kprobe_int3_handler(struct pt_regs *regs)
655 {
656 	kprobe_opcode_t *addr;
657 	struct kprobe *p;
658 	struct kprobe_ctlblk *kcb;
659 
660 	if (user_mode(regs))
661 		return 0;
662 
663 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
664 	/*
665 	 * We don't want to be preempted for the entire duration of kprobe
666 	 * processing. Since int3 and debug trap disables irqs and we clear
667 	 * IF while singlestepping, it must be no preemptible.
668 	 */
669 
670 	kcb = get_kprobe_ctlblk();
671 	p = get_kprobe(addr);
672 
673 	if (p) {
674 		if (kprobe_running()) {
675 			if (reenter_kprobe(p, regs, kcb))
676 				return 1;
677 		} else {
678 			set_current_kprobe(p, regs, kcb);
679 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
680 
681 			/*
682 			 * If we have no pre-handler or it returned 0, we
683 			 * continue with normal processing.  If we have a
684 			 * pre-handler and it returned non-zero, that means
685 			 * user handler setup registers to exit to another
686 			 * instruction, we must skip the single stepping.
687 			 */
688 			if (!p->pre_handler || !p->pre_handler(p, regs))
689 				setup_singlestep(p, regs, kcb, 0);
690 			else
691 				reset_current_kprobe();
692 			return 1;
693 		}
694 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
695 		/*
696 		 * The breakpoint instruction was removed right
697 		 * after we hit it.  Another cpu has removed
698 		 * either a probepoint or a debugger breakpoint
699 		 * at this address.  In either case, no further
700 		 * handling of this interrupt is appropriate.
701 		 * Back up over the (now missing) int3 and run
702 		 * the original instruction.
703 		 */
704 		regs->ip = (unsigned long)addr;
705 		return 1;
706 	} /* else: not a kprobe fault; let the kernel handle it */
707 
708 	return 0;
709 }
710 NOKPROBE_SYMBOL(kprobe_int3_handler);
711 
712 /*
713  * When a retprobed function returns, this code saves registers and
714  * calls trampoline_handler() runs, which calls the kretprobe's handler.
715  */
716 asm(
717 	".text\n"
718 	".global kretprobe_trampoline\n"
719 	".type kretprobe_trampoline, @function\n"
720 	"kretprobe_trampoline:\n"
721 	/* We don't bother saving the ss register */
722 #ifdef CONFIG_X86_64
723 	"	pushq %rsp\n"
724 	"	pushfq\n"
725 	SAVE_REGS_STRING
726 	"	movq %rsp, %rdi\n"
727 	"	call trampoline_handler\n"
728 	/* Replace saved sp with true return address. */
729 	"	movq %rax, 19*8(%rsp)\n"
730 	RESTORE_REGS_STRING
731 	"	popfq\n"
732 #else
733 	"	pushl %esp\n"
734 	"	pushfl\n"
735 	SAVE_REGS_STRING
736 	"	movl %esp, %eax\n"
737 	"	call trampoline_handler\n"
738 	/* Replace saved sp with true return address. */
739 	"	movl %eax, 15*4(%esp)\n"
740 	RESTORE_REGS_STRING
741 	"	popfl\n"
742 #endif
743 	"	ret\n"
744 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
745 );
746 NOKPROBE_SYMBOL(kretprobe_trampoline);
747 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
748 
749 static struct kprobe kretprobe_kprobe = {
750 	.addr = (void *)kretprobe_trampoline,
751 };
752 
753 /*
754  * Called from kretprobe_trampoline
755  */
756 __used __visible void *trampoline_handler(struct pt_regs *regs)
757 {
758 	struct kprobe_ctlblk *kcb;
759 	struct kretprobe_instance *ri = NULL;
760 	struct hlist_head *head, empty_rp;
761 	struct hlist_node *tmp;
762 	unsigned long flags, orig_ret_address = 0;
763 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
764 	kprobe_opcode_t *correct_ret_addr = NULL;
765 	void *frame_pointer;
766 	bool skipped = false;
767 
768 	preempt_disable();
769 
770 	/*
771 	 * Set a dummy kprobe for avoiding kretprobe recursion.
772 	 * Since kretprobe never run in kprobe handler, kprobe must not
773 	 * be running at this point.
774 	 */
775 	kcb = get_kprobe_ctlblk();
776 	__this_cpu_write(current_kprobe, &kretprobe_kprobe);
777 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
778 
779 	INIT_HLIST_HEAD(&empty_rp);
780 	kretprobe_hash_lock(current, &head, &flags);
781 	/* fixup registers */
782 	regs->cs = __KERNEL_CS;
783 #ifdef CONFIG_X86_32
784 	regs->cs |= get_kernel_rpl();
785 	regs->gs = 0;
786 #endif
787 	/* We use pt_regs->sp for return address holder. */
788 	frame_pointer = &regs->sp;
789 	regs->ip = trampoline_address;
790 	regs->orig_ax = ~0UL;
791 
792 	/*
793 	 * It is possible to have multiple instances associated with a given
794 	 * task either because multiple functions in the call path have
795 	 * return probes installed on them, and/or more than one
796 	 * return probe was registered for a target function.
797 	 *
798 	 * We can handle this because:
799 	 *     - instances are always pushed into the head of the list
800 	 *     - when multiple return probes are registered for the same
801 	 *	 function, the (chronologically) first instance's ret_addr
802 	 *	 will be the real return address, and all the rest will
803 	 *	 point to kretprobe_trampoline.
804 	 */
805 	hlist_for_each_entry(ri, head, hlist) {
806 		if (ri->task != current)
807 			/* another task is sharing our hash bucket */
808 			continue;
809 		/*
810 		 * Return probes must be pushed on this hash list correct
811 		 * order (same as return order) so that it can be popped
812 		 * correctly. However, if we find it is pushed it incorrect
813 		 * order, this means we find a function which should not be
814 		 * probed, because the wrong order entry is pushed on the
815 		 * path of processing other kretprobe itself.
816 		 */
817 		if (ri->fp != frame_pointer) {
818 			if (!skipped)
819 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
820 			skipped = true;
821 			continue;
822 		}
823 
824 		orig_ret_address = (unsigned long)ri->ret_addr;
825 		if (skipped)
826 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
827 				ri->rp->kp.addr);
828 
829 		if (orig_ret_address != trampoline_address)
830 			/*
831 			 * This is the real return address. Any other
832 			 * instances associated with this task are for
833 			 * other calls deeper on the call stack
834 			 */
835 			break;
836 	}
837 
838 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
839 
840 	correct_ret_addr = ri->ret_addr;
841 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
842 		if (ri->task != current)
843 			/* another task is sharing our hash bucket */
844 			continue;
845 		if (ri->fp != frame_pointer)
846 			continue;
847 
848 		orig_ret_address = (unsigned long)ri->ret_addr;
849 		if (ri->rp && ri->rp->handler) {
850 			__this_cpu_write(current_kprobe, &ri->rp->kp);
851 			ri->ret_addr = correct_ret_addr;
852 			ri->rp->handler(ri, regs);
853 			__this_cpu_write(current_kprobe, &kretprobe_kprobe);
854 		}
855 
856 		recycle_rp_inst(ri, &empty_rp);
857 
858 		if (orig_ret_address != trampoline_address)
859 			/*
860 			 * This is the real return address. Any other
861 			 * instances associated with this task are for
862 			 * other calls deeper on the call stack
863 			 */
864 			break;
865 	}
866 
867 	kretprobe_hash_unlock(current, &flags);
868 
869 	__this_cpu_write(current_kprobe, NULL);
870 	preempt_enable();
871 
872 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
873 		hlist_del(&ri->hlist);
874 		kfree(ri);
875 	}
876 	return (void *)orig_ret_address;
877 }
878 NOKPROBE_SYMBOL(trampoline_handler);
879 
880 /*
881  * Called after single-stepping.  p->addr is the address of the
882  * instruction whose first byte has been replaced by the "int 3"
883  * instruction.  To avoid the SMP problems that can occur when we
884  * temporarily put back the original opcode to single-step, we
885  * single-stepped a copy of the instruction.  The address of this
886  * copy is p->ainsn.insn.
887  *
888  * This function prepares to return from the post-single-step
889  * interrupt.  We have to fix up the stack as follows:
890  *
891  * 0) Except in the case of absolute or indirect jump or call instructions,
892  * the new ip is relative to the copied instruction.  We need to make
893  * it relative to the original instruction.
894  *
895  * 1) If the single-stepped instruction was pushfl, then the TF and IF
896  * flags are set in the just-pushed flags, and may need to be cleared.
897  *
898  * 2) If the single-stepped instruction was a call, the return address
899  * that is atop the stack is the address following the copied instruction.
900  * We need to make it the address following the original instruction.
901  *
902  * If this is the first time we've single-stepped the instruction at
903  * this probepoint, and the instruction is boostable, boost it: add a
904  * jump instruction after the copied instruction, that jumps to the next
905  * instruction after the probepoint.
906  */
907 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
908 			     struct kprobe_ctlblk *kcb)
909 {
910 	unsigned long *tos = stack_addr(regs);
911 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
912 	unsigned long orig_ip = (unsigned long)p->addr;
913 	kprobe_opcode_t *insn = p->ainsn.insn;
914 
915 	/* Skip prefixes */
916 	insn = skip_prefixes(insn);
917 
918 	regs->flags &= ~X86_EFLAGS_TF;
919 	switch (*insn) {
920 	case 0x9c:	/* pushfl */
921 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
922 		*tos |= kcb->kprobe_old_flags;
923 		break;
924 	case 0xc2:	/* iret/ret/lret */
925 	case 0xc3:
926 	case 0xca:
927 	case 0xcb:
928 	case 0xcf:
929 	case 0xea:	/* jmp absolute -- ip is correct */
930 		/* ip is already adjusted, no more changes required */
931 		p->ainsn.boostable = true;
932 		goto no_change;
933 	case 0xe8:	/* call relative - Fix return addr */
934 		*tos = orig_ip + (*tos - copy_ip);
935 		break;
936 #ifdef CONFIG_X86_32
937 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
938 		*tos = orig_ip + (*tos - copy_ip);
939 		goto no_change;
940 #endif
941 	case 0xff:
942 		if ((insn[1] & 0x30) == 0x10) {
943 			/*
944 			 * call absolute, indirect
945 			 * Fix return addr; ip is correct.
946 			 * But this is not boostable
947 			 */
948 			*tos = orig_ip + (*tos - copy_ip);
949 			goto no_change;
950 		} else if (((insn[1] & 0x31) == 0x20) ||
951 			   ((insn[1] & 0x31) == 0x21)) {
952 			/*
953 			 * jmp near and far, absolute indirect
954 			 * ip is correct. And this is boostable
955 			 */
956 			p->ainsn.boostable = true;
957 			goto no_change;
958 		}
959 	default:
960 		break;
961 	}
962 
963 	regs->ip += orig_ip - copy_ip;
964 
965 no_change:
966 	restore_btf();
967 }
968 NOKPROBE_SYMBOL(resume_execution);
969 
970 /*
971  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
972  * remain disabled throughout this function.
973  */
974 int kprobe_debug_handler(struct pt_regs *regs)
975 {
976 	struct kprobe *cur = kprobe_running();
977 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
978 
979 	if (!cur)
980 		return 0;
981 
982 	resume_execution(cur, regs, kcb);
983 	regs->flags |= kcb->kprobe_saved_flags;
984 
985 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
986 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
987 		cur->post_handler(cur, regs, 0);
988 	}
989 
990 	/* Restore back the original saved kprobes variables and continue. */
991 	if (kcb->kprobe_status == KPROBE_REENTER) {
992 		restore_previous_kprobe(kcb);
993 		goto out;
994 	}
995 	reset_current_kprobe();
996 out:
997 	/*
998 	 * if somebody else is singlestepping across a probe point, flags
999 	 * will have TF set, in which case, continue the remaining processing
1000 	 * of do_debug, as if this is not a probe hit.
1001 	 */
1002 	if (regs->flags & X86_EFLAGS_TF)
1003 		return 0;
1004 
1005 	return 1;
1006 }
1007 NOKPROBE_SYMBOL(kprobe_debug_handler);
1008 
1009 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1010 {
1011 	struct kprobe *cur = kprobe_running();
1012 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1013 
1014 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1015 		/* This must happen on single-stepping */
1016 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1017 			kcb->kprobe_status != KPROBE_REENTER);
1018 		/*
1019 		 * We are here because the instruction being single
1020 		 * stepped caused a page fault. We reset the current
1021 		 * kprobe and the ip points back to the probe address
1022 		 * and allow the page fault handler to continue as a
1023 		 * normal page fault.
1024 		 */
1025 		regs->ip = (unsigned long)cur->addr;
1026 		/*
1027 		 * Trap flag (TF) has been set here because this fault
1028 		 * happened where the single stepping will be done.
1029 		 * So clear it by resetting the current kprobe:
1030 		 */
1031 		regs->flags &= ~X86_EFLAGS_TF;
1032 
1033 		/*
1034 		 * If the TF flag was set before the kprobe hit,
1035 		 * don't touch it:
1036 		 */
1037 		regs->flags |= kcb->kprobe_old_flags;
1038 
1039 		if (kcb->kprobe_status == KPROBE_REENTER)
1040 			restore_previous_kprobe(kcb);
1041 		else
1042 			reset_current_kprobe();
1043 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1044 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1045 		/*
1046 		 * We increment the nmissed count for accounting,
1047 		 * we can also use npre/npostfault count for accounting
1048 		 * these specific fault cases.
1049 		 */
1050 		kprobes_inc_nmissed_count(cur);
1051 
1052 		/*
1053 		 * We come here because instructions in the pre/post
1054 		 * handler caused the page_fault, this could happen
1055 		 * if handler tries to access user space by
1056 		 * copy_from_user(), get_user() etc. Let the
1057 		 * user-specified handler try to fix it first.
1058 		 */
1059 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1060 			return 1;
1061 	}
1062 
1063 	return 0;
1064 }
1065 NOKPROBE_SYMBOL(kprobe_fault_handler);
1066 
1067 int __init arch_populate_kprobe_blacklist(void)
1068 {
1069 	int ret;
1070 
1071 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1072 					 (unsigned long)__irqentry_text_end);
1073 	if (ret)
1074 		return ret;
1075 
1076 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1077 					 (unsigned long)__entry_text_end);
1078 }
1079 
1080 int __init arch_init_kprobes(void)
1081 {
1082 	return 0;
1083 }
1084 
1085 int arch_trampoline_kprobe(struct kprobe *p)
1086 {
1087 	return 0;
1088 }
1089