1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 #include <linux/moduleloader.h> 56 57 #include <asm/text-patching.h> 58 #include <asm/cacheflush.h> 59 #include <asm/desc.h> 60 #include <asm/pgtable.h> 61 #include <linux/uaccess.h> 62 #include <asm/alternative.h> 63 #include <asm/insn.h> 64 #include <asm/debugreg.h> 65 #include <asm/set_memory.h> 66 67 #include "common.h" 68 69 void jprobe_return_end(void); 70 71 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 72 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 73 74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 75 76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 81 << (row % 32)) 82 /* 83 * Undefined/reserved opcodes, conditional jump, Opcode Extension 84 * Groups, and some special opcodes can not boost. 85 * This is non-const and volatile to keep gcc from statically 86 * optimizing it out, as variable_test_bit makes gcc think only 87 * *(unsigned long*) is used. 88 */ 89 static volatile u32 twobyte_is_boostable[256 / 32] = { 90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 91 /* ---------------------------------------------- */ 92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 108 /* ----------------------------------------------- */ 109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 110 }; 111 #undef W 112 113 struct kretprobe_blackpoint kretprobe_blacklist[] = { 114 {"__switch_to", }, /* This function switches only current task, but 115 doesn't switch kernel stack.*/ 116 {NULL, NULL} /* Terminator */ 117 }; 118 119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 120 121 static nokprobe_inline void 122 __synthesize_relative_insn(void *from, void *to, u8 op) 123 { 124 struct __arch_relative_insn { 125 u8 op; 126 s32 raddr; 127 } __packed *insn; 128 129 insn = (struct __arch_relative_insn *)from; 130 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 131 insn->op = op; 132 } 133 134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 135 void synthesize_reljump(void *from, void *to) 136 { 137 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 138 } 139 NOKPROBE_SYMBOL(synthesize_reljump); 140 141 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 142 void synthesize_relcall(void *from, void *to) 143 { 144 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 145 } 146 NOKPROBE_SYMBOL(synthesize_relcall); 147 148 /* 149 * Skip the prefixes of the instruction. 150 */ 151 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 152 { 153 insn_attr_t attr; 154 155 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 156 while (inat_is_legacy_prefix(attr)) { 157 insn++; 158 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 159 } 160 #ifdef CONFIG_X86_64 161 if (inat_is_rex_prefix(attr)) 162 insn++; 163 #endif 164 return insn; 165 } 166 NOKPROBE_SYMBOL(skip_prefixes); 167 168 /* 169 * Returns non-zero if INSN is boostable. 170 * RIP relative instructions are adjusted at copying time in 64 bits mode 171 */ 172 int can_boost(struct insn *insn, void *addr) 173 { 174 kprobe_opcode_t opcode; 175 176 if (search_exception_tables((unsigned long)addr)) 177 return 0; /* Page fault may occur on this address. */ 178 179 /* 2nd-byte opcode */ 180 if (insn->opcode.nbytes == 2) 181 return test_bit(insn->opcode.bytes[1], 182 (unsigned long *)twobyte_is_boostable); 183 184 if (insn->opcode.nbytes != 1) 185 return 0; 186 187 /* Can't boost Address-size override prefix */ 188 if (unlikely(inat_is_address_size_prefix(insn->attr))) 189 return 0; 190 191 opcode = insn->opcode.bytes[0]; 192 193 switch (opcode & 0xf0) { 194 case 0x60: 195 /* can't boost "bound" */ 196 return (opcode != 0x62); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0x90: 200 return opcode != 0x9a; /* can't boost call far */ 201 case 0xc0: 202 /* can't boost software-interruptions */ 203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 204 case 0xd0: 205 /* can boost AA* and XLAT */ 206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 207 case 0xe0: 208 /* can boost in/out and absolute jmps */ 209 return ((opcode & 0x04) || opcode == 0xea); 210 case 0xf0: 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* CS override prefix and call are not boostable */ 215 return (opcode != 0x2e && opcode != 0x9a); 216 } 217 } 218 219 static unsigned long 220 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 221 { 222 struct kprobe *kp; 223 unsigned long faddr; 224 225 kp = get_kprobe((void *)addr); 226 faddr = ftrace_location(addr); 227 /* 228 * Addresses inside the ftrace location are refused by 229 * arch_check_ftrace_location(). Something went terribly wrong 230 * if such an address is checked here. 231 */ 232 if (WARN_ON(faddr && faddr != addr)) 233 return 0UL; 234 /* 235 * Use the current code if it is not modified by Kprobe 236 * and it cannot be modified by ftrace. 237 */ 238 if (!kp && !faddr) 239 return addr; 240 241 /* 242 * Basically, kp->ainsn.insn has an original instruction. 243 * However, RIP-relative instruction can not do single-stepping 244 * at different place, __copy_instruction() tweaks the displacement of 245 * that instruction. In that case, we can't recover the instruction 246 * from the kp->ainsn.insn. 247 * 248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 249 * of the first byte of the probed instruction, which is overwritten 250 * by int3. And the instruction at kp->addr is not modified by kprobes 251 * except for the first byte, we can recover the original instruction 252 * from it and kp->opcode. 253 * 254 * In case of Kprobes using ftrace, we do not have a copy of 255 * the original instruction. In fact, the ftrace location might 256 * be modified at anytime and even could be in an inconsistent state. 257 * Fortunately, we know that the original code is the ideal 5-byte 258 * long NOP. 259 */ 260 if (probe_kernel_read(buf, (void *)addr, 261 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 262 return 0UL; 263 264 if (faddr) 265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 266 else 267 buf[0] = kp->opcode; 268 return (unsigned long)buf; 269 } 270 271 /* 272 * Recover the probed instruction at addr for further analysis. 273 * Caller must lock kprobes by kprobe_mutex, or disable preemption 274 * for preventing to release referencing kprobes. 275 * Returns zero if the instruction can not get recovered (or access failed). 276 */ 277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 278 { 279 unsigned long __addr; 280 281 __addr = __recover_optprobed_insn(buf, addr); 282 if (__addr != addr) 283 return __addr; 284 285 return __recover_probed_insn(buf, addr); 286 } 287 288 /* Check if paddr is at an instruction boundary */ 289 static int can_probe(unsigned long paddr) 290 { 291 unsigned long addr, __addr, offset = 0; 292 struct insn insn; 293 kprobe_opcode_t buf[MAX_INSN_SIZE]; 294 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 296 return 0; 297 298 /* Decode instructions */ 299 addr = paddr - offset; 300 while (addr < paddr) { 301 /* 302 * Check if the instruction has been modified by another 303 * kprobe, in which case we replace the breakpoint by the 304 * original instruction in our buffer. 305 * Also, jump optimization will change the breakpoint to 306 * relative-jump. Since the relative-jump itself is 307 * normally used, we just go through if there is no kprobe. 308 */ 309 __addr = recover_probed_instruction(buf, addr); 310 if (!__addr) 311 return 0; 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 313 insn_get_length(&insn); 314 315 /* 316 * Another debugging subsystem might insert this breakpoint. 317 * In that case, we can't recover it. 318 */ 319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 320 return 0; 321 addr += insn.length; 322 } 323 324 return (addr == paddr); 325 } 326 327 /* 328 * Returns non-zero if opcode modifies the interrupt flag. 329 */ 330 static int is_IF_modifier(kprobe_opcode_t *insn) 331 { 332 /* Skip prefixes */ 333 insn = skip_prefixes(insn); 334 335 switch (*insn) { 336 case 0xfa: /* cli */ 337 case 0xfb: /* sti */ 338 case 0xcf: /* iret/iretd */ 339 case 0x9d: /* popf/popfd */ 340 return 1; 341 } 342 343 return 0; 344 } 345 346 /* 347 * Copy an instruction with recovering modified instruction by kprobes 348 * and adjust the displacement if the instruction uses the %rip-relative 349 * addressing mode. 350 * This returns the length of copied instruction, or 0 if it has an error. 351 */ 352 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn) 353 { 354 kprobe_opcode_t buf[MAX_INSN_SIZE]; 355 unsigned long recovered_insn = 356 recover_probed_instruction(buf, (unsigned long)src); 357 358 if (!recovered_insn || !insn) 359 return 0; 360 361 /* This can access kernel text if given address is not recovered */ 362 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 363 return 0; 364 365 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 366 insn_get_length(insn); 367 368 /* Another subsystem puts a breakpoint, failed to recover */ 369 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 370 return 0; 371 372 #ifdef CONFIG_X86_64 373 /* Only x86_64 has RIP relative instructions */ 374 if (insn_rip_relative(insn)) { 375 s64 newdisp; 376 u8 *disp; 377 /* 378 * The copied instruction uses the %rip-relative addressing 379 * mode. Adjust the displacement for the difference between 380 * the original location of this instruction and the location 381 * of the copy that will actually be run. The tricky bit here 382 * is making sure that the sign extension happens correctly in 383 * this calculation, since we need a signed 32-bit result to 384 * be sign-extended to 64 bits when it's added to the %rip 385 * value and yield the same 64-bit result that the sign- 386 * extension of the original signed 32-bit displacement would 387 * have given. 388 */ 389 newdisp = (u8 *) src + (s64) insn->displacement.value 390 - (u8 *) dest; 391 if ((s64) (s32) newdisp != newdisp) { 392 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 393 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", 394 src, dest, insn->displacement.value); 395 return 0; 396 } 397 disp = (u8 *) dest + insn_offset_displacement(insn); 398 *(s32 *) disp = (s32) newdisp; 399 } 400 #endif 401 return insn->length; 402 } 403 404 /* Prepare reljump right after instruction to boost */ 405 static void prepare_boost(struct kprobe *p, struct insn *insn) 406 { 407 if (can_boost(insn, p->addr) && 408 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) { 409 /* 410 * These instructions can be executed directly if it 411 * jumps back to correct address. 412 */ 413 synthesize_reljump(p->ainsn.insn + insn->length, 414 p->addr + insn->length); 415 p->ainsn.boostable = true; 416 } else { 417 p->ainsn.boostable = false; 418 } 419 } 420 421 /* Recover page to RW mode before releasing it */ 422 void free_insn_page(void *page) 423 { 424 set_memory_nx((unsigned long)page & PAGE_MASK, 1); 425 set_memory_rw((unsigned long)page & PAGE_MASK, 1); 426 module_memfree(page); 427 } 428 429 static int arch_copy_kprobe(struct kprobe *p) 430 { 431 struct insn insn; 432 int len; 433 434 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 435 436 /* Copy an instruction with recovering if other optprobe modifies it.*/ 437 len = __copy_instruction(p->ainsn.insn, p->addr, &insn); 438 if (!len) 439 return -EINVAL; 440 441 /* 442 * __copy_instruction can modify the displacement of the instruction, 443 * but it doesn't affect boostable check. 444 */ 445 prepare_boost(p, &insn); 446 447 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 448 449 /* Check whether the instruction modifies Interrupt Flag or not */ 450 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 451 452 /* Also, displacement change doesn't affect the first byte */ 453 p->opcode = p->ainsn.insn[0]; 454 455 return 0; 456 } 457 458 int arch_prepare_kprobe(struct kprobe *p) 459 { 460 int ret; 461 462 if (alternatives_text_reserved(p->addr, p->addr)) 463 return -EINVAL; 464 465 if (!can_probe((unsigned long)p->addr)) 466 return -EILSEQ; 467 /* insn: must be on special executable page on x86. */ 468 p->ainsn.insn = get_insn_slot(); 469 if (!p->ainsn.insn) 470 return -ENOMEM; 471 472 ret = arch_copy_kprobe(p); 473 if (ret) { 474 free_insn_slot(p->ainsn.insn, 0); 475 p->ainsn.insn = NULL; 476 } 477 478 return ret; 479 } 480 481 void arch_arm_kprobe(struct kprobe *p) 482 { 483 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 484 } 485 486 void arch_disarm_kprobe(struct kprobe *p) 487 { 488 text_poke(p->addr, &p->opcode, 1); 489 } 490 491 void arch_remove_kprobe(struct kprobe *p) 492 { 493 if (p->ainsn.insn) { 494 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 495 p->ainsn.insn = NULL; 496 } 497 } 498 499 static nokprobe_inline void 500 save_previous_kprobe(struct kprobe_ctlblk *kcb) 501 { 502 kcb->prev_kprobe.kp = kprobe_running(); 503 kcb->prev_kprobe.status = kcb->kprobe_status; 504 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 505 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 506 } 507 508 static nokprobe_inline void 509 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 510 { 511 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 512 kcb->kprobe_status = kcb->prev_kprobe.status; 513 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 514 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 515 } 516 517 static nokprobe_inline void 518 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 519 struct kprobe_ctlblk *kcb) 520 { 521 __this_cpu_write(current_kprobe, p); 522 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 523 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 524 if (p->ainsn.if_modifier) 525 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 526 } 527 528 static nokprobe_inline void clear_btf(void) 529 { 530 if (test_thread_flag(TIF_BLOCKSTEP)) { 531 unsigned long debugctl = get_debugctlmsr(); 532 533 debugctl &= ~DEBUGCTLMSR_BTF; 534 update_debugctlmsr(debugctl); 535 } 536 } 537 538 static nokprobe_inline void restore_btf(void) 539 { 540 if (test_thread_flag(TIF_BLOCKSTEP)) { 541 unsigned long debugctl = get_debugctlmsr(); 542 543 debugctl |= DEBUGCTLMSR_BTF; 544 update_debugctlmsr(debugctl); 545 } 546 } 547 548 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 549 { 550 unsigned long *sara = stack_addr(regs); 551 552 ri->ret_addr = (kprobe_opcode_t *) *sara; 553 554 /* Replace the return addr with trampoline addr */ 555 *sara = (unsigned long) &kretprobe_trampoline; 556 } 557 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 558 559 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 560 struct kprobe_ctlblk *kcb, int reenter) 561 { 562 if (setup_detour_execution(p, regs, reenter)) 563 return; 564 565 #if !defined(CONFIG_PREEMPT) 566 if (p->ainsn.boostable && !p->post_handler) { 567 /* Boost up -- we can execute copied instructions directly */ 568 if (!reenter) 569 reset_current_kprobe(); 570 /* 571 * Reentering boosted probe doesn't reset current_kprobe, 572 * nor set current_kprobe, because it doesn't use single 573 * stepping. 574 */ 575 regs->ip = (unsigned long)p->ainsn.insn; 576 preempt_enable_no_resched(); 577 return; 578 } 579 #endif 580 if (reenter) { 581 save_previous_kprobe(kcb); 582 set_current_kprobe(p, regs, kcb); 583 kcb->kprobe_status = KPROBE_REENTER; 584 } else 585 kcb->kprobe_status = KPROBE_HIT_SS; 586 /* Prepare real single stepping */ 587 clear_btf(); 588 regs->flags |= X86_EFLAGS_TF; 589 regs->flags &= ~X86_EFLAGS_IF; 590 /* single step inline if the instruction is an int3 */ 591 if (p->opcode == BREAKPOINT_INSTRUCTION) 592 regs->ip = (unsigned long)p->addr; 593 else 594 regs->ip = (unsigned long)p->ainsn.insn; 595 } 596 NOKPROBE_SYMBOL(setup_singlestep); 597 598 /* 599 * We have reentered the kprobe_handler(), since another probe was hit while 600 * within the handler. We save the original kprobes variables and just single 601 * step on the instruction of the new probe without calling any user handlers. 602 */ 603 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 604 struct kprobe_ctlblk *kcb) 605 { 606 switch (kcb->kprobe_status) { 607 case KPROBE_HIT_SSDONE: 608 case KPROBE_HIT_ACTIVE: 609 case KPROBE_HIT_SS: 610 kprobes_inc_nmissed_count(p); 611 setup_singlestep(p, regs, kcb, 1); 612 break; 613 case KPROBE_REENTER: 614 /* A probe has been hit in the codepath leading up to, or just 615 * after, single-stepping of a probed instruction. This entire 616 * codepath should strictly reside in .kprobes.text section. 617 * Raise a BUG or we'll continue in an endless reentering loop 618 * and eventually a stack overflow. 619 */ 620 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 621 p->addr); 622 dump_kprobe(p); 623 BUG(); 624 default: 625 /* impossible cases */ 626 WARN_ON(1); 627 return 0; 628 } 629 630 return 1; 631 } 632 NOKPROBE_SYMBOL(reenter_kprobe); 633 634 /* 635 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 636 * remain disabled throughout this function. 637 */ 638 int kprobe_int3_handler(struct pt_regs *regs) 639 { 640 kprobe_opcode_t *addr; 641 struct kprobe *p; 642 struct kprobe_ctlblk *kcb; 643 644 if (user_mode(regs)) 645 return 0; 646 647 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 648 /* 649 * We don't want to be preempted for the entire 650 * duration of kprobe processing. We conditionally 651 * re-enable preemption at the end of this function, 652 * and also in reenter_kprobe() and setup_singlestep(). 653 */ 654 preempt_disable(); 655 656 kcb = get_kprobe_ctlblk(); 657 p = get_kprobe(addr); 658 659 if (p) { 660 if (kprobe_running()) { 661 if (reenter_kprobe(p, regs, kcb)) 662 return 1; 663 } else { 664 set_current_kprobe(p, regs, kcb); 665 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 666 667 /* 668 * If we have no pre-handler or it returned 0, we 669 * continue with normal processing. If we have a 670 * pre-handler and it returned non-zero, it prepped 671 * for calling the break_handler below on re-entry 672 * for jprobe processing, so get out doing nothing 673 * more here. 674 */ 675 if (!p->pre_handler || !p->pre_handler(p, regs)) 676 setup_singlestep(p, regs, kcb, 0); 677 return 1; 678 } 679 } else if (*addr != BREAKPOINT_INSTRUCTION) { 680 /* 681 * The breakpoint instruction was removed right 682 * after we hit it. Another cpu has removed 683 * either a probepoint or a debugger breakpoint 684 * at this address. In either case, no further 685 * handling of this interrupt is appropriate. 686 * Back up over the (now missing) int3 and run 687 * the original instruction. 688 */ 689 regs->ip = (unsigned long)addr; 690 preempt_enable_no_resched(); 691 return 1; 692 } else if (kprobe_running()) { 693 p = __this_cpu_read(current_kprobe); 694 if (p->break_handler && p->break_handler(p, regs)) { 695 if (!skip_singlestep(p, regs, kcb)) 696 setup_singlestep(p, regs, kcb, 0); 697 return 1; 698 } 699 } /* else: not a kprobe fault; let the kernel handle it */ 700 701 preempt_enable_no_resched(); 702 return 0; 703 } 704 NOKPROBE_SYMBOL(kprobe_int3_handler); 705 706 /* 707 * When a retprobed function returns, this code saves registers and 708 * calls trampoline_handler() runs, which calls the kretprobe's handler. 709 */ 710 asm( 711 ".global kretprobe_trampoline\n" 712 ".type kretprobe_trampoline, @function\n" 713 "kretprobe_trampoline:\n" 714 #ifdef CONFIG_X86_64 715 /* We don't bother saving the ss register */ 716 " pushq %rsp\n" 717 " pushfq\n" 718 SAVE_REGS_STRING 719 " movq %rsp, %rdi\n" 720 " call trampoline_handler\n" 721 /* Replace saved sp with true return address. */ 722 " movq %rax, 152(%rsp)\n" 723 RESTORE_REGS_STRING 724 " popfq\n" 725 #else 726 " pushf\n" 727 SAVE_REGS_STRING 728 " movl %esp, %eax\n" 729 " call trampoline_handler\n" 730 /* Move flags to cs */ 731 " movl 56(%esp), %edx\n" 732 " movl %edx, 52(%esp)\n" 733 /* Replace saved flags with true return address. */ 734 " movl %eax, 56(%esp)\n" 735 RESTORE_REGS_STRING 736 " popf\n" 737 #endif 738 " ret\n" 739 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 740 ); 741 NOKPROBE_SYMBOL(kretprobe_trampoline); 742 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 743 744 /* 745 * Called from kretprobe_trampoline 746 */ 747 __visible __used void *trampoline_handler(struct pt_regs *regs) 748 { 749 struct kretprobe_instance *ri = NULL; 750 struct hlist_head *head, empty_rp; 751 struct hlist_node *tmp; 752 unsigned long flags, orig_ret_address = 0; 753 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 754 kprobe_opcode_t *correct_ret_addr = NULL; 755 756 INIT_HLIST_HEAD(&empty_rp); 757 kretprobe_hash_lock(current, &head, &flags); 758 /* fixup registers */ 759 #ifdef CONFIG_X86_64 760 regs->cs = __KERNEL_CS; 761 #else 762 regs->cs = __KERNEL_CS | get_kernel_rpl(); 763 regs->gs = 0; 764 #endif 765 regs->ip = trampoline_address; 766 regs->orig_ax = ~0UL; 767 768 /* 769 * It is possible to have multiple instances associated with a given 770 * task either because multiple functions in the call path have 771 * return probes installed on them, and/or more than one 772 * return probe was registered for a target function. 773 * 774 * We can handle this because: 775 * - instances are always pushed into the head of the list 776 * - when multiple return probes are registered for the same 777 * function, the (chronologically) first instance's ret_addr 778 * will be the real return address, and all the rest will 779 * point to kretprobe_trampoline. 780 */ 781 hlist_for_each_entry(ri, head, hlist) { 782 if (ri->task != current) 783 /* another task is sharing our hash bucket */ 784 continue; 785 786 orig_ret_address = (unsigned long)ri->ret_addr; 787 788 if (orig_ret_address != trampoline_address) 789 /* 790 * This is the real return address. Any other 791 * instances associated with this task are for 792 * other calls deeper on the call stack 793 */ 794 break; 795 } 796 797 kretprobe_assert(ri, orig_ret_address, trampoline_address); 798 799 correct_ret_addr = ri->ret_addr; 800 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 801 if (ri->task != current) 802 /* another task is sharing our hash bucket */ 803 continue; 804 805 orig_ret_address = (unsigned long)ri->ret_addr; 806 if (ri->rp && ri->rp->handler) { 807 __this_cpu_write(current_kprobe, &ri->rp->kp); 808 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 809 ri->ret_addr = correct_ret_addr; 810 ri->rp->handler(ri, regs); 811 __this_cpu_write(current_kprobe, NULL); 812 } 813 814 recycle_rp_inst(ri, &empty_rp); 815 816 if (orig_ret_address != trampoline_address) 817 /* 818 * This is the real return address. Any other 819 * instances associated with this task are for 820 * other calls deeper on the call stack 821 */ 822 break; 823 } 824 825 kretprobe_hash_unlock(current, &flags); 826 827 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 828 hlist_del(&ri->hlist); 829 kfree(ri); 830 } 831 return (void *)orig_ret_address; 832 } 833 NOKPROBE_SYMBOL(trampoline_handler); 834 835 /* 836 * Called after single-stepping. p->addr is the address of the 837 * instruction whose first byte has been replaced by the "int 3" 838 * instruction. To avoid the SMP problems that can occur when we 839 * temporarily put back the original opcode to single-step, we 840 * single-stepped a copy of the instruction. The address of this 841 * copy is p->ainsn.insn. 842 * 843 * This function prepares to return from the post-single-step 844 * interrupt. We have to fix up the stack as follows: 845 * 846 * 0) Except in the case of absolute or indirect jump or call instructions, 847 * the new ip is relative to the copied instruction. We need to make 848 * it relative to the original instruction. 849 * 850 * 1) If the single-stepped instruction was pushfl, then the TF and IF 851 * flags are set in the just-pushed flags, and may need to be cleared. 852 * 853 * 2) If the single-stepped instruction was a call, the return address 854 * that is atop the stack is the address following the copied instruction. 855 * We need to make it the address following the original instruction. 856 * 857 * If this is the first time we've single-stepped the instruction at 858 * this probepoint, and the instruction is boostable, boost it: add a 859 * jump instruction after the copied instruction, that jumps to the next 860 * instruction after the probepoint. 861 */ 862 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 863 struct kprobe_ctlblk *kcb) 864 { 865 unsigned long *tos = stack_addr(regs); 866 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 867 unsigned long orig_ip = (unsigned long)p->addr; 868 kprobe_opcode_t *insn = p->ainsn.insn; 869 870 /* Skip prefixes */ 871 insn = skip_prefixes(insn); 872 873 regs->flags &= ~X86_EFLAGS_TF; 874 switch (*insn) { 875 case 0x9c: /* pushfl */ 876 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 877 *tos |= kcb->kprobe_old_flags; 878 break; 879 case 0xc2: /* iret/ret/lret */ 880 case 0xc3: 881 case 0xca: 882 case 0xcb: 883 case 0xcf: 884 case 0xea: /* jmp absolute -- ip is correct */ 885 /* ip is already adjusted, no more changes required */ 886 p->ainsn.boostable = true; 887 goto no_change; 888 case 0xe8: /* call relative - Fix return addr */ 889 *tos = orig_ip + (*tos - copy_ip); 890 break; 891 #ifdef CONFIG_X86_32 892 case 0x9a: /* call absolute -- same as call absolute, indirect */ 893 *tos = orig_ip + (*tos - copy_ip); 894 goto no_change; 895 #endif 896 case 0xff: 897 if ((insn[1] & 0x30) == 0x10) { 898 /* 899 * call absolute, indirect 900 * Fix return addr; ip is correct. 901 * But this is not boostable 902 */ 903 *tos = orig_ip + (*tos - copy_ip); 904 goto no_change; 905 } else if (((insn[1] & 0x31) == 0x20) || 906 ((insn[1] & 0x31) == 0x21)) { 907 /* 908 * jmp near and far, absolute indirect 909 * ip is correct. And this is boostable 910 */ 911 p->ainsn.boostable = true; 912 goto no_change; 913 } 914 default: 915 break; 916 } 917 918 regs->ip += orig_ip - copy_ip; 919 920 no_change: 921 restore_btf(); 922 } 923 NOKPROBE_SYMBOL(resume_execution); 924 925 /* 926 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 927 * remain disabled throughout this function. 928 */ 929 int kprobe_debug_handler(struct pt_regs *regs) 930 { 931 struct kprobe *cur = kprobe_running(); 932 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 933 934 if (!cur) 935 return 0; 936 937 resume_execution(cur, regs, kcb); 938 regs->flags |= kcb->kprobe_saved_flags; 939 940 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 941 kcb->kprobe_status = KPROBE_HIT_SSDONE; 942 cur->post_handler(cur, regs, 0); 943 } 944 945 /* Restore back the original saved kprobes variables and continue. */ 946 if (kcb->kprobe_status == KPROBE_REENTER) { 947 restore_previous_kprobe(kcb); 948 goto out; 949 } 950 reset_current_kprobe(); 951 out: 952 preempt_enable_no_resched(); 953 954 /* 955 * if somebody else is singlestepping across a probe point, flags 956 * will have TF set, in which case, continue the remaining processing 957 * of do_debug, as if this is not a probe hit. 958 */ 959 if (regs->flags & X86_EFLAGS_TF) 960 return 0; 961 962 return 1; 963 } 964 NOKPROBE_SYMBOL(kprobe_debug_handler); 965 966 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 967 { 968 struct kprobe *cur = kprobe_running(); 969 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 970 971 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 972 /* This must happen on single-stepping */ 973 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 974 kcb->kprobe_status != KPROBE_REENTER); 975 /* 976 * We are here because the instruction being single 977 * stepped caused a page fault. We reset the current 978 * kprobe and the ip points back to the probe address 979 * and allow the page fault handler to continue as a 980 * normal page fault. 981 */ 982 regs->ip = (unsigned long)cur->addr; 983 /* 984 * Trap flag (TF) has been set here because this fault 985 * happened where the single stepping will be done. 986 * So clear it by resetting the current kprobe: 987 */ 988 regs->flags &= ~X86_EFLAGS_TF; 989 990 /* 991 * If the TF flag was set before the kprobe hit, 992 * don't touch it: 993 */ 994 regs->flags |= kcb->kprobe_old_flags; 995 996 if (kcb->kprobe_status == KPROBE_REENTER) 997 restore_previous_kprobe(kcb); 998 else 999 reset_current_kprobe(); 1000 preempt_enable_no_resched(); 1001 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1002 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1003 /* 1004 * We increment the nmissed count for accounting, 1005 * we can also use npre/npostfault count for accounting 1006 * these specific fault cases. 1007 */ 1008 kprobes_inc_nmissed_count(cur); 1009 1010 /* 1011 * We come here because instructions in the pre/post 1012 * handler caused the page_fault, this could happen 1013 * if handler tries to access user space by 1014 * copy_from_user(), get_user() etc. Let the 1015 * user-specified handler try to fix it first. 1016 */ 1017 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1018 return 1; 1019 1020 /* 1021 * In case the user-specified fault handler returned 1022 * zero, try to fix up. 1023 */ 1024 if (fixup_exception(regs, trapnr)) 1025 return 1; 1026 1027 /* 1028 * fixup routine could not handle it, 1029 * Let do_page_fault() fix it. 1030 */ 1031 } 1032 1033 return 0; 1034 } 1035 NOKPROBE_SYMBOL(kprobe_fault_handler); 1036 1037 /* 1038 * Wrapper routine for handling exceptions. 1039 */ 1040 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1041 void *data) 1042 { 1043 struct die_args *args = data; 1044 int ret = NOTIFY_DONE; 1045 1046 if (args->regs && user_mode(args->regs)) 1047 return ret; 1048 1049 if (val == DIE_GPF) { 1050 /* 1051 * To be potentially processing a kprobe fault and to 1052 * trust the result from kprobe_running(), we have 1053 * be non-preemptible. 1054 */ 1055 if (!preemptible() && kprobe_running() && 1056 kprobe_fault_handler(args->regs, args->trapnr)) 1057 ret = NOTIFY_STOP; 1058 } 1059 return ret; 1060 } 1061 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1062 1063 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1064 { 1065 struct jprobe *jp = container_of(p, struct jprobe, kp); 1066 unsigned long addr; 1067 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1068 1069 kcb->jprobe_saved_regs = *regs; 1070 kcb->jprobe_saved_sp = stack_addr(regs); 1071 addr = (unsigned long)(kcb->jprobe_saved_sp); 1072 1073 /* 1074 * As Linus pointed out, gcc assumes that the callee 1075 * owns the argument space and could overwrite it, e.g. 1076 * tailcall optimization. So, to be absolutely safe 1077 * we also save and restore enough stack bytes to cover 1078 * the argument area. 1079 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1080 * raw stack chunk with redzones: 1081 */ 1082 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1083 regs->ip = (unsigned long)(jp->entry); 1084 1085 /* 1086 * jprobes use jprobe_return() which skips the normal return 1087 * path of the function, and this messes up the accounting of the 1088 * function graph tracer to get messed up. 1089 * 1090 * Pause function graph tracing while performing the jprobe function. 1091 */ 1092 pause_graph_tracing(); 1093 return 1; 1094 } 1095 NOKPROBE_SYMBOL(setjmp_pre_handler); 1096 1097 void jprobe_return(void) 1098 { 1099 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1100 1101 /* Unpoison stack redzones in the frames we are going to jump over. */ 1102 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1103 1104 asm volatile ( 1105 #ifdef CONFIG_X86_64 1106 " xchg %%rbx,%%rsp \n" 1107 #else 1108 " xchgl %%ebx,%%esp \n" 1109 #endif 1110 " int3 \n" 1111 " .globl jprobe_return_end\n" 1112 " jprobe_return_end: \n" 1113 " nop \n"::"b" 1114 (kcb->jprobe_saved_sp):"memory"); 1115 } 1116 NOKPROBE_SYMBOL(jprobe_return); 1117 NOKPROBE_SYMBOL(jprobe_return_end); 1118 1119 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1120 { 1121 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1122 u8 *addr = (u8 *) (regs->ip - 1); 1123 struct jprobe *jp = container_of(p, struct jprobe, kp); 1124 void *saved_sp = kcb->jprobe_saved_sp; 1125 1126 if ((addr > (u8 *) jprobe_return) && 1127 (addr < (u8 *) jprobe_return_end)) { 1128 if (stack_addr(regs) != saved_sp) { 1129 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1130 printk(KERN_ERR 1131 "current sp %p does not match saved sp %p\n", 1132 stack_addr(regs), saved_sp); 1133 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1134 show_regs(saved_regs); 1135 printk(KERN_ERR "Current registers\n"); 1136 show_regs(regs); 1137 BUG(); 1138 } 1139 /* It's OK to start function graph tracing again */ 1140 unpause_graph_tracing(); 1141 *regs = kcb->jprobe_saved_regs; 1142 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1143 preempt_enable_no_resched(); 1144 return 1; 1145 } 1146 return 0; 1147 } 1148 NOKPROBE_SYMBOL(longjmp_break_handler); 1149 1150 bool arch_within_kprobe_blacklist(unsigned long addr) 1151 { 1152 return (addr >= (unsigned long)__kprobes_text_start && 1153 addr < (unsigned long)__kprobes_text_end) || 1154 (addr >= (unsigned long)__entry_text_start && 1155 addr < (unsigned long)__entry_text_end); 1156 } 1157 1158 int __init arch_init_kprobes(void) 1159 { 1160 return 0; 1161 } 1162 1163 int arch_trampoline_kprobe(struct kprobe *p) 1164 { 1165 return 0; 1166 } 1167