xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
56 
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66 
67 #include "common.h"
68 
69 void jprobe_return_end(void);
70 
71 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
72 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
73 
74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
75 
76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
77 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
78 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
79 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
80 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
81 	 << (row % 32))
82 	/*
83 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
84 	 * Groups, and some special opcodes can not boost.
85 	 * This is non-const and volatile to keep gcc from statically
86 	 * optimizing it out, as variable_test_bit makes gcc think only
87 	 * *(unsigned long*) is used.
88 	 */
89 static volatile u32 twobyte_is_boostable[256 / 32] = {
90 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
91 	/*      ----------------------------------------------          */
92 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
93 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
94 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
95 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
96 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
97 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
98 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
99 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
100 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
101 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
102 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
103 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
104 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
105 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
106 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
107 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
108 	/*      -----------------------------------------------         */
109 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
110 };
111 #undef W
112 
113 struct kretprobe_blackpoint kretprobe_blacklist[] = {
114 	{"__switch_to", }, /* This function switches only current task, but
115 			      doesn't switch kernel stack.*/
116 	{NULL, NULL}	/* Terminator */
117 };
118 
119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
120 
121 static nokprobe_inline void
122 __synthesize_relative_insn(void *from, void *to, u8 op)
123 {
124 	struct __arch_relative_insn {
125 		u8 op;
126 		s32 raddr;
127 	} __packed *insn;
128 
129 	insn = (struct __arch_relative_insn *)from;
130 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
131 	insn->op = op;
132 }
133 
134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
135 void synthesize_reljump(void *from, void *to)
136 {
137 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
138 }
139 NOKPROBE_SYMBOL(synthesize_reljump);
140 
141 /* Insert a call instruction at address 'from', which calls address 'to'.*/
142 void synthesize_relcall(void *from, void *to)
143 {
144 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
145 }
146 NOKPROBE_SYMBOL(synthesize_relcall);
147 
148 /*
149  * Skip the prefixes of the instruction.
150  */
151 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
152 {
153 	insn_attr_t attr;
154 
155 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
156 	while (inat_is_legacy_prefix(attr)) {
157 		insn++;
158 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
159 	}
160 #ifdef CONFIG_X86_64
161 	if (inat_is_rex_prefix(attr))
162 		insn++;
163 #endif
164 	return insn;
165 }
166 NOKPROBE_SYMBOL(skip_prefixes);
167 
168 /*
169  * Returns non-zero if INSN is boostable.
170  * RIP relative instructions are adjusted at copying time in 64 bits mode
171  */
172 int can_boost(struct insn *insn, void *addr)
173 {
174 	kprobe_opcode_t opcode;
175 
176 	if (search_exception_tables((unsigned long)addr))
177 		return 0;	/* Page fault may occur on this address. */
178 
179 	/* 2nd-byte opcode */
180 	if (insn->opcode.nbytes == 2)
181 		return test_bit(insn->opcode.bytes[1],
182 				(unsigned long *)twobyte_is_boostable);
183 
184 	if (insn->opcode.nbytes != 1)
185 		return 0;
186 
187 	/* Can't boost Address-size override prefix */
188 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
189 		return 0;
190 
191 	opcode = insn->opcode.bytes[0];
192 
193 	switch (opcode & 0xf0) {
194 	case 0x60:
195 		/* can't boost "bound" */
196 		return (opcode != 0x62);
197 	case 0x70:
198 		return 0; /* can't boost conditional jump */
199 	case 0x90:
200 		return opcode != 0x9a;	/* can't boost call far */
201 	case 0xc0:
202 		/* can't boost software-interruptions */
203 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
204 	case 0xd0:
205 		/* can boost AA* and XLAT */
206 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
207 	case 0xe0:
208 		/* can boost in/out and absolute jmps */
209 		return ((opcode & 0x04) || opcode == 0xea);
210 	case 0xf0:
211 		/* clear and set flags are boostable */
212 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 	default:
214 		/* CS override prefix and call are not boostable */
215 		return (opcode != 0x2e && opcode != 0x9a);
216 	}
217 }
218 
219 static unsigned long
220 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
221 {
222 	struct kprobe *kp;
223 	unsigned long faddr;
224 
225 	kp = get_kprobe((void *)addr);
226 	faddr = ftrace_location(addr);
227 	/*
228 	 * Addresses inside the ftrace location are refused by
229 	 * arch_check_ftrace_location(). Something went terribly wrong
230 	 * if such an address is checked here.
231 	 */
232 	if (WARN_ON(faddr && faddr != addr))
233 		return 0UL;
234 	/*
235 	 * Use the current code if it is not modified by Kprobe
236 	 * and it cannot be modified by ftrace.
237 	 */
238 	if (!kp && !faddr)
239 		return addr;
240 
241 	/*
242 	 * Basically, kp->ainsn.insn has an original instruction.
243 	 * However, RIP-relative instruction can not do single-stepping
244 	 * at different place, __copy_instruction() tweaks the displacement of
245 	 * that instruction. In that case, we can't recover the instruction
246 	 * from the kp->ainsn.insn.
247 	 *
248 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
249 	 * of the first byte of the probed instruction, which is overwritten
250 	 * by int3. And the instruction at kp->addr is not modified by kprobes
251 	 * except for the first byte, we can recover the original instruction
252 	 * from it and kp->opcode.
253 	 *
254 	 * In case of Kprobes using ftrace, we do not have a copy of
255 	 * the original instruction. In fact, the ftrace location might
256 	 * be modified at anytime and even could be in an inconsistent state.
257 	 * Fortunately, we know that the original code is the ideal 5-byte
258 	 * long NOP.
259 	 */
260 	if (probe_kernel_read(buf, (void *)addr,
261 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
262 		return 0UL;
263 
264 	if (faddr)
265 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 	else
267 		buf[0] = kp->opcode;
268 	return (unsigned long)buf;
269 }
270 
271 /*
272  * Recover the probed instruction at addr for further analysis.
273  * Caller must lock kprobes by kprobe_mutex, or disable preemption
274  * for preventing to release referencing kprobes.
275  * Returns zero if the instruction can not get recovered (or access failed).
276  */
277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
278 {
279 	unsigned long __addr;
280 
281 	__addr = __recover_optprobed_insn(buf, addr);
282 	if (__addr != addr)
283 		return __addr;
284 
285 	return __recover_probed_insn(buf, addr);
286 }
287 
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr)
290 {
291 	unsigned long addr, __addr, offset = 0;
292 	struct insn insn;
293 	kprobe_opcode_t buf[MAX_INSN_SIZE];
294 
295 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
296 		return 0;
297 
298 	/* Decode instructions */
299 	addr = paddr - offset;
300 	while (addr < paddr) {
301 		/*
302 		 * Check if the instruction has been modified by another
303 		 * kprobe, in which case we replace the breakpoint by the
304 		 * original instruction in our buffer.
305 		 * Also, jump optimization will change the breakpoint to
306 		 * relative-jump. Since the relative-jump itself is
307 		 * normally used, we just go through if there is no kprobe.
308 		 */
309 		__addr = recover_probed_instruction(buf, addr);
310 		if (!__addr)
311 			return 0;
312 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
313 		insn_get_length(&insn);
314 
315 		/*
316 		 * Another debugging subsystem might insert this breakpoint.
317 		 * In that case, we can't recover it.
318 		 */
319 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 			return 0;
321 		addr += insn.length;
322 	}
323 
324 	return (addr == paddr);
325 }
326 
327 /*
328  * Returns non-zero if opcode modifies the interrupt flag.
329  */
330 static int is_IF_modifier(kprobe_opcode_t *insn)
331 {
332 	/* Skip prefixes */
333 	insn = skip_prefixes(insn);
334 
335 	switch (*insn) {
336 	case 0xfa:		/* cli */
337 	case 0xfb:		/* sti */
338 	case 0xcf:		/* iret/iretd */
339 	case 0x9d:		/* popf/popfd */
340 		return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 /*
347  * Copy an instruction with recovering modified instruction by kprobes
348  * and adjust the displacement if the instruction uses the %rip-relative
349  * addressing mode.
350  * This returns the length of copied instruction, or 0 if it has an error.
351  */
352 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
353 {
354 	kprobe_opcode_t buf[MAX_INSN_SIZE];
355 	unsigned long recovered_insn =
356 		recover_probed_instruction(buf, (unsigned long)src);
357 
358 	if (!recovered_insn || !insn)
359 		return 0;
360 
361 	/* This can access kernel text if given address is not recovered */
362 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
363 		return 0;
364 
365 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
366 	insn_get_length(insn);
367 
368 	/* Another subsystem puts a breakpoint, failed to recover */
369 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
370 		return 0;
371 
372 #ifdef CONFIG_X86_64
373 	/* Only x86_64 has RIP relative instructions */
374 	if (insn_rip_relative(insn)) {
375 		s64 newdisp;
376 		u8 *disp;
377 		/*
378 		 * The copied instruction uses the %rip-relative addressing
379 		 * mode.  Adjust the displacement for the difference between
380 		 * the original location of this instruction and the location
381 		 * of the copy that will actually be run.  The tricky bit here
382 		 * is making sure that the sign extension happens correctly in
383 		 * this calculation, since we need a signed 32-bit result to
384 		 * be sign-extended to 64 bits when it's added to the %rip
385 		 * value and yield the same 64-bit result that the sign-
386 		 * extension of the original signed 32-bit displacement would
387 		 * have given.
388 		 */
389 		newdisp = (u8 *) src + (s64) insn->displacement.value
390 			  - (u8 *) dest;
391 		if ((s64) (s32) newdisp != newdisp) {
392 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
393 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n",
394 				src, dest, insn->displacement.value);
395 			return 0;
396 		}
397 		disp = (u8 *) dest + insn_offset_displacement(insn);
398 		*(s32 *) disp = (s32) newdisp;
399 	}
400 #endif
401 	return insn->length;
402 }
403 
404 /* Prepare reljump right after instruction to boost */
405 static void prepare_boost(struct kprobe *p, struct insn *insn)
406 {
407 	if (can_boost(insn, p->addr) &&
408 	    MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
409 		/*
410 		 * These instructions can be executed directly if it
411 		 * jumps back to correct address.
412 		 */
413 		synthesize_reljump(p->ainsn.insn + insn->length,
414 				   p->addr + insn->length);
415 		p->ainsn.boostable = true;
416 	} else {
417 		p->ainsn.boostable = false;
418 	}
419 }
420 
421 /* Recover page to RW mode before releasing it */
422 void free_insn_page(void *page)
423 {
424 	set_memory_nx((unsigned long)page & PAGE_MASK, 1);
425 	set_memory_rw((unsigned long)page & PAGE_MASK, 1);
426 	module_memfree(page);
427 }
428 
429 static int arch_copy_kprobe(struct kprobe *p)
430 {
431 	struct insn insn;
432 	int len;
433 
434 	set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
435 
436 	/* Copy an instruction with recovering if other optprobe modifies it.*/
437 	len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
438 	if (!len)
439 		return -EINVAL;
440 
441 	/*
442 	 * __copy_instruction can modify the displacement of the instruction,
443 	 * but it doesn't affect boostable check.
444 	 */
445 	prepare_boost(p, &insn);
446 
447 	set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
448 
449 	/* Check whether the instruction modifies Interrupt Flag or not */
450 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
451 
452 	/* Also, displacement change doesn't affect the first byte */
453 	p->opcode = p->ainsn.insn[0];
454 
455 	return 0;
456 }
457 
458 int arch_prepare_kprobe(struct kprobe *p)
459 {
460 	int ret;
461 
462 	if (alternatives_text_reserved(p->addr, p->addr))
463 		return -EINVAL;
464 
465 	if (!can_probe((unsigned long)p->addr))
466 		return -EILSEQ;
467 	/* insn: must be on special executable page on x86. */
468 	p->ainsn.insn = get_insn_slot();
469 	if (!p->ainsn.insn)
470 		return -ENOMEM;
471 
472 	ret = arch_copy_kprobe(p);
473 	if (ret) {
474 		free_insn_slot(p->ainsn.insn, 0);
475 		p->ainsn.insn = NULL;
476 	}
477 
478 	return ret;
479 }
480 
481 void arch_arm_kprobe(struct kprobe *p)
482 {
483 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
484 }
485 
486 void arch_disarm_kprobe(struct kprobe *p)
487 {
488 	text_poke(p->addr, &p->opcode, 1);
489 }
490 
491 void arch_remove_kprobe(struct kprobe *p)
492 {
493 	if (p->ainsn.insn) {
494 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
495 		p->ainsn.insn = NULL;
496 	}
497 }
498 
499 static nokprobe_inline void
500 save_previous_kprobe(struct kprobe_ctlblk *kcb)
501 {
502 	kcb->prev_kprobe.kp = kprobe_running();
503 	kcb->prev_kprobe.status = kcb->kprobe_status;
504 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
505 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
506 }
507 
508 static nokprobe_inline void
509 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
510 {
511 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
512 	kcb->kprobe_status = kcb->prev_kprobe.status;
513 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
514 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
515 }
516 
517 static nokprobe_inline void
518 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
519 		   struct kprobe_ctlblk *kcb)
520 {
521 	__this_cpu_write(current_kprobe, p);
522 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
523 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
524 	if (p->ainsn.if_modifier)
525 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
526 }
527 
528 static nokprobe_inline void clear_btf(void)
529 {
530 	if (test_thread_flag(TIF_BLOCKSTEP)) {
531 		unsigned long debugctl = get_debugctlmsr();
532 
533 		debugctl &= ~DEBUGCTLMSR_BTF;
534 		update_debugctlmsr(debugctl);
535 	}
536 }
537 
538 static nokprobe_inline void restore_btf(void)
539 {
540 	if (test_thread_flag(TIF_BLOCKSTEP)) {
541 		unsigned long debugctl = get_debugctlmsr();
542 
543 		debugctl |= DEBUGCTLMSR_BTF;
544 		update_debugctlmsr(debugctl);
545 	}
546 }
547 
548 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
549 {
550 	unsigned long *sara = stack_addr(regs);
551 
552 	ri->ret_addr = (kprobe_opcode_t *) *sara;
553 
554 	/* Replace the return addr with trampoline addr */
555 	*sara = (unsigned long) &kretprobe_trampoline;
556 }
557 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
558 
559 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
560 			     struct kprobe_ctlblk *kcb, int reenter)
561 {
562 	if (setup_detour_execution(p, regs, reenter))
563 		return;
564 
565 #if !defined(CONFIG_PREEMPT)
566 	if (p->ainsn.boostable && !p->post_handler) {
567 		/* Boost up -- we can execute copied instructions directly */
568 		if (!reenter)
569 			reset_current_kprobe();
570 		/*
571 		 * Reentering boosted probe doesn't reset current_kprobe,
572 		 * nor set current_kprobe, because it doesn't use single
573 		 * stepping.
574 		 */
575 		regs->ip = (unsigned long)p->ainsn.insn;
576 		preempt_enable_no_resched();
577 		return;
578 	}
579 #endif
580 	if (reenter) {
581 		save_previous_kprobe(kcb);
582 		set_current_kprobe(p, regs, kcb);
583 		kcb->kprobe_status = KPROBE_REENTER;
584 	} else
585 		kcb->kprobe_status = KPROBE_HIT_SS;
586 	/* Prepare real single stepping */
587 	clear_btf();
588 	regs->flags |= X86_EFLAGS_TF;
589 	regs->flags &= ~X86_EFLAGS_IF;
590 	/* single step inline if the instruction is an int3 */
591 	if (p->opcode == BREAKPOINT_INSTRUCTION)
592 		regs->ip = (unsigned long)p->addr;
593 	else
594 		regs->ip = (unsigned long)p->ainsn.insn;
595 }
596 NOKPROBE_SYMBOL(setup_singlestep);
597 
598 /*
599  * We have reentered the kprobe_handler(), since another probe was hit while
600  * within the handler. We save the original kprobes variables and just single
601  * step on the instruction of the new probe without calling any user handlers.
602  */
603 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
604 			  struct kprobe_ctlblk *kcb)
605 {
606 	switch (kcb->kprobe_status) {
607 	case KPROBE_HIT_SSDONE:
608 	case KPROBE_HIT_ACTIVE:
609 	case KPROBE_HIT_SS:
610 		kprobes_inc_nmissed_count(p);
611 		setup_singlestep(p, regs, kcb, 1);
612 		break;
613 	case KPROBE_REENTER:
614 		/* A probe has been hit in the codepath leading up to, or just
615 		 * after, single-stepping of a probed instruction. This entire
616 		 * codepath should strictly reside in .kprobes.text section.
617 		 * Raise a BUG or we'll continue in an endless reentering loop
618 		 * and eventually a stack overflow.
619 		 */
620 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
621 		       p->addr);
622 		dump_kprobe(p);
623 		BUG();
624 	default:
625 		/* impossible cases */
626 		WARN_ON(1);
627 		return 0;
628 	}
629 
630 	return 1;
631 }
632 NOKPROBE_SYMBOL(reenter_kprobe);
633 
634 /*
635  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
636  * remain disabled throughout this function.
637  */
638 int kprobe_int3_handler(struct pt_regs *regs)
639 {
640 	kprobe_opcode_t *addr;
641 	struct kprobe *p;
642 	struct kprobe_ctlblk *kcb;
643 
644 	if (user_mode(regs))
645 		return 0;
646 
647 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
648 	/*
649 	 * We don't want to be preempted for the entire
650 	 * duration of kprobe processing. We conditionally
651 	 * re-enable preemption at the end of this function,
652 	 * and also in reenter_kprobe() and setup_singlestep().
653 	 */
654 	preempt_disable();
655 
656 	kcb = get_kprobe_ctlblk();
657 	p = get_kprobe(addr);
658 
659 	if (p) {
660 		if (kprobe_running()) {
661 			if (reenter_kprobe(p, regs, kcb))
662 				return 1;
663 		} else {
664 			set_current_kprobe(p, regs, kcb);
665 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
666 
667 			/*
668 			 * If we have no pre-handler or it returned 0, we
669 			 * continue with normal processing.  If we have a
670 			 * pre-handler and it returned non-zero, it prepped
671 			 * for calling the break_handler below on re-entry
672 			 * for jprobe processing, so get out doing nothing
673 			 * more here.
674 			 */
675 			if (!p->pre_handler || !p->pre_handler(p, regs))
676 				setup_singlestep(p, regs, kcb, 0);
677 			return 1;
678 		}
679 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
680 		/*
681 		 * The breakpoint instruction was removed right
682 		 * after we hit it.  Another cpu has removed
683 		 * either a probepoint or a debugger breakpoint
684 		 * at this address.  In either case, no further
685 		 * handling of this interrupt is appropriate.
686 		 * Back up over the (now missing) int3 and run
687 		 * the original instruction.
688 		 */
689 		regs->ip = (unsigned long)addr;
690 		preempt_enable_no_resched();
691 		return 1;
692 	} else if (kprobe_running()) {
693 		p = __this_cpu_read(current_kprobe);
694 		if (p->break_handler && p->break_handler(p, regs)) {
695 			if (!skip_singlestep(p, regs, kcb))
696 				setup_singlestep(p, regs, kcb, 0);
697 			return 1;
698 		}
699 	} /* else: not a kprobe fault; let the kernel handle it */
700 
701 	preempt_enable_no_resched();
702 	return 0;
703 }
704 NOKPROBE_SYMBOL(kprobe_int3_handler);
705 
706 /*
707  * When a retprobed function returns, this code saves registers and
708  * calls trampoline_handler() runs, which calls the kretprobe's handler.
709  */
710 asm(
711 	".global kretprobe_trampoline\n"
712 	".type kretprobe_trampoline, @function\n"
713 	"kretprobe_trampoline:\n"
714 #ifdef CONFIG_X86_64
715 	/* We don't bother saving the ss register */
716 	"	pushq %rsp\n"
717 	"	pushfq\n"
718 	SAVE_REGS_STRING
719 	"	movq %rsp, %rdi\n"
720 	"	call trampoline_handler\n"
721 	/* Replace saved sp with true return address. */
722 	"	movq %rax, 152(%rsp)\n"
723 	RESTORE_REGS_STRING
724 	"	popfq\n"
725 #else
726 	"	pushf\n"
727 	SAVE_REGS_STRING
728 	"	movl %esp, %eax\n"
729 	"	call trampoline_handler\n"
730 	/* Move flags to cs */
731 	"	movl 56(%esp), %edx\n"
732 	"	movl %edx, 52(%esp)\n"
733 	/* Replace saved flags with true return address. */
734 	"	movl %eax, 56(%esp)\n"
735 	RESTORE_REGS_STRING
736 	"	popf\n"
737 #endif
738 	"	ret\n"
739 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
740 );
741 NOKPROBE_SYMBOL(kretprobe_trampoline);
742 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
743 
744 /*
745  * Called from kretprobe_trampoline
746  */
747 __visible __used void *trampoline_handler(struct pt_regs *regs)
748 {
749 	struct kretprobe_instance *ri = NULL;
750 	struct hlist_head *head, empty_rp;
751 	struct hlist_node *tmp;
752 	unsigned long flags, orig_ret_address = 0;
753 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
754 	kprobe_opcode_t *correct_ret_addr = NULL;
755 
756 	INIT_HLIST_HEAD(&empty_rp);
757 	kretprobe_hash_lock(current, &head, &flags);
758 	/* fixup registers */
759 #ifdef CONFIG_X86_64
760 	regs->cs = __KERNEL_CS;
761 #else
762 	regs->cs = __KERNEL_CS | get_kernel_rpl();
763 	regs->gs = 0;
764 #endif
765 	regs->ip = trampoline_address;
766 	regs->orig_ax = ~0UL;
767 
768 	/*
769 	 * It is possible to have multiple instances associated with a given
770 	 * task either because multiple functions in the call path have
771 	 * return probes installed on them, and/or more than one
772 	 * return probe was registered for a target function.
773 	 *
774 	 * We can handle this because:
775 	 *     - instances are always pushed into the head of the list
776 	 *     - when multiple return probes are registered for the same
777 	 *	 function, the (chronologically) first instance's ret_addr
778 	 *	 will be the real return address, and all the rest will
779 	 *	 point to kretprobe_trampoline.
780 	 */
781 	hlist_for_each_entry(ri, head, hlist) {
782 		if (ri->task != current)
783 			/* another task is sharing our hash bucket */
784 			continue;
785 
786 		orig_ret_address = (unsigned long)ri->ret_addr;
787 
788 		if (orig_ret_address != trampoline_address)
789 			/*
790 			 * This is the real return address. Any other
791 			 * instances associated with this task are for
792 			 * other calls deeper on the call stack
793 			 */
794 			break;
795 	}
796 
797 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
798 
799 	correct_ret_addr = ri->ret_addr;
800 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
801 		if (ri->task != current)
802 			/* another task is sharing our hash bucket */
803 			continue;
804 
805 		orig_ret_address = (unsigned long)ri->ret_addr;
806 		if (ri->rp && ri->rp->handler) {
807 			__this_cpu_write(current_kprobe, &ri->rp->kp);
808 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
809 			ri->ret_addr = correct_ret_addr;
810 			ri->rp->handler(ri, regs);
811 			__this_cpu_write(current_kprobe, NULL);
812 		}
813 
814 		recycle_rp_inst(ri, &empty_rp);
815 
816 		if (orig_ret_address != trampoline_address)
817 			/*
818 			 * This is the real return address. Any other
819 			 * instances associated with this task are for
820 			 * other calls deeper on the call stack
821 			 */
822 			break;
823 	}
824 
825 	kretprobe_hash_unlock(current, &flags);
826 
827 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
828 		hlist_del(&ri->hlist);
829 		kfree(ri);
830 	}
831 	return (void *)orig_ret_address;
832 }
833 NOKPROBE_SYMBOL(trampoline_handler);
834 
835 /*
836  * Called after single-stepping.  p->addr is the address of the
837  * instruction whose first byte has been replaced by the "int 3"
838  * instruction.  To avoid the SMP problems that can occur when we
839  * temporarily put back the original opcode to single-step, we
840  * single-stepped a copy of the instruction.  The address of this
841  * copy is p->ainsn.insn.
842  *
843  * This function prepares to return from the post-single-step
844  * interrupt.  We have to fix up the stack as follows:
845  *
846  * 0) Except in the case of absolute or indirect jump or call instructions,
847  * the new ip is relative to the copied instruction.  We need to make
848  * it relative to the original instruction.
849  *
850  * 1) If the single-stepped instruction was pushfl, then the TF and IF
851  * flags are set in the just-pushed flags, and may need to be cleared.
852  *
853  * 2) If the single-stepped instruction was a call, the return address
854  * that is atop the stack is the address following the copied instruction.
855  * We need to make it the address following the original instruction.
856  *
857  * If this is the first time we've single-stepped the instruction at
858  * this probepoint, and the instruction is boostable, boost it: add a
859  * jump instruction after the copied instruction, that jumps to the next
860  * instruction after the probepoint.
861  */
862 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
863 			     struct kprobe_ctlblk *kcb)
864 {
865 	unsigned long *tos = stack_addr(regs);
866 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
867 	unsigned long orig_ip = (unsigned long)p->addr;
868 	kprobe_opcode_t *insn = p->ainsn.insn;
869 
870 	/* Skip prefixes */
871 	insn = skip_prefixes(insn);
872 
873 	regs->flags &= ~X86_EFLAGS_TF;
874 	switch (*insn) {
875 	case 0x9c:	/* pushfl */
876 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
877 		*tos |= kcb->kprobe_old_flags;
878 		break;
879 	case 0xc2:	/* iret/ret/lret */
880 	case 0xc3:
881 	case 0xca:
882 	case 0xcb:
883 	case 0xcf:
884 	case 0xea:	/* jmp absolute -- ip is correct */
885 		/* ip is already adjusted, no more changes required */
886 		p->ainsn.boostable = true;
887 		goto no_change;
888 	case 0xe8:	/* call relative - Fix return addr */
889 		*tos = orig_ip + (*tos - copy_ip);
890 		break;
891 #ifdef CONFIG_X86_32
892 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
893 		*tos = orig_ip + (*tos - copy_ip);
894 		goto no_change;
895 #endif
896 	case 0xff:
897 		if ((insn[1] & 0x30) == 0x10) {
898 			/*
899 			 * call absolute, indirect
900 			 * Fix return addr; ip is correct.
901 			 * But this is not boostable
902 			 */
903 			*tos = orig_ip + (*tos - copy_ip);
904 			goto no_change;
905 		} else if (((insn[1] & 0x31) == 0x20) ||
906 			   ((insn[1] & 0x31) == 0x21)) {
907 			/*
908 			 * jmp near and far, absolute indirect
909 			 * ip is correct. And this is boostable
910 			 */
911 			p->ainsn.boostable = true;
912 			goto no_change;
913 		}
914 	default:
915 		break;
916 	}
917 
918 	regs->ip += orig_ip - copy_ip;
919 
920 no_change:
921 	restore_btf();
922 }
923 NOKPROBE_SYMBOL(resume_execution);
924 
925 /*
926  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
927  * remain disabled throughout this function.
928  */
929 int kprobe_debug_handler(struct pt_regs *regs)
930 {
931 	struct kprobe *cur = kprobe_running();
932 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
933 
934 	if (!cur)
935 		return 0;
936 
937 	resume_execution(cur, regs, kcb);
938 	regs->flags |= kcb->kprobe_saved_flags;
939 
940 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
941 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
942 		cur->post_handler(cur, regs, 0);
943 	}
944 
945 	/* Restore back the original saved kprobes variables and continue. */
946 	if (kcb->kprobe_status == KPROBE_REENTER) {
947 		restore_previous_kprobe(kcb);
948 		goto out;
949 	}
950 	reset_current_kprobe();
951 out:
952 	preempt_enable_no_resched();
953 
954 	/*
955 	 * if somebody else is singlestepping across a probe point, flags
956 	 * will have TF set, in which case, continue the remaining processing
957 	 * of do_debug, as if this is not a probe hit.
958 	 */
959 	if (regs->flags & X86_EFLAGS_TF)
960 		return 0;
961 
962 	return 1;
963 }
964 NOKPROBE_SYMBOL(kprobe_debug_handler);
965 
966 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
967 {
968 	struct kprobe *cur = kprobe_running();
969 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
970 
971 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
972 		/* This must happen on single-stepping */
973 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
974 			kcb->kprobe_status != KPROBE_REENTER);
975 		/*
976 		 * We are here because the instruction being single
977 		 * stepped caused a page fault. We reset the current
978 		 * kprobe and the ip points back to the probe address
979 		 * and allow the page fault handler to continue as a
980 		 * normal page fault.
981 		 */
982 		regs->ip = (unsigned long)cur->addr;
983 		/*
984 		 * Trap flag (TF) has been set here because this fault
985 		 * happened where the single stepping will be done.
986 		 * So clear it by resetting the current kprobe:
987 		 */
988 		regs->flags &= ~X86_EFLAGS_TF;
989 
990 		/*
991 		 * If the TF flag was set before the kprobe hit,
992 		 * don't touch it:
993 		 */
994 		regs->flags |= kcb->kprobe_old_flags;
995 
996 		if (kcb->kprobe_status == KPROBE_REENTER)
997 			restore_previous_kprobe(kcb);
998 		else
999 			reset_current_kprobe();
1000 		preempt_enable_no_resched();
1001 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1002 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1003 		/*
1004 		 * We increment the nmissed count for accounting,
1005 		 * we can also use npre/npostfault count for accounting
1006 		 * these specific fault cases.
1007 		 */
1008 		kprobes_inc_nmissed_count(cur);
1009 
1010 		/*
1011 		 * We come here because instructions in the pre/post
1012 		 * handler caused the page_fault, this could happen
1013 		 * if handler tries to access user space by
1014 		 * copy_from_user(), get_user() etc. Let the
1015 		 * user-specified handler try to fix it first.
1016 		 */
1017 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1018 			return 1;
1019 
1020 		/*
1021 		 * In case the user-specified fault handler returned
1022 		 * zero, try to fix up.
1023 		 */
1024 		if (fixup_exception(regs, trapnr))
1025 			return 1;
1026 
1027 		/*
1028 		 * fixup routine could not handle it,
1029 		 * Let do_page_fault() fix it.
1030 		 */
1031 	}
1032 
1033 	return 0;
1034 }
1035 NOKPROBE_SYMBOL(kprobe_fault_handler);
1036 
1037 /*
1038  * Wrapper routine for handling exceptions.
1039  */
1040 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1041 			     void *data)
1042 {
1043 	struct die_args *args = data;
1044 	int ret = NOTIFY_DONE;
1045 
1046 	if (args->regs && user_mode(args->regs))
1047 		return ret;
1048 
1049 	if (val == DIE_GPF) {
1050 		/*
1051 		 * To be potentially processing a kprobe fault and to
1052 		 * trust the result from kprobe_running(), we have
1053 		 * be non-preemptible.
1054 		 */
1055 		if (!preemptible() && kprobe_running() &&
1056 		    kprobe_fault_handler(args->regs, args->trapnr))
1057 			ret = NOTIFY_STOP;
1058 	}
1059 	return ret;
1060 }
1061 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1062 
1063 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1064 {
1065 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1066 	unsigned long addr;
1067 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1068 
1069 	kcb->jprobe_saved_regs = *regs;
1070 	kcb->jprobe_saved_sp = stack_addr(regs);
1071 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1072 
1073 	/*
1074 	 * As Linus pointed out, gcc assumes that the callee
1075 	 * owns the argument space and could overwrite it, e.g.
1076 	 * tailcall optimization. So, to be absolutely safe
1077 	 * we also save and restore enough stack bytes to cover
1078 	 * the argument area.
1079 	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1080 	 * raw stack chunk with redzones:
1081 	 */
1082 	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1083 	regs->ip = (unsigned long)(jp->entry);
1084 
1085 	/*
1086 	 * jprobes use jprobe_return() which skips the normal return
1087 	 * path of the function, and this messes up the accounting of the
1088 	 * function graph tracer to get messed up.
1089 	 *
1090 	 * Pause function graph tracing while performing the jprobe function.
1091 	 */
1092 	pause_graph_tracing();
1093 	return 1;
1094 }
1095 NOKPROBE_SYMBOL(setjmp_pre_handler);
1096 
1097 void jprobe_return(void)
1098 {
1099 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1100 
1101 	/* Unpoison stack redzones in the frames we are going to jump over. */
1102 	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1103 
1104 	asm volatile (
1105 #ifdef CONFIG_X86_64
1106 			"       xchg   %%rbx,%%rsp	\n"
1107 #else
1108 			"       xchgl   %%ebx,%%esp	\n"
1109 #endif
1110 			"       int3			\n"
1111 			"       .globl jprobe_return_end\n"
1112 			"       jprobe_return_end:	\n"
1113 			"       nop			\n"::"b"
1114 			(kcb->jprobe_saved_sp):"memory");
1115 }
1116 NOKPROBE_SYMBOL(jprobe_return);
1117 NOKPROBE_SYMBOL(jprobe_return_end);
1118 
1119 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1120 {
1121 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1122 	u8 *addr = (u8 *) (regs->ip - 1);
1123 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1124 	void *saved_sp = kcb->jprobe_saved_sp;
1125 
1126 	if ((addr > (u8 *) jprobe_return) &&
1127 	    (addr < (u8 *) jprobe_return_end)) {
1128 		if (stack_addr(regs) != saved_sp) {
1129 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1130 			printk(KERN_ERR
1131 			       "current sp %p does not match saved sp %p\n",
1132 			       stack_addr(regs), saved_sp);
1133 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1134 			show_regs(saved_regs);
1135 			printk(KERN_ERR "Current registers\n");
1136 			show_regs(regs);
1137 			BUG();
1138 		}
1139 		/* It's OK to start function graph tracing again */
1140 		unpause_graph_tracing();
1141 		*regs = kcb->jprobe_saved_regs;
1142 		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1143 		preempt_enable_no_resched();
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 NOKPROBE_SYMBOL(longjmp_break_handler);
1149 
1150 bool arch_within_kprobe_blacklist(unsigned long addr)
1151 {
1152 	return  (addr >= (unsigned long)__kprobes_text_start &&
1153 		 addr < (unsigned long)__kprobes_text_end) ||
1154 		(addr >= (unsigned long)__entry_text_start &&
1155 		 addr < (unsigned long)__entry_text_end);
1156 }
1157 
1158 int __init arch_init_kprobes(void)
1159 {
1160 	return 0;
1161 }
1162 
1163 int arch_trampoline_kprobe(struct kprobe *p)
1164 {
1165 	return 0;
1166 }
1167