xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision ae213c44)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
56 
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66 
67 #include "common.h"
68 
69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
71 
72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
73 
74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
76 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
77 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
78 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
79 	 << (row % 32))
80 	/*
81 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 	 * Groups, and some special opcodes can not boost.
83 	 * This is non-const and volatile to keep gcc from statically
84 	 * optimizing it out, as variable_test_bit makes gcc think only
85 	 * *(unsigned long*) is used.
86 	 */
87 static volatile u32 twobyte_is_boostable[256 / 32] = {
88 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
89 	/*      ----------------------------------------------          */
90 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
106 	/*      -----------------------------------------------         */
107 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
108 };
109 #undef W
110 
111 struct kretprobe_blackpoint kretprobe_blacklist[] = {
112 	{"__switch_to", }, /* This function switches only current task, but
113 			      doesn't switch kernel stack.*/
114 	{NULL, NULL}	/* Terminator */
115 };
116 
117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
118 
119 static nokprobe_inline void
120 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
121 {
122 	struct __arch_relative_insn {
123 		u8 op;
124 		s32 raddr;
125 	} __packed *insn;
126 
127 	insn = (struct __arch_relative_insn *)dest;
128 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
129 	insn->op = op;
130 }
131 
132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133 void synthesize_reljump(void *dest, void *from, void *to)
134 {
135 	__synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
136 }
137 NOKPROBE_SYMBOL(synthesize_reljump);
138 
139 /* Insert a call instruction at address 'from', which calls address 'to'.*/
140 void synthesize_relcall(void *dest, void *from, void *to)
141 {
142 	__synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
143 }
144 NOKPROBE_SYMBOL(synthesize_relcall);
145 
146 /*
147  * Skip the prefixes of the instruction.
148  */
149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
150 {
151 	insn_attr_t attr;
152 
153 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 	while (inat_is_legacy_prefix(attr)) {
155 		insn++;
156 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 	}
158 #ifdef CONFIG_X86_64
159 	if (inat_is_rex_prefix(attr))
160 		insn++;
161 #endif
162 	return insn;
163 }
164 NOKPROBE_SYMBOL(skip_prefixes);
165 
166 /*
167  * Returns non-zero if INSN is boostable.
168  * RIP relative instructions are adjusted at copying time in 64 bits mode
169  */
170 int can_boost(struct insn *insn, void *addr)
171 {
172 	kprobe_opcode_t opcode;
173 
174 	if (search_exception_tables((unsigned long)addr))
175 		return 0;	/* Page fault may occur on this address. */
176 
177 	/* 2nd-byte opcode */
178 	if (insn->opcode.nbytes == 2)
179 		return test_bit(insn->opcode.bytes[1],
180 				(unsigned long *)twobyte_is_boostable);
181 
182 	if (insn->opcode.nbytes != 1)
183 		return 0;
184 
185 	/* Can't boost Address-size override prefix */
186 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
187 		return 0;
188 
189 	opcode = insn->opcode.bytes[0];
190 
191 	switch (opcode & 0xf0) {
192 	case 0x60:
193 		/* can't boost "bound" */
194 		return (opcode != 0x62);
195 	case 0x70:
196 		return 0; /* can't boost conditional jump */
197 	case 0x90:
198 		return opcode != 0x9a;	/* can't boost call far */
199 	case 0xc0:
200 		/* can't boost software-interruptions */
201 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 	case 0xd0:
203 		/* can boost AA* and XLAT */
204 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 	case 0xe0:
206 		/* can boost in/out and absolute jmps */
207 		return ((opcode & 0x04) || opcode == 0xea);
208 	case 0xf0:
209 		/* clear and set flags are boostable */
210 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
211 	default:
212 		/* CS override prefix and call are not boostable */
213 		return (opcode != 0x2e && opcode != 0x9a);
214 	}
215 }
216 
217 static unsigned long
218 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
219 {
220 	struct kprobe *kp;
221 	unsigned long faddr;
222 
223 	kp = get_kprobe((void *)addr);
224 	faddr = ftrace_location(addr);
225 	/*
226 	 * Addresses inside the ftrace location are refused by
227 	 * arch_check_ftrace_location(). Something went terribly wrong
228 	 * if such an address is checked here.
229 	 */
230 	if (WARN_ON(faddr && faddr != addr))
231 		return 0UL;
232 	/*
233 	 * Use the current code if it is not modified by Kprobe
234 	 * and it cannot be modified by ftrace.
235 	 */
236 	if (!kp && !faddr)
237 		return addr;
238 
239 	/*
240 	 * Basically, kp->ainsn.insn has an original instruction.
241 	 * However, RIP-relative instruction can not do single-stepping
242 	 * at different place, __copy_instruction() tweaks the displacement of
243 	 * that instruction. In that case, we can't recover the instruction
244 	 * from the kp->ainsn.insn.
245 	 *
246 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
247 	 * of the first byte of the probed instruction, which is overwritten
248 	 * by int3. And the instruction at kp->addr is not modified by kprobes
249 	 * except for the first byte, we can recover the original instruction
250 	 * from it and kp->opcode.
251 	 *
252 	 * In case of Kprobes using ftrace, we do not have a copy of
253 	 * the original instruction. In fact, the ftrace location might
254 	 * be modified at anytime and even could be in an inconsistent state.
255 	 * Fortunately, we know that the original code is the ideal 5-byte
256 	 * long NOP.
257 	 */
258 	if (probe_kernel_read(buf, (void *)addr,
259 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
260 		return 0UL;
261 
262 	if (faddr)
263 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
264 	else
265 		buf[0] = kp->opcode;
266 	return (unsigned long)buf;
267 }
268 
269 /*
270  * Recover the probed instruction at addr for further analysis.
271  * Caller must lock kprobes by kprobe_mutex, or disable preemption
272  * for preventing to release referencing kprobes.
273  * Returns zero if the instruction can not get recovered (or access failed).
274  */
275 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
276 {
277 	unsigned long __addr;
278 
279 	__addr = __recover_optprobed_insn(buf, addr);
280 	if (__addr != addr)
281 		return __addr;
282 
283 	return __recover_probed_insn(buf, addr);
284 }
285 
286 /* Check if paddr is at an instruction boundary */
287 static int can_probe(unsigned long paddr)
288 {
289 	unsigned long addr, __addr, offset = 0;
290 	struct insn insn;
291 	kprobe_opcode_t buf[MAX_INSN_SIZE];
292 
293 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
294 		return 0;
295 
296 	/* Decode instructions */
297 	addr = paddr - offset;
298 	while (addr < paddr) {
299 		/*
300 		 * Check if the instruction has been modified by another
301 		 * kprobe, in which case we replace the breakpoint by the
302 		 * original instruction in our buffer.
303 		 * Also, jump optimization will change the breakpoint to
304 		 * relative-jump. Since the relative-jump itself is
305 		 * normally used, we just go through if there is no kprobe.
306 		 */
307 		__addr = recover_probed_instruction(buf, addr);
308 		if (!__addr)
309 			return 0;
310 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
311 		insn_get_length(&insn);
312 
313 		/*
314 		 * Another debugging subsystem might insert this breakpoint.
315 		 * In that case, we can't recover it.
316 		 */
317 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
318 			return 0;
319 		addr += insn.length;
320 	}
321 
322 	return (addr == paddr);
323 }
324 
325 /*
326  * Returns non-zero if opcode modifies the interrupt flag.
327  */
328 static int is_IF_modifier(kprobe_opcode_t *insn)
329 {
330 	/* Skip prefixes */
331 	insn = skip_prefixes(insn);
332 
333 	switch (*insn) {
334 	case 0xfa:		/* cli */
335 	case 0xfb:		/* sti */
336 	case 0xcf:		/* iret/iretd */
337 	case 0x9d:		/* popf/popfd */
338 		return 1;
339 	}
340 
341 	return 0;
342 }
343 
344 /*
345  * Copy an instruction with recovering modified instruction by kprobes
346  * and adjust the displacement if the instruction uses the %rip-relative
347  * addressing mode. Note that since @real will be the final place of copied
348  * instruction, displacement must be adjust by @real, not @dest.
349  * This returns the length of copied instruction, or 0 if it has an error.
350  */
351 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
352 {
353 	kprobe_opcode_t buf[MAX_INSN_SIZE];
354 	unsigned long recovered_insn =
355 		recover_probed_instruction(buf, (unsigned long)src);
356 
357 	if (!recovered_insn || !insn)
358 		return 0;
359 
360 	/* This can access kernel text if given address is not recovered */
361 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
362 		return 0;
363 
364 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
365 	insn_get_length(insn);
366 
367 	/* Another subsystem puts a breakpoint, failed to recover */
368 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
369 		return 0;
370 
371 	/* We should not singlestep on the exception masking instructions */
372 	if (insn_masking_exception(insn))
373 		return 0;
374 
375 #ifdef CONFIG_X86_64
376 	/* Only x86_64 has RIP relative instructions */
377 	if (insn_rip_relative(insn)) {
378 		s64 newdisp;
379 		u8 *disp;
380 		/*
381 		 * The copied instruction uses the %rip-relative addressing
382 		 * mode.  Adjust the displacement for the difference between
383 		 * the original location of this instruction and the location
384 		 * of the copy that will actually be run.  The tricky bit here
385 		 * is making sure that the sign extension happens correctly in
386 		 * this calculation, since we need a signed 32-bit result to
387 		 * be sign-extended to 64 bits when it's added to the %rip
388 		 * value and yield the same 64-bit result that the sign-
389 		 * extension of the original signed 32-bit displacement would
390 		 * have given.
391 		 */
392 		newdisp = (u8 *) src + (s64) insn->displacement.value
393 			  - (u8 *) real;
394 		if ((s64) (s32) newdisp != newdisp) {
395 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
396 			return 0;
397 		}
398 		disp = (u8 *) dest + insn_offset_displacement(insn);
399 		*(s32 *) disp = (s32) newdisp;
400 	}
401 #endif
402 	return insn->length;
403 }
404 
405 /* Prepare reljump right after instruction to boost */
406 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
407 			  struct insn *insn)
408 {
409 	int len = insn->length;
410 
411 	if (can_boost(insn, p->addr) &&
412 	    MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
413 		/*
414 		 * These instructions can be executed directly if it
415 		 * jumps back to correct address.
416 		 */
417 		synthesize_reljump(buf + len, p->ainsn.insn + len,
418 				   p->addr + insn->length);
419 		len += RELATIVEJUMP_SIZE;
420 		p->ainsn.boostable = true;
421 	} else {
422 		p->ainsn.boostable = false;
423 	}
424 
425 	return len;
426 }
427 
428 /* Make page to RO mode when allocate it */
429 void *alloc_insn_page(void)
430 {
431 	void *page;
432 
433 	page = module_alloc(PAGE_SIZE);
434 	if (!page)
435 		return NULL;
436 
437 	set_vm_flush_reset_perms(page);
438 	/*
439 	 * First make the page read-only, and only then make it executable to
440 	 * prevent it from being W+X in between.
441 	 */
442 	set_memory_ro((unsigned long)page, 1);
443 
444 	/*
445 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
446 	 * that the page was not maliciously altered and it is still zeroed.
447 	 */
448 	set_memory_x((unsigned long)page, 1);
449 
450 	return page;
451 }
452 
453 /* Recover page to RW mode before releasing it */
454 void free_insn_page(void *page)
455 {
456 	module_memfree(page);
457 }
458 
459 static int arch_copy_kprobe(struct kprobe *p)
460 {
461 	struct insn insn;
462 	kprobe_opcode_t buf[MAX_INSN_SIZE];
463 	int len;
464 
465 	/* Copy an instruction with recovering if other optprobe modifies it.*/
466 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
467 	if (!len)
468 		return -EINVAL;
469 
470 	/*
471 	 * __copy_instruction can modify the displacement of the instruction,
472 	 * but it doesn't affect boostable check.
473 	 */
474 	len = prepare_boost(buf, p, &insn);
475 
476 	/* Check whether the instruction modifies Interrupt Flag or not */
477 	p->ainsn.if_modifier = is_IF_modifier(buf);
478 
479 	/* Also, displacement change doesn't affect the first byte */
480 	p->opcode = buf[0];
481 
482 	/* OK, write back the instruction(s) into ROX insn buffer */
483 	text_poke(p->ainsn.insn, buf, len);
484 
485 	return 0;
486 }
487 
488 int arch_prepare_kprobe(struct kprobe *p)
489 {
490 	int ret;
491 
492 	if (alternatives_text_reserved(p->addr, p->addr))
493 		return -EINVAL;
494 
495 	if (!can_probe((unsigned long)p->addr))
496 		return -EILSEQ;
497 	/* insn: must be on special executable page on x86. */
498 	p->ainsn.insn = get_insn_slot();
499 	if (!p->ainsn.insn)
500 		return -ENOMEM;
501 
502 	ret = arch_copy_kprobe(p);
503 	if (ret) {
504 		free_insn_slot(p->ainsn.insn, 0);
505 		p->ainsn.insn = NULL;
506 	}
507 
508 	return ret;
509 }
510 
511 void arch_arm_kprobe(struct kprobe *p)
512 {
513 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
514 }
515 
516 void arch_disarm_kprobe(struct kprobe *p)
517 {
518 	text_poke(p->addr, &p->opcode, 1);
519 }
520 
521 void arch_remove_kprobe(struct kprobe *p)
522 {
523 	if (p->ainsn.insn) {
524 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
525 		p->ainsn.insn = NULL;
526 	}
527 }
528 
529 static nokprobe_inline void
530 save_previous_kprobe(struct kprobe_ctlblk *kcb)
531 {
532 	kcb->prev_kprobe.kp = kprobe_running();
533 	kcb->prev_kprobe.status = kcb->kprobe_status;
534 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
535 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
536 }
537 
538 static nokprobe_inline void
539 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
540 {
541 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
542 	kcb->kprobe_status = kcb->prev_kprobe.status;
543 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
544 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
545 }
546 
547 static nokprobe_inline void
548 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
549 		   struct kprobe_ctlblk *kcb)
550 {
551 	__this_cpu_write(current_kprobe, p);
552 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
553 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
554 	if (p->ainsn.if_modifier)
555 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
556 }
557 
558 static nokprobe_inline void clear_btf(void)
559 {
560 	if (test_thread_flag(TIF_BLOCKSTEP)) {
561 		unsigned long debugctl = get_debugctlmsr();
562 
563 		debugctl &= ~DEBUGCTLMSR_BTF;
564 		update_debugctlmsr(debugctl);
565 	}
566 }
567 
568 static nokprobe_inline void restore_btf(void)
569 {
570 	if (test_thread_flag(TIF_BLOCKSTEP)) {
571 		unsigned long debugctl = get_debugctlmsr();
572 
573 		debugctl |= DEBUGCTLMSR_BTF;
574 		update_debugctlmsr(debugctl);
575 	}
576 }
577 
578 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
579 {
580 	unsigned long *sara = stack_addr(regs);
581 
582 	ri->ret_addr = (kprobe_opcode_t *) *sara;
583 	ri->fp = sara;
584 
585 	/* Replace the return addr with trampoline addr */
586 	*sara = (unsigned long) &kretprobe_trampoline;
587 }
588 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
589 
590 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
591 			     struct kprobe_ctlblk *kcb, int reenter)
592 {
593 	if (setup_detour_execution(p, regs, reenter))
594 		return;
595 
596 #if !defined(CONFIG_PREEMPT)
597 	if (p->ainsn.boostable && !p->post_handler) {
598 		/* Boost up -- we can execute copied instructions directly */
599 		if (!reenter)
600 			reset_current_kprobe();
601 		/*
602 		 * Reentering boosted probe doesn't reset current_kprobe,
603 		 * nor set current_kprobe, because it doesn't use single
604 		 * stepping.
605 		 */
606 		regs->ip = (unsigned long)p->ainsn.insn;
607 		return;
608 	}
609 #endif
610 	if (reenter) {
611 		save_previous_kprobe(kcb);
612 		set_current_kprobe(p, regs, kcb);
613 		kcb->kprobe_status = KPROBE_REENTER;
614 	} else
615 		kcb->kprobe_status = KPROBE_HIT_SS;
616 	/* Prepare real single stepping */
617 	clear_btf();
618 	regs->flags |= X86_EFLAGS_TF;
619 	regs->flags &= ~X86_EFLAGS_IF;
620 	/* single step inline if the instruction is an int3 */
621 	if (p->opcode == BREAKPOINT_INSTRUCTION)
622 		regs->ip = (unsigned long)p->addr;
623 	else
624 		regs->ip = (unsigned long)p->ainsn.insn;
625 }
626 NOKPROBE_SYMBOL(setup_singlestep);
627 
628 /*
629  * We have reentered the kprobe_handler(), since another probe was hit while
630  * within the handler. We save the original kprobes variables and just single
631  * step on the instruction of the new probe without calling any user handlers.
632  */
633 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
634 			  struct kprobe_ctlblk *kcb)
635 {
636 	switch (kcb->kprobe_status) {
637 	case KPROBE_HIT_SSDONE:
638 	case KPROBE_HIT_ACTIVE:
639 	case KPROBE_HIT_SS:
640 		kprobes_inc_nmissed_count(p);
641 		setup_singlestep(p, regs, kcb, 1);
642 		break;
643 	case KPROBE_REENTER:
644 		/* A probe has been hit in the codepath leading up to, or just
645 		 * after, single-stepping of a probed instruction. This entire
646 		 * codepath should strictly reside in .kprobes.text section.
647 		 * Raise a BUG or we'll continue in an endless reentering loop
648 		 * and eventually a stack overflow.
649 		 */
650 		pr_err("Unrecoverable kprobe detected.\n");
651 		dump_kprobe(p);
652 		BUG();
653 	default:
654 		/* impossible cases */
655 		WARN_ON(1);
656 		return 0;
657 	}
658 
659 	return 1;
660 }
661 NOKPROBE_SYMBOL(reenter_kprobe);
662 
663 /*
664  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
665  * remain disabled throughout this function.
666  */
667 int kprobe_int3_handler(struct pt_regs *regs)
668 {
669 	kprobe_opcode_t *addr;
670 	struct kprobe *p;
671 	struct kprobe_ctlblk *kcb;
672 
673 	if (user_mode(regs))
674 		return 0;
675 
676 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
677 	/*
678 	 * We don't want to be preempted for the entire duration of kprobe
679 	 * processing. Since int3 and debug trap disables irqs and we clear
680 	 * IF while singlestepping, it must be no preemptible.
681 	 */
682 
683 	kcb = get_kprobe_ctlblk();
684 	p = get_kprobe(addr);
685 
686 	if (p) {
687 		if (kprobe_running()) {
688 			if (reenter_kprobe(p, regs, kcb))
689 				return 1;
690 		} else {
691 			set_current_kprobe(p, regs, kcb);
692 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
693 
694 			/*
695 			 * If we have no pre-handler or it returned 0, we
696 			 * continue with normal processing.  If we have a
697 			 * pre-handler and it returned non-zero, that means
698 			 * user handler setup registers to exit to another
699 			 * instruction, we must skip the single stepping.
700 			 */
701 			if (!p->pre_handler || !p->pre_handler(p, regs))
702 				setup_singlestep(p, regs, kcb, 0);
703 			else
704 				reset_current_kprobe();
705 			return 1;
706 		}
707 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
708 		/*
709 		 * The breakpoint instruction was removed right
710 		 * after we hit it.  Another cpu has removed
711 		 * either a probepoint or a debugger breakpoint
712 		 * at this address.  In either case, no further
713 		 * handling of this interrupt is appropriate.
714 		 * Back up over the (now missing) int3 and run
715 		 * the original instruction.
716 		 */
717 		regs->ip = (unsigned long)addr;
718 		return 1;
719 	} /* else: not a kprobe fault; let the kernel handle it */
720 
721 	return 0;
722 }
723 NOKPROBE_SYMBOL(kprobe_int3_handler);
724 
725 /*
726  * When a retprobed function returns, this code saves registers and
727  * calls trampoline_handler() runs, which calls the kretprobe's handler.
728  */
729 asm(
730 	".text\n"
731 	".global kretprobe_trampoline\n"
732 	".type kretprobe_trampoline, @function\n"
733 	"kretprobe_trampoline:\n"
734 #ifdef CONFIG_X86_64
735 	/* We don't bother saving the ss register */
736 	"	pushq %rsp\n"
737 	"	pushfq\n"
738 	SAVE_REGS_STRING
739 	"	movq %rsp, %rdi\n"
740 	"	call trampoline_handler\n"
741 	/* Replace saved sp with true return address. */
742 	"	movq %rax, 152(%rsp)\n"
743 	RESTORE_REGS_STRING
744 	"	popfq\n"
745 #else
746 	"	pushf\n"
747 	SAVE_REGS_STRING
748 	"	movl %esp, %eax\n"
749 	"	call trampoline_handler\n"
750 	/* Move flags to cs */
751 	"	movl 56(%esp), %edx\n"
752 	"	movl %edx, 52(%esp)\n"
753 	/* Replace saved flags with true return address. */
754 	"	movl %eax, 56(%esp)\n"
755 	RESTORE_REGS_STRING
756 	"	popf\n"
757 #endif
758 	"	ret\n"
759 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
760 );
761 NOKPROBE_SYMBOL(kretprobe_trampoline);
762 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
763 
764 static struct kprobe kretprobe_kprobe = {
765 	.addr = (void *)kretprobe_trampoline,
766 };
767 
768 /*
769  * Called from kretprobe_trampoline
770  */
771 __used __visible void *trampoline_handler(struct pt_regs *regs)
772 {
773 	struct kprobe_ctlblk *kcb;
774 	struct kretprobe_instance *ri = NULL;
775 	struct hlist_head *head, empty_rp;
776 	struct hlist_node *tmp;
777 	unsigned long flags, orig_ret_address = 0;
778 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
779 	kprobe_opcode_t *correct_ret_addr = NULL;
780 	void *frame_pointer;
781 	bool skipped = false;
782 
783 	preempt_disable();
784 
785 	/*
786 	 * Set a dummy kprobe for avoiding kretprobe recursion.
787 	 * Since kretprobe never run in kprobe handler, kprobe must not
788 	 * be running at this point.
789 	 */
790 	kcb = get_kprobe_ctlblk();
791 	__this_cpu_write(current_kprobe, &kretprobe_kprobe);
792 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
793 
794 	INIT_HLIST_HEAD(&empty_rp);
795 	kretprobe_hash_lock(current, &head, &flags);
796 	/* fixup registers */
797 #ifdef CONFIG_X86_64
798 	regs->cs = __KERNEL_CS;
799 	/* On x86-64, we use pt_regs->sp for return address holder. */
800 	frame_pointer = &regs->sp;
801 #else
802 	regs->cs = __KERNEL_CS | get_kernel_rpl();
803 	regs->gs = 0;
804 	/* On x86-32, we use pt_regs->flags for return address holder. */
805 	frame_pointer = &regs->flags;
806 #endif
807 	regs->ip = trampoline_address;
808 	regs->orig_ax = ~0UL;
809 
810 	/*
811 	 * It is possible to have multiple instances associated with a given
812 	 * task either because multiple functions in the call path have
813 	 * return probes installed on them, and/or more than one
814 	 * return probe was registered for a target function.
815 	 *
816 	 * We can handle this because:
817 	 *     - instances are always pushed into the head of the list
818 	 *     - when multiple return probes are registered for the same
819 	 *	 function, the (chronologically) first instance's ret_addr
820 	 *	 will be the real return address, and all the rest will
821 	 *	 point to kretprobe_trampoline.
822 	 */
823 	hlist_for_each_entry(ri, head, hlist) {
824 		if (ri->task != current)
825 			/* another task is sharing our hash bucket */
826 			continue;
827 		/*
828 		 * Return probes must be pushed on this hash list correct
829 		 * order (same as return order) so that it can be poped
830 		 * correctly. However, if we find it is pushed it incorrect
831 		 * order, this means we find a function which should not be
832 		 * probed, because the wrong order entry is pushed on the
833 		 * path of processing other kretprobe itself.
834 		 */
835 		if (ri->fp != frame_pointer) {
836 			if (!skipped)
837 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
838 			skipped = true;
839 			continue;
840 		}
841 
842 		orig_ret_address = (unsigned long)ri->ret_addr;
843 		if (skipped)
844 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
845 				ri->rp->kp.addr);
846 
847 		if (orig_ret_address != trampoline_address)
848 			/*
849 			 * This is the real return address. Any other
850 			 * instances associated with this task are for
851 			 * other calls deeper on the call stack
852 			 */
853 			break;
854 	}
855 
856 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
857 
858 	correct_ret_addr = ri->ret_addr;
859 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
860 		if (ri->task != current)
861 			/* another task is sharing our hash bucket */
862 			continue;
863 		if (ri->fp != frame_pointer)
864 			continue;
865 
866 		orig_ret_address = (unsigned long)ri->ret_addr;
867 		if (ri->rp && ri->rp->handler) {
868 			__this_cpu_write(current_kprobe, &ri->rp->kp);
869 			ri->ret_addr = correct_ret_addr;
870 			ri->rp->handler(ri, regs);
871 			__this_cpu_write(current_kprobe, &kretprobe_kprobe);
872 		}
873 
874 		recycle_rp_inst(ri, &empty_rp);
875 
876 		if (orig_ret_address != trampoline_address)
877 			/*
878 			 * This is the real return address. Any other
879 			 * instances associated with this task are for
880 			 * other calls deeper on the call stack
881 			 */
882 			break;
883 	}
884 
885 	kretprobe_hash_unlock(current, &flags);
886 
887 	__this_cpu_write(current_kprobe, NULL);
888 	preempt_enable();
889 
890 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
891 		hlist_del(&ri->hlist);
892 		kfree(ri);
893 	}
894 	return (void *)orig_ret_address;
895 }
896 NOKPROBE_SYMBOL(trampoline_handler);
897 
898 /*
899  * Called after single-stepping.  p->addr is the address of the
900  * instruction whose first byte has been replaced by the "int 3"
901  * instruction.  To avoid the SMP problems that can occur when we
902  * temporarily put back the original opcode to single-step, we
903  * single-stepped a copy of the instruction.  The address of this
904  * copy is p->ainsn.insn.
905  *
906  * This function prepares to return from the post-single-step
907  * interrupt.  We have to fix up the stack as follows:
908  *
909  * 0) Except in the case of absolute or indirect jump or call instructions,
910  * the new ip is relative to the copied instruction.  We need to make
911  * it relative to the original instruction.
912  *
913  * 1) If the single-stepped instruction was pushfl, then the TF and IF
914  * flags are set in the just-pushed flags, and may need to be cleared.
915  *
916  * 2) If the single-stepped instruction was a call, the return address
917  * that is atop the stack is the address following the copied instruction.
918  * We need to make it the address following the original instruction.
919  *
920  * If this is the first time we've single-stepped the instruction at
921  * this probepoint, and the instruction is boostable, boost it: add a
922  * jump instruction after the copied instruction, that jumps to the next
923  * instruction after the probepoint.
924  */
925 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
926 			     struct kprobe_ctlblk *kcb)
927 {
928 	unsigned long *tos = stack_addr(regs);
929 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
930 	unsigned long orig_ip = (unsigned long)p->addr;
931 	kprobe_opcode_t *insn = p->ainsn.insn;
932 
933 	/* Skip prefixes */
934 	insn = skip_prefixes(insn);
935 
936 	regs->flags &= ~X86_EFLAGS_TF;
937 	switch (*insn) {
938 	case 0x9c:	/* pushfl */
939 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
940 		*tos |= kcb->kprobe_old_flags;
941 		break;
942 	case 0xc2:	/* iret/ret/lret */
943 	case 0xc3:
944 	case 0xca:
945 	case 0xcb:
946 	case 0xcf:
947 	case 0xea:	/* jmp absolute -- ip is correct */
948 		/* ip is already adjusted, no more changes required */
949 		p->ainsn.boostable = true;
950 		goto no_change;
951 	case 0xe8:	/* call relative - Fix return addr */
952 		*tos = orig_ip + (*tos - copy_ip);
953 		break;
954 #ifdef CONFIG_X86_32
955 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
956 		*tos = orig_ip + (*tos - copy_ip);
957 		goto no_change;
958 #endif
959 	case 0xff:
960 		if ((insn[1] & 0x30) == 0x10) {
961 			/*
962 			 * call absolute, indirect
963 			 * Fix return addr; ip is correct.
964 			 * But this is not boostable
965 			 */
966 			*tos = orig_ip + (*tos - copy_ip);
967 			goto no_change;
968 		} else if (((insn[1] & 0x31) == 0x20) ||
969 			   ((insn[1] & 0x31) == 0x21)) {
970 			/*
971 			 * jmp near and far, absolute indirect
972 			 * ip is correct. And this is boostable
973 			 */
974 			p->ainsn.boostable = true;
975 			goto no_change;
976 		}
977 	default:
978 		break;
979 	}
980 
981 	regs->ip += orig_ip - copy_ip;
982 
983 no_change:
984 	restore_btf();
985 }
986 NOKPROBE_SYMBOL(resume_execution);
987 
988 /*
989  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
990  * remain disabled throughout this function.
991  */
992 int kprobe_debug_handler(struct pt_regs *regs)
993 {
994 	struct kprobe *cur = kprobe_running();
995 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
996 
997 	if (!cur)
998 		return 0;
999 
1000 	resume_execution(cur, regs, kcb);
1001 	regs->flags |= kcb->kprobe_saved_flags;
1002 
1003 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
1004 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
1005 		cur->post_handler(cur, regs, 0);
1006 	}
1007 
1008 	/* Restore back the original saved kprobes variables and continue. */
1009 	if (kcb->kprobe_status == KPROBE_REENTER) {
1010 		restore_previous_kprobe(kcb);
1011 		goto out;
1012 	}
1013 	reset_current_kprobe();
1014 out:
1015 	/*
1016 	 * if somebody else is singlestepping across a probe point, flags
1017 	 * will have TF set, in which case, continue the remaining processing
1018 	 * of do_debug, as if this is not a probe hit.
1019 	 */
1020 	if (regs->flags & X86_EFLAGS_TF)
1021 		return 0;
1022 
1023 	return 1;
1024 }
1025 NOKPROBE_SYMBOL(kprobe_debug_handler);
1026 
1027 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1028 {
1029 	struct kprobe *cur = kprobe_running();
1030 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1031 
1032 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1033 		/* This must happen on single-stepping */
1034 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1035 			kcb->kprobe_status != KPROBE_REENTER);
1036 		/*
1037 		 * We are here because the instruction being single
1038 		 * stepped caused a page fault. We reset the current
1039 		 * kprobe and the ip points back to the probe address
1040 		 * and allow the page fault handler to continue as a
1041 		 * normal page fault.
1042 		 */
1043 		regs->ip = (unsigned long)cur->addr;
1044 		/*
1045 		 * Trap flag (TF) has been set here because this fault
1046 		 * happened where the single stepping will be done.
1047 		 * So clear it by resetting the current kprobe:
1048 		 */
1049 		regs->flags &= ~X86_EFLAGS_TF;
1050 
1051 		/*
1052 		 * If the TF flag was set before the kprobe hit,
1053 		 * don't touch it:
1054 		 */
1055 		regs->flags |= kcb->kprobe_old_flags;
1056 
1057 		if (kcb->kprobe_status == KPROBE_REENTER)
1058 			restore_previous_kprobe(kcb);
1059 		else
1060 			reset_current_kprobe();
1061 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1062 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1063 		/*
1064 		 * We increment the nmissed count for accounting,
1065 		 * we can also use npre/npostfault count for accounting
1066 		 * these specific fault cases.
1067 		 */
1068 		kprobes_inc_nmissed_count(cur);
1069 
1070 		/*
1071 		 * We come here because instructions in the pre/post
1072 		 * handler caused the page_fault, this could happen
1073 		 * if handler tries to access user space by
1074 		 * copy_from_user(), get_user() etc. Let the
1075 		 * user-specified handler try to fix it first.
1076 		 */
1077 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1078 			return 1;
1079 	}
1080 
1081 	return 0;
1082 }
1083 NOKPROBE_SYMBOL(kprobe_fault_handler);
1084 
1085 int __init arch_populate_kprobe_blacklist(void)
1086 {
1087 	int ret;
1088 
1089 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1090 					 (unsigned long)__irqentry_text_end);
1091 	if (ret)
1092 		return ret;
1093 
1094 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1095 					 (unsigned long)__entry_text_end);
1096 }
1097 
1098 int __init arch_init_kprobes(void)
1099 {
1100 	return 0;
1101 }
1102 
1103 int arch_trampoline_kprobe(struct kprobe *p)
1104 {
1105 	return 0;
1106 }
1107