1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 #include <linux/moduleloader.h> 56 57 #include <asm/text-patching.h> 58 #include <asm/cacheflush.h> 59 #include <asm/desc.h> 60 #include <asm/pgtable.h> 61 #include <linux/uaccess.h> 62 #include <asm/alternative.h> 63 #include <asm/insn.h> 64 #include <asm/debugreg.h> 65 #include <asm/set_memory.h> 66 67 #include "common.h" 68 69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 71 72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 73 74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 79 << (row % 32)) 80 /* 81 * Undefined/reserved opcodes, conditional jump, Opcode Extension 82 * Groups, and some special opcodes can not boost. 83 * This is non-const and volatile to keep gcc from statically 84 * optimizing it out, as variable_test_bit makes gcc think only 85 * *(unsigned long*) is used. 86 */ 87 static volatile u32 twobyte_is_boostable[256 / 32] = { 88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 89 /* ---------------------------------------------- */ 90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 106 /* ----------------------------------------------- */ 107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 108 }; 109 #undef W 110 111 struct kretprobe_blackpoint kretprobe_blacklist[] = { 112 {"__switch_to", }, /* This function switches only current task, but 113 doesn't switch kernel stack.*/ 114 {NULL, NULL} /* Terminator */ 115 }; 116 117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 118 119 static nokprobe_inline void 120 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 121 { 122 struct __arch_relative_insn { 123 u8 op; 124 s32 raddr; 125 } __packed *insn; 126 127 insn = (struct __arch_relative_insn *)dest; 128 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 129 insn->op = op; 130 } 131 132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 133 void synthesize_reljump(void *dest, void *from, void *to) 134 { 135 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE); 136 } 137 NOKPROBE_SYMBOL(synthesize_reljump); 138 139 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 140 void synthesize_relcall(void *dest, void *from, void *to) 141 { 142 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE); 143 } 144 NOKPROBE_SYMBOL(synthesize_relcall); 145 146 /* 147 * Skip the prefixes of the instruction. 148 */ 149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 150 { 151 insn_attr_t attr; 152 153 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 154 while (inat_is_legacy_prefix(attr)) { 155 insn++; 156 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 157 } 158 #ifdef CONFIG_X86_64 159 if (inat_is_rex_prefix(attr)) 160 insn++; 161 #endif 162 return insn; 163 } 164 NOKPROBE_SYMBOL(skip_prefixes); 165 166 /* 167 * Returns non-zero if INSN is boostable. 168 * RIP relative instructions are adjusted at copying time in 64 bits mode 169 */ 170 int can_boost(struct insn *insn, void *addr) 171 { 172 kprobe_opcode_t opcode; 173 174 if (search_exception_tables((unsigned long)addr)) 175 return 0; /* Page fault may occur on this address. */ 176 177 /* 2nd-byte opcode */ 178 if (insn->opcode.nbytes == 2) 179 return test_bit(insn->opcode.bytes[1], 180 (unsigned long *)twobyte_is_boostable); 181 182 if (insn->opcode.nbytes != 1) 183 return 0; 184 185 /* Can't boost Address-size override prefix */ 186 if (unlikely(inat_is_address_size_prefix(insn->attr))) 187 return 0; 188 189 opcode = insn->opcode.bytes[0]; 190 191 switch (opcode & 0xf0) { 192 case 0x60: 193 /* can't boost "bound" */ 194 return (opcode != 0x62); 195 case 0x70: 196 return 0; /* can't boost conditional jump */ 197 case 0x90: 198 return opcode != 0x9a; /* can't boost call far */ 199 case 0xc0: 200 /* can't boost software-interruptions */ 201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 202 case 0xd0: 203 /* can boost AA* and XLAT */ 204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 205 case 0xe0: 206 /* can boost in/out and absolute jmps */ 207 return ((opcode & 0x04) || opcode == 0xea); 208 case 0xf0: 209 /* clear and set flags are boostable */ 210 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 211 default: 212 /* CS override prefix and call are not boostable */ 213 return (opcode != 0x2e && opcode != 0x9a); 214 } 215 } 216 217 static unsigned long 218 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 219 { 220 struct kprobe *kp; 221 unsigned long faddr; 222 223 kp = get_kprobe((void *)addr); 224 faddr = ftrace_location(addr); 225 /* 226 * Addresses inside the ftrace location are refused by 227 * arch_check_ftrace_location(). Something went terribly wrong 228 * if such an address is checked here. 229 */ 230 if (WARN_ON(faddr && faddr != addr)) 231 return 0UL; 232 /* 233 * Use the current code if it is not modified by Kprobe 234 * and it cannot be modified by ftrace. 235 */ 236 if (!kp && !faddr) 237 return addr; 238 239 /* 240 * Basically, kp->ainsn.insn has an original instruction. 241 * However, RIP-relative instruction can not do single-stepping 242 * at different place, __copy_instruction() tweaks the displacement of 243 * that instruction. In that case, we can't recover the instruction 244 * from the kp->ainsn.insn. 245 * 246 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 247 * of the first byte of the probed instruction, which is overwritten 248 * by int3. And the instruction at kp->addr is not modified by kprobes 249 * except for the first byte, we can recover the original instruction 250 * from it and kp->opcode. 251 * 252 * In case of Kprobes using ftrace, we do not have a copy of 253 * the original instruction. In fact, the ftrace location might 254 * be modified at anytime and even could be in an inconsistent state. 255 * Fortunately, we know that the original code is the ideal 5-byte 256 * long NOP. 257 */ 258 if (probe_kernel_read(buf, (void *)addr, 259 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 260 return 0UL; 261 262 if (faddr) 263 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 264 else 265 buf[0] = kp->opcode; 266 return (unsigned long)buf; 267 } 268 269 /* 270 * Recover the probed instruction at addr for further analysis. 271 * Caller must lock kprobes by kprobe_mutex, or disable preemption 272 * for preventing to release referencing kprobes. 273 * Returns zero if the instruction can not get recovered (or access failed). 274 */ 275 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 276 { 277 unsigned long __addr; 278 279 __addr = __recover_optprobed_insn(buf, addr); 280 if (__addr != addr) 281 return __addr; 282 283 return __recover_probed_insn(buf, addr); 284 } 285 286 /* Check if paddr is at an instruction boundary */ 287 static int can_probe(unsigned long paddr) 288 { 289 unsigned long addr, __addr, offset = 0; 290 struct insn insn; 291 kprobe_opcode_t buf[MAX_INSN_SIZE]; 292 293 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 294 return 0; 295 296 /* Decode instructions */ 297 addr = paddr - offset; 298 while (addr < paddr) { 299 /* 300 * Check if the instruction has been modified by another 301 * kprobe, in which case we replace the breakpoint by the 302 * original instruction in our buffer. 303 * Also, jump optimization will change the breakpoint to 304 * relative-jump. Since the relative-jump itself is 305 * normally used, we just go through if there is no kprobe. 306 */ 307 __addr = recover_probed_instruction(buf, addr); 308 if (!__addr) 309 return 0; 310 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 311 insn_get_length(&insn); 312 313 /* 314 * Another debugging subsystem might insert this breakpoint. 315 * In that case, we can't recover it. 316 */ 317 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 318 return 0; 319 addr += insn.length; 320 } 321 322 return (addr == paddr); 323 } 324 325 /* 326 * Returns non-zero if opcode modifies the interrupt flag. 327 */ 328 static int is_IF_modifier(kprobe_opcode_t *insn) 329 { 330 /* Skip prefixes */ 331 insn = skip_prefixes(insn); 332 333 switch (*insn) { 334 case 0xfa: /* cli */ 335 case 0xfb: /* sti */ 336 case 0xcf: /* iret/iretd */ 337 case 0x9d: /* popf/popfd */ 338 return 1; 339 } 340 341 return 0; 342 } 343 344 /* 345 * Copy an instruction with recovering modified instruction by kprobes 346 * and adjust the displacement if the instruction uses the %rip-relative 347 * addressing mode. Note that since @real will be the final place of copied 348 * instruction, displacement must be adjust by @real, not @dest. 349 * This returns the length of copied instruction, or 0 if it has an error. 350 */ 351 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 352 { 353 kprobe_opcode_t buf[MAX_INSN_SIZE]; 354 unsigned long recovered_insn = 355 recover_probed_instruction(buf, (unsigned long)src); 356 357 if (!recovered_insn || !insn) 358 return 0; 359 360 /* This can access kernel text if given address is not recovered */ 361 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 362 return 0; 363 364 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 365 insn_get_length(insn); 366 367 /* Another subsystem puts a breakpoint, failed to recover */ 368 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 369 return 0; 370 371 /* We should not singlestep on the exception masking instructions */ 372 if (insn_masking_exception(insn)) 373 return 0; 374 375 #ifdef CONFIG_X86_64 376 /* Only x86_64 has RIP relative instructions */ 377 if (insn_rip_relative(insn)) { 378 s64 newdisp; 379 u8 *disp; 380 /* 381 * The copied instruction uses the %rip-relative addressing 382 * mode. Adjust the displacement for the difference between 383 * the original location of this instruction and the location 384 * of the copy that will actually be run. The tricky bit here 385 * is making sure that the sign extension happens correctly in 386 * this calculation, since we need a signed 32-bit result to 387 * be sign-extended to 64 bits when it's added to the %rip 388 * value and yield the same 64-bit result that the sign- 389 * extension of the original signed 32-bit displacement would 390 * have given. 391 */ 392 newdisp = (u8 *) src + (s64) insn->displacement.value 393 - (u8 *) real; 394 if ((s64) (s32) newdisp != newdisp) { 395 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 396 return 0; 397 } 398 disp = (u8 *) dest + insn_offset_displacement(insn); 399 *(s32 *) disp = (s32) newdisp; 400 } 401 #endif 402 return insn->length; 403 } 404 405 /* Prepare reljump right after instruction to boost */ 406 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 407 struct insn *insn) 408 { 409 int len = insn->length; 410 411 if (can_boost(insn, p->addr) && 412 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) { 413 /* 414 * These instructions can be executed directly if it 415 * jumps back to correct address. 416 */ 417 synthesize_reljump(buf + len, p->ainsn.insn + len, 418 p->addr + insn->length); 419 len += RELATIVEJUMP_SIZE; 420 p->ainsn.boostable = true; 421 } else { 422 p->ainsn.boostable = false; 423 } 424 425 return len; 426 } 427 428 /* Make page to RO mode when allocate it */ 429 void *alloc_insn_page(void) 430 { 431 void *page; 432 433 page = module_alloc(PAGE_SIZE); 434 if (!page) 435 return NULL; 436 437 set_vm_flush_reset_perms(page); 438 /* 439 * First make the page read-only, and only then make it executable to 440 * prevent it from being W+X in between. 441 */ 442 set_memory_ro((unsigned long)page, 1); 443 444 /* 445 * TODO: Once additional kernel code protection mechanisms are set, ensure 446 * that the page was not maliciously altered and it is still zeroed. 447 */ 448 set_memory_x((unsigned long)page, 1); 449 450 return page; 451 } 452 453 /* Recover page to RW mode before releasing it */ 454 void free_insn_page(void *page) 455 { 456 module_memfree(page); 457 } 458 459 static int arch_copy_kprobe(struct kprobe *p) 460 { 461 struct insn insn; 462 kprobe_opcode_t buf[MAX_INSN_SIZE]; 463 int len; 464 465 /* Copy an instruction with recovering if other optprobe modifies it.*/ 466 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 467 if (!len) 468 return -EINVAL; 469 470 /* 471 * __copy_instruction can modify the displacement of the instruction, 472 * but it doesn't affect boostable check. 473 */ 474 len = prepare_boost(buf, p, &insn); 475 476 /* Check whether the instruction modifies Interrupt Flag or not */ 477 p->ainsn.if_modifier = is_IF_modifier(buf); 478 479 /* Also, displacement change doesn't affect the first byte */ 480 p->opcode = buf[0]; 481 482 /* OK, write back the instruction(s) into ROX insn buffer */ 483 text_poke(p->ainsn.insn, buf, len); 484 485 return 0; 486 } 487 488 int arch_prepare_kprobe(struct kprobe *p) 489 { 490 int ret; 491 492 if (alternatives_text_reserved(p->addr, p->addr)) 493 return -EINVAL; 494 495 if (!can_probe((unsigned long)p->addr)) 496 return -EILSEQ; 497 /* insn: must be on special executable page on x86. */ 498 p->ainsn.insn = get_insn_slot(); 499 if (!p->ainsn.insn) 500 return -ENOMEM; 501 502 ret = arch_copy_kprobe(p); 503 if (ret) { 504 free_insn_slot(p->ainsn.insn, 0); 505 p->ainsn.insn = NULL; 506 } 507 508 return ret; 509 } 510 511 void arch_arm_kprobe(struct kprobe *p) 512 { 513 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 514 } 515 516 void arch_disarm_kprobe(struct kprobe *p) 517 { 518 text_poke(p->addr, &p->opcode, 1); 519 } 520 521 void arch_remove_kprobe(struct kprobe *p) 522 { 523 if (p->ainsn.insn) { 524 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 525 p->ainsn.insn = NULL; 526 } 527 } 528 529 static nokprobe_inline void 530 save_previous_kprobe(struct kprobe_ctlblk *kcb) 531 { 532 kcb->prev_kprobe.kp = kprobe_running(); 533 kcb->prev_kprobe.status = kcb->kprobe_status; 534 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 535 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 536 } 537 538 static nokprobe_inline void 539 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 540 { 541 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 542 kcb->kprobe_status = kcb->prev_kprobe.status; 543 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 544 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 545 } 546 547 static nokprobe_inline void 548 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 549 struct kprobe_ctlblk *kcb) 550 { 551 __this_cpu_write(current_kprobe, p); 552 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 553 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 554 if (p->ainsn.if_modifier) 555 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 556 } 557 558 static nokprobe_inline void clear_btf(void) 559 { 560 if (test_thread_flag(TIF_BLOCKSTEP)) { 561 unsigned long debugctl = get_debugctlmsr(); 562 563 debugctl &= ~DEBUGCTLMSR_BTF; 564 update_debugctlmsr(debugctl); 565 } 566 } 567 568 static nokprobe_inline void restore_btf(void) 569 { 570 if (test_thread_flag(TIF_BLOCKSTEP)) { 571 unsigned long debugctl = get_debugctlmsr(); 572 573 debugctl |= DEBUGCTLMSR_BTF; 574 update_debugctlmsr(debugctl); 575 } 576 } 577 578 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 579 { 580 unsigned long *sara = stack_addr(regs); 581 582 ri->ret_addr = (kprobe_opcode_t *) *sara; 583 ri->fp = sara; 584 585 /* Replace the return addr with trampoline addr */ 586 *sara = (unsigned long) &kretprobe_trampoline; 587 } 588 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 589 590 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 591 struct kprobe_ctlblk *kcb, int reenter) 592 { 593 if (setup_detour_execution(p, regs, reenter)) 594 return; 595 596 #if !defined(CONFIG_PREEMPT) 597 if (p->ainsn.boostable && !p->post_handler) { 598 /* Boost up -- we can execute copied instructions directly */ 599 if (!reenter) 600 reset_current_kprobe(); 601 /* 602 * Reentering boosted probe doesn't reset current_kprobe, 603 * nor set current_kprobe, because it doesn't use single 604 * stepping. 605 */ 606 regs->ip = (unsigned long)p->ainsn.insn; 607 return; 608 } 609 #endif 610 if (reenter) { 611 save_previous_kprobe(kcb); 612 set_current_kprobe(p, regs, kcb); 613 kcb->kprobe_status = KPROBE_REENTER; 614 } else 615 kcb->kprobe_status = KPROBE_HIT_SS; 616 /* Prepare real single stepping */ 617 clear_btf(); 618 regs->flags |= X86_EFLAGS_TF; 619 regs->flags &= ~X86_EFLAGS_IF; 620 /* single step inline if the instruction is an int3 */ 621 if (p->opcode == BREAKPOINT_INSTRUCTION) 622 regs->ip = (unsigned long)p->addr; 623 else 624 regs->ip = (unsigned long)p->ainsn.insn; 625 } 626 NOKPROBE_SYMBOL(setup_singlestep); 627 628 /* 629 * We have reentered the kprobe_handler(), since another probe was hit while 630 * within the handler. We save the original kprobes variables and just single 631 * step on the instruction of the new probe without calling any user handlers. 632 */ 633 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 634 struct kprobe_ctlblk *kcb) 635 { 636 switch (kcb->kprobe_status) { 637 case KPROBE_HIT_SSDONE: 638 case KPROBE_HIT_ACTIVE: 639 case KPROBE_HIT_SS: 640 kprobes_inc_nmissed_count(p); 641 setup_singlestep(p, regs, kcb, 1); 642 break; 643 case KPROBE_REENTER: 644 /* A probe has been hit in the codepath leading up to, or just 645 * after, single-stepping of a probed instruction. This entire 646 * codepath should strictly reside in .kprobes.text section. 647 * Raise a BUG or we'll continue in an endless reentering loop 648 * and eventually a stack overflow. 649 */ 650 pr_err("Unrecoverable kprobe detected.\n"); 651 dump_kprobe(p); 652 BUG(); 653 default: 654 /* impossible cases */ 655 WARN_ON(1); 656 return 0; 657 } 658 659 return 1; 660 } 661 NOKPROBE_SYMBOL(reenter_kprobe); 662 663 /* 664 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 665 * remain disabled throughout this function. 666 */ 667 int kprobe_int3_handler(struct pt_regs *regs) 668 { 669 kprobe_opcode_t *addr; 670 struct kprobe *p; 671 struct kprobe_ctlblk *kcb; 672 673 if (user_mode(regs)) 674 return 0; 675 676 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 677 /* 678 * We don't want to be preempted for the entire duration of kprobe 679 * processing. Since int3 and debug trap disables irqs and we clear 680 * IF while singlestepping, it must be no preemptible. 681 */ 682 683 kcb = get_kprobe_ctlblk(); 684 p = get_kprobe(addr); 685 686 if (p) { 687 if (kprobe_running()) { 688 if (reenter_kprobe(p, regs, kcb)) 689 return 1; 690 } else { 691 set_current_kprobe(p, regs, kcb); 692 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 693 694 /* 695 * If we have no pre-handler or it returned 0, we 696 * continue with normal processing. If we have a 697 * pre-handler and it returned non-zero, that means 698 * user handler setup registers to exit to another 699 * instruction, we must skip the single stepping. 700 */ 701 if (!p->pre_handler || !p->pre_handler(p, regs)) 702 setup_singlestep(p, regs, kcb, 0); 703 else 704 reset_current_kprobe(); 705 return 1; 706 } 707 } else if (*addr != BREAKPOINT_INSTRUCTION) { 708 /* 709 * The breakpoint instruction was removed right 710 * after we hit it. Another cpu has removed 711 * either a probepoint or a debugger breakpoint 712 * at this address. In either case, no further 713 * handling of this interrupt is appropriate. 714 * Back up over the (now missing) int3 and run 715 * the original instruction. 716 */ 717 regs->ip = (unsigned long)addr; 718 return 1; 719 } /* else: not a kprobe fault; let the kernel handle it */ 720 721 return 0; 722 } 723 NOKPROBE_SYMBOL(kprobe_int3_handler); 724 725 /* 726 * When a retprobed function returns, this code saves registers and 727 * calls trampoline_handler() runs, which calls the kretprobe's handler. 728 */ 729 asm( 730 ".text\n" 731 ".global kretprobe_trampoline\n" 732 ".type kretprobe_trampoline, @function\n" 733 "kretprobe_trampoline:\n" 734 #ifdef CONFIG_X86_64 735 /* We don't bother saving the ss register */ 736 " pushq %rsp\n" 737 " pushfq\n" 738 SAVE_REGS_STRING 739 " movq %rsp, %rdi\n" 740 " call trampoline_handler\n" 741 /* Replace saved sp with true return address. */ 742 " movq %rax, 152(%rsp)\n" 743 RESTORE_REGS_STRING 744 " popfq\n" 745 #else 746 " pushf\n" 747 SAVE_REGS_STRING 748 " movl %esp, %eax\n" 749 " call trampoline_handler\n" 750 /* Move flags to cs */ 751 " movl 56(%esp), %edx\n" 752 " movl %edx, 52(%esp)\n" 753 /* Replace saved flags with true return address. */ 754 " movl %eax, 56(%esp)\n" 755 RESTORE_REGS_STRING 756 " popf\n" 757 #endif 758 " ret\n" 759 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 760 ); 761 NOKPROBE_SYMBOL(kretprobe_trampoline); 762 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 763 764 static struct kprobe kretprobe_kprobe = { 765 .addr = (void *)kretprobe_trampoline, 766 }; 767 768 /* 769 * Called from kretprobe_trampoline 770 */ 771 __used __visible void *trampoline_handler(struct pt_regs *regs) 772 { 773 struct kprobe_ctlblk *kcb; 774 struct kretprobe_instance *ri = NULL; 775 struct hlist_head *head, empty_rp; 776 struct hlist_node *tmp; 777 unsigned long flags, orig_ret_address = 0; 778 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 779 kprobe_opcode_t *correct_ret_addr = NULL; 780 void *frame_pointer; 781 bool skipped = false; 782 783 preempt_disable(); 784 785 /* 786 * Set a dummy kprobe for avoiding kretprobe recursion. 787 * Since kretprobe never run in kprobe handler, kprobe must not 788 * be running at this point. 789 */ 790 kcb = get_kprobe_ctlblk(); 791 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 792 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 793 794 INIT_HLIST_HEAD(&empty_rp); 795 kretprobe_hash_lock(current, &head, &flags); 796 /* fixup registers */ 797 #ifdef CONFIG_X86_64 798 regs->cs = __KERNEL_CS; 799 /* On x86-64, we use pt_regs->sp for return address holder. */ 800 frame_pointer = ®s->sp; 801 #else 802 regs->cs = __KERNEL_CS | get_kernel_rpl(); 803 regs->gs = 0; 804 /* On x86-32, we use pt_regs->flags for return address holder. */ 805 frame_pointer = ®s->flags; 806 #endif 807 regs->ip = trampoline_address; 808 regs->orig_ax = ~0UL; 809 810 /* 811 * It is possible to have multiple instances associated with a given 812 * task either because multiple functions in the call path have 813 * return probes installed on them, and/or more than one 814 * return probe was registered for a target function. 815 * 816 * We can handle this because: 817 * - instances are always pushed into the head of the list 818 * - when multiple return probes are registered for the same 819 * function, the (chronologically) first instance's ret_addr 820 * will be the real return address, and all the rest will 821 * point to kretprobe_trampoline. 822 */ 823 hlist_for_each_entry(ri, head, hlist) { 824 if (ri->task != current) 825 /* another task is sharing our hash bucket */ 826 continue; 827 /* 828 * Return probes must be pushed on this hash list correct 829 * order (same as return order) so that it can be poped 830 * correctly. However, if we find it is pushed it incorrect 831 * order, this means we find a function which should not be 832 * probed, because the wrong order entry is pushed on the 833 * path of processing other kretprobe itself. 834 */ 835 if (ri->fp != frame_pointer) { 836 if (!skipped) 837 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 838 skipped = true; 839 continue; 840 } 841 842 orig_ret_address = (unsigned long)ri->ret_addr; 843 if (skipped) 844 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 845 ri->rp->kp.addr); 846 847 if (orig_ret_address != trampoline_address) 848 /* 849 * This is the real return address. Any other 850 * instances associated with this task are for 851 * other calls deeper on the call stack 852 */ 853 break; 854 } 855 856 kretprobe_assert(ri, orig_ret_address, trampoline_address); 857 858 correct_ret_addr = ri->ret_addr; 859 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 860 if (ri->task != current) 861 /* another task is sharing our hash bucket */ 862 continue; 863 if (ri->fp != frame_pointer) 864 continue; 865 866 orig_ret_address = (unsigned long)ri->ret_addr; 867 if (ri->rp && ri->rp->handler) { 868 __this_cpu_write(current_kprobe, &ri->rp->kp); 869 ri->ret_addr = correct_ret_addr; 870 ri->rp->handler(ri, regs); 871 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 872 } 873 874 recycle_rp_inst(ri, &empty_rp); 875 876 if (orig_ret_address != trampoline_address) 877 /* 878 * This is the real return address. Any other 879 * instances associated with this task are for 880 * other calls deeper on the call stack 881 */ 882 break; 883 } 884 885 kretprobe_hash_unlock(current, &flags); 886 887 __this_cpu_write(current_kprobe, NULL); 888 preempt_enable(); 889 890 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 891 hlist_del(&ri->hlist); 892 kfree(ri); 893 } 894 return (void *)orig_ret_address; 895 } 896 NOKPROBE_SYMBOL(trampoline_handler); 897 898 /* 899 * Called after single-stepping. p->addr is the address of the 900 * instruction whose first byte has been replaced by the "int 3" 901 * instruction. To avoid the SMP problems that can occur when we 902 * temporarily put back the original opcode to single-step, we 903 * single-stepped a copy of the instruction. The address of this 904 * copy is p->ainsn.insn. 905 * 906 * This function prepares to return from the post-single-step 907 * interrupt. We have to fix up the stack as follows: 908 * 909 * 0) Except in the case of absolute or indirect jump or call instructions, 910 * the new ip is relative to the copied instruction. We need to make 911 * it relative to the original instruction. 912 * 913 * 1) If the single-stepped instruction was pushfl, then the TF and IF 914 * flags are set in the just-pushed flags, and may need to be cleared. 915 * 916 * 2) If the single-stepped instruction was a call, the return address 917 * that is atop the stack is the address following the copied instruction. 918 * We need to make it the address following the original instruction. 919 * 920 * If this is the first time we've single-stepped the instruction at 921 * this probepoint, and the instruction is boostable, boost it: add a 922 * jump instruction after the copied instruction, that jumps to the next 923 * instruction after the probepoint. 924 */ 925 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 926 struct kprobe_ctlblk *kcb) 927 { 928 unsigned long *tos = stack_addr(regs); 929 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 930 unsigned long orig_ip = (unsigned long)p->addr; 931 kprobe_opcode_t *insn = p->ainsn.insn; 932 933 /* Skip prefixes */ 934 insn = skip_prefixes(insn); 935 936 regs->flags &= ~X86_EFLAGS_TF; 937 switch (*insn) { 938 case 0x9c: /* pushfl */ 939 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 940 *tos |= kcb->kprobe_old_flags; 941 break; 942 case 0xc2: /* iret/ret/lret */ 943 case 0xc3: 944 case 0xca: 945 case 0xcb: 946 case 0xcf: 947 case 0xea: /* jmp absolute -- ip is correct */ 948 /* ip is already adjusted, no more changes required */ 949 p->ainsn.boostable = true; 950 goto no_change; 951 case 0xe8: /* call relative - Fix return addr */ 952 *tos = orig_ip + (*tos - copy_ip); 953 break; 954 #ifdef CONFIG_X86_32 955 case 0x9a: /* call absolute -- same as call absolute, indirect */ 956 *tos = orig_ip + (*tos - copy_ip); 957 goto no_change; 958 #endif 959 case 0xff: 960 if ((insn[1] & 0x30) == 0x10) { 961 /* 962 * call absolute, indirect 963 * Fix return addr; ip is correct. 964 * But this is not boostable 965 */ 966 *tos = orig_ip + (*tos - copy_ip); 967 goto no_change; 968 } else if (((insn[1] & 0x31) == 0x20) || 969 ((insn[1] & 0x31) == 0x21)) { 970 /* 971 * jmp near and far, absolute indirect 972 * ip is correct. And this is boostable 973 */ 974 p->ainsn.boostable = true; 975 goto no_change; 976 } 977 default: 978 break; 979 } 980 981 regs->ip += orig_ip - copy_ip; 982 983 no_change: 984 restore_btf(); 985 } 986 NOKPROBE_SYMBOL(resume_execution); 987 988 /* 989 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 990 * remain disabled throughout this function. 991 */ 992 int kprobe_debug_handler(struct pt_regs *regs) 993 { 994 struct kprobe *cur = kprobe_running(); 995 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 996 997 if (!cur) 998 return 0; 999 1000 resume_execution(cur, regs, kcb); 1001 regs->flags |= kcb->kprobe_saved_flags; 1002 1003 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 1004 kcb->kprobe_status = KPROBE_HIT_SSDONE; 1005 cur->post_handler(cur, regs, 0); 1006 } 1007 1008 /* Restore back the original saved kprobes variables and continue. */ 1009 if (kcb->kprobe_status == KPROBE_REENTER) { 1010 restore_previous_kprobe(kcb); 1011 goto out; 1012 } 1013 reset_current_kprobe(); 1014 out: 1015 /* 1016 * if somebody else is singlestepping across a probe point, flags 1017 * will have TF set, in which case, continue the remaining processing 1018 * of do_debug, as if this is not a probe hit. 1019 */ 1020 if (regs->flags & X86_EFLAGS_TF) 1021 return 0; 1022 1023 return 1; 1024 } 1025 NOKPROBE_SYMBOL(kprobe_debug_handler); 1026 1027 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1028 { 1029 struct kprobe *cur = kprobe_running(); 1030 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1031 1032 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1033 /* This must happen on single-stepping */ 1034 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1035 kcb->kprobe_status != KPROBE_REENTER); 1036 /* 1037 * We are here because the instruction being single 1038 * stepped caused a page fault. We reset the current 1039 * kprobe and the ip points back to the probe address 1040 * and allow the page fault handler to continue as a 1041 * normal page fault. 1042 */ 1043 regs->ip = (unsigned long)cur->addr; 1044 /* 1045 * Trap flag (TF) has been set here because this fault 1046 * happened where the single stepping will be done. 1047 * So clear it by resetting the current kprobe: 1048 */ 1049 regs->flags &= ~X86_EFLAGS_TF; 1050 1051 /* 1052 * If the TF flag was set before the kprobe hit, 1053 * don't touch it: 1054 */ 1055 regs->flags |= kcb->kprobe_old_flags; 1056 1057 if (kcb->kprobe_status == KPROBE_REENTER) 1058 restore_previous_kprobe(kcb); 1059 else 1060 reset_current_kprobe(); 1061 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1062 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1063 /* 1064 * We increment the nmissed count for accounting, 1065 * we can also use npre/npostfault count for accounting 1066 * these specific fault cases. 1067 */ 1068 kprobes_inc_nmissed_count(cur); 1069 1070 /* 1071 * We come here because instructions in the pre/post 1072 * handler caused the page_fault, this could happen 1073 * if handler tries to access user space by 1074 * copy_from_user(), get_user() etc. Let the 1075 * user-specified handler try to fix it first. 1076 */ 1077 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1078 return 1; 1079 } 1080 1081 return 0; 1082 } 1083 NOKPROBE_SYMBOL(kprobe_fault_handler); 1084 1085 int __init arch_populate_kprobe_blacklist(void) 1086 { 1087 int ret; 1088 1089 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 1090 (unsigned long)__irqentry_text_end); 1091 if (ret) 1092 return ret; 1093 1094 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1095 (unsigned long)__entry_text_end); 1096 } 1097 1098 int __init arch_init_kprobes(void) 1099 { 1100 return 0; 1101 } 1102 1103 int arch_trampoline_kprobe(struct kprobe *p) 1104 { 1105 return 0; 1106 } 1107