xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision ad066c9b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/kgdb.h>
41 #include <linux/ftrace.h>
42 #include <linux/kasan.h>
43 #include <linux/moduleloader.h>
44 #include <linux/objtool.h>
45 #include <linux/vmalloc.h>
46 #include <linux/pgtable.h>
47 #include <linux/set_memory.h>
48 #include <linux/cfi.h>
49 
50 #include <asm/text-patching.h>
51 #include <asm/cacheflush.h>
52 #include <asm/desc.h>
53 #include <linux/uaccess.h>
54 #include <asm/alternative.h>
55 #include <asm/insn.h>
56 #include <asm/debugreg.h>
57 #include <asm/ibt.h>
58 
59 #include "common.h"
60 
61 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
62 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
63 
64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
65 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
66 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
67 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
68 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
69 	 << (row % 32))
70 	/*
71 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
72 	 * Groups, and some special opcodes can not boost.
73 	 * This is non-const and volatile to keep gcc from statically
74 	 * optimizing it out, as variable_test_bit makes gcc think only
75 	 * *(unsigned long*) is used.
76 	 */
77 static volatile u32 twobyte_is_boostable[256 / 32] = {
78 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
79 	/*      ----------------------------------------------          */
80 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
81 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
82 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
83 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
84 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
85 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
86 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
87 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
88 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
89 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
90 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
91 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
92 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
93 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
94 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
95 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
96 	/*      -----------------------------------------------         */
97 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
98 };
99 #undef W
100 
101 struct kretprobe_blackpoint kretprobe_blacklist[] = {
102 	{"__switch_to", }, /* This function switches only current task, but
103 			      doesn't switch kernel stack.*/
104 	{NULL, NULL}	/* Terminator */
105 };
106 
107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108 
109 static nokprobe_inline void
110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111 {
112 	struct __arch_relative_insn {
113 		u8 op;
114 		s32 raddr;
115 	} __packed *insn;
116 
117 	insn = (struct __arch_relative_insn *)dest;
118 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 	insn->op = op;
120 }
121 
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 void synthesize_reljump(void *dest, void *from, void *to)
124 {
125 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126 }
127 NOKPROBE_SYMBOL(synthesize_reljump);
128 
129 /* Insert a call instruction at address 'from', which calls address 'to'.*/
130 void synthesize_relcall(void *dest, void *from, void *to)
131 {
132 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133 }
134 NOKPROBE_SYMBOL(synthesize_relcall);
135 
136 /*
137  * Returns non-zero if INSN is boostable.
138  * RIP relative instructions are adjusted at copying time in 64 bits mode
139  */
140 int can_boost(struct insn *insn, void *addr)
141 {
142 	kprobe_opcode_t opcode;
143 	insn_byte_t prefix;
144 	int i;
145 
146 	if (search_exception_tables((unsigned long)addr))
147 		return 0;	/* Page fault may occur on this address. */
148 
149 	/* 2nd-byte opcode */
150 	if (insn->opcode.nbytes == 2)
151 		return test_bit(insn->opcode.bytes[1],
152 				(unsigned long *)twobyte_is_boostable);
153 
154 	if (insn->opcode.nbytes != 1)
155 		return 0;
156 
157 	for_each_insn_prefix(insn, i, prefix) {
158 		insn_attr_t attr;
159 
160 		attr = inat_get_opcode_attribute(prefix);
161 		/* Can't boost Address-size override prefix and CS override prefix */
162 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
163 			return 0;
164 	}
165 
166 	opcode = insn->opcode.bytes[0];
167 
168 	switch (opcode) {
169 	case 0x62:		/* bound */
170 	case 0x70 ... 0x7f:	/* Conditional jumps */
171 	case 0x9a:		/* Call far */
172 	case 0xc0 ... 0xc1:	/* Grp2 */
173 	case 0xcc ... 0xce:	/* software exceptions */
174 	case 0xd0 ... 0xd3:	/* Grp2 */
175 	case 0xd6:		/* (UD) */
176 	case 0xd8 ... 0xdf:	/* ESC */
177 	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
178 	case 0xe8 ... 0xe9:	/* near Call, JMP */
179 	case 0xeb:		/* Short JMP */
180 	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
181 	case 0xf6 ... 0xf7:	/* Grp3 */
182 	case 0xfe:		/* Grp4 */
183 		/* ... are not boostable */
184 		return 0;
185 	case 0xff:		/* Grp5 */
186 		/* Only indirect jmp is boostable */
187 		return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
188 	default:
189 		return 1;
190 	}
191 }
192 
193 static unsigned long
194 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
195 {
196 	struct kprobe *kp;
197 	bool faddr;
198 
199 	kp = get_kprobe((void *)addr);
200 	faddr = ftrace_location(addr) == addr;
201 	/*
202 	 * Use the current code if it is not modified by Kprobe
203 	 * and it cannot be modified by ftrace.
204 	 */
205 	if (!kp && !faddr)
206 		return addr;
207 
208 	/*
209 	 * Basically, kp->ainsn.insn has an original instruction.
210 	 * However, RIP-relative instruction can not do single-stepping
211 	 * at different place, __copy_instruction() tweaks the displacement of
212 	 * that instruction. In that case, we can't recover the instruction
213 	 * from the kp->ainsn.insn.
214 	 *
215 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
216 	 * of the first byte of the probed instruction, which is overwritten
217 	 * by int3. And the instruction at kp->addr is not modified by kprobes
218 	 * except for the first byte, we can recover the original instruction
219 	 * from it and kp->opcode.
220 	 *
221 	 * In case of Kprobes using ftrace, we do not have a copy of
222 	 * the original instruction. In fact, the ftrace location might
223 	 * be modified at anytime and even could be in an inconsistent state.
224 	 * Fortunately, we know that the original code is the ideal 5-byte
225 	 * long NOP.
226 	 */
227 	if (copy_from_kernel_nofault(buf, (void *)addr,
228 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
229 		return 0UL;
230 
231 	if (faddr)
232 		memcpy(buf, x86_nops[5], 5);
233 	else
234 		buf[0] = kp->opcode;
235 	return (unsigned long)buf;
236 }
237 
238 /*
239  * Recover the probed instruction at addr for further analysis.
240  * Caller must lock kprobes by kprobe_mutex, or disable preemption
241  * for preventing to release referencing kprobes.
242  * Returns zero if the instruction can not get recovered (or access failed).
243  */
244 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
245 {
246 	unsigned long __addr;
247 
248 	__addr = __recover_optprobed_insn(buf, addr);
249 	if (__addr != addr)
250 		return __addr;
251 
252 	return __recover_probed_insn(buf, addr);
253 }
254 
255 /* Check if paddr is at an instruction boundary */
256 static int can_probe(unsigned long paddr)
257 {
258 	unsigned long addr, __addr, offset = 0;
259 	struct insn insn;
260 	kprobe_opcode_t buf[MAX_INSN_SIZE];
261 
262 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
263 		return 0;
264 
265 	/* Decode instructions */
266 	addr = paddr - offset;
267 	while (addr < paddr) {
268 		int ret;
269 
270 		/*
271 		 * Check if the instruction has been modified by another
272 		 * kprobe, in which case we replace the breakpoint by the
273 		 * original instruction in our buffer.
274 		 * Also, jump optimization will change the breakpoint to
275 		 * relative-jump. Since the relative-jump itself is
276 		 * normally used, we just go through if there is no kprobe.
277 		 */
278 		__addr = recover_probed_instruction(buf, addr);
279 		if (!__addr)
280 			return 0;
281 
282 		ret = insn_decode_kernel(&insn, (void *)__addr);
283 		if (ret < 0)
284 			return 0;
285 
286 #ifdef CONFIG_KGDB
287 		/*
288 		 * If there is a dynamically installed kgdb sw breakpoint,
289 		 * this function should not be probed.
290 		 */
291 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
292 		    kgdb_has_hit_break(addr))
293 			return 0;
294 #endif
295 		addr += insn.length;
296 	}
297 	if (IS_ENABLED(CONFIG_CFI_CLANG)) {
298 		/*
299 		 * The compiler generates the following instruction sequence
300 		 * for indirect call checks and cfi.c decodes this;
301 		 *
302 		 *   movl    -<id>, %r10d       ; 6 bytes
303 		 *   addl    -4(%reg), %r10d    ; 4 bytes
304 		 *   je      .Ltmp1             ; 2 bytes
305 		 *   ud2                        ; <- regs->ip
306 		 *   .Ltmp1:
307 		 *
308 		 * Also, these movl and addl are used for showing expected
309 		 * type. So those must not be touched.
310 		 */
311 		__addr = recover_probed_instruction(buf, addr);
312 		if (!__addr)
313 			return 0;
314 
315 		if (insn_decode_kernel(&insn, (void *)__addr) < 0)
316 			return 0;
317 
318 		if (insn.opcode.value == 0xBA)
319 			offset = 12;
320 		else if (insn.opcode.value == 0x3)
321 			offset = 6;
322 		else
323 			goto out;
324 
325 		/* This movl/addl is used for decoding CFI. */
326 		if (is_cfi_trap(addr + offset))
327 			return 0;
328 	}
329 
330 out:
331 	return (addr == paddr);
332 }
333 
334 /* If x86 supports IBT (ENDBR) it must be skipped. */
335 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
336 					 bool *on_func_entry)
337 {
338 	u32 insn;
339 
340 	/*
341 	 * Since 'addr' is not guaranteed to be safe to access, use
342 	 * copy_from_kernel_nofault() to read the instruction:
343 	 */
344 	if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(u32)))
345 		return NULL;
346 
347 	if (is_endbr(insn)) {
348 		*on_func_entry = !offset || offset == 4;
349 		if (*on_func_entry)
350 			offset = 4;
351 
352 	} else {
353 		*on_func_entry = !offset;
354 	}
355 
356 	return (kprobe_opcode_t *)(addr + offset);
357 }
358 
359 /*
360  * Copy an instruction with recovering modified instruction by kprobes
361  * and adjust the displacement if the instruction uses the %rip-relative
362  * addressing mode. Note that since @real will be the final place of copied
363  * instruction, displacement must be adjust by @real, not @dest.
364  * This returns the length of copied instruction, or 0 if it has an error.
365  */
366 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
367 {
368 	kprobe_opcode_t buf[MAX_INSN_SIZE];
369 	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
370 	int ret;
371 
372 	if (!recovered_insn || !insn)
373 		return 0;
374 
375 	/* This can access kernel text if given address is not recovered */
376 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
377 			MAX_INSN_SIZE))
378 		return 0;
379 
380 	ret = insn_decode_kernel(insn, dest);
381 	if (ret < 0)
382 		return 0;
383 
384 	/* We can not probe force emulate prefixed instruction */
385 	if (insn_has_emulate_prefix(insn))
386 		return 0;
387 
388 	/* Another subsystem puts a breakpoint, failed to recover */
389 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
390 		return 0;
391 
392 	/* We should not singlestep on the exception masking instructions */
393 	if (insn_masking_exception(insn))
394 		return 0;
395 
396 #ifdef CONFIG_X86_64
397 	/* Only x86_64 has RIP relative instructions */
398 	if (insn_rip_relative(insn)) {
399 		s64 newdisp;
400 		u8 *disp;
401 		/*
402 		 * The copied instruction uses the %rip-relative addressing
403 		 * mode.  Adjust the displacement for the difference between
404 		 * the original location of this instruction and the location
405 		 * of the copy that will actually be run.  The tricky bit here
406 		 * is making sure that the sign extension happens correctly in
407 		 * this calculation, since we need a signed 32-bit result to
408 		 * be sign-extended to 64 bits when it's added to the %rip
409 		 * value and yield the same 64-bit result that the sign-
410 		 * extension of the original signed 32-bit displacement would
411 		 * have given.
412 		 */
413 		newdisp = (u8 *) src + (s64) insn->displacement.value
414 			  - (u8 *) real;
415 		if ((s64) (s32) newdisp != newdisp) {
416 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
417 			return 0;
418 		}
419 		disp = (u8 *) dest + insn_offset_displacement(insn);
420 		*(s32 *) disp = (s32) newdisp;
421 	}
422 #endif
423 	return insn->length;
424 }
425 
426 /* Prepare reljump or int3 right after instruction */
427 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
428 			      struct insn *insn)
429 {
430 	int len = insn->length;
431 
432 	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
433 	    !p->post_handler && can_boost(insn, p->addr) &&
434 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
435 		/*
436 		 * These instructions can be executed directly if it
437 		 * jumps back to correct address.
438 		 */
439 		synthesize_reljump(buf + len, p->ainsn.insn + len,
440 				   p->addr + insn->length);
441 		len += JMP32_INSN_SIZE;
442 		p->ainsn.boostable = 1;
443 	} else {
444 		/* Otherwise, put an int3 for trapping singlestep */
445 		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
446 			return -ENOSPC;
447 
448 		buf[len] = INT3_INSN_OPCODE;
449 		len += INT3_INSN_SIZE;
450 	}
451 
452 	return len;
453 }
454 
455 /* Make page to RO mode when allocate it */
456 void *alloc_insn_page(void)
457 {
458 	void *page;
459 
460 	page = module_alloc(PAGE_SIZE);
461 	if (!page)
462 		return NULL;
463 
464 	/*
465 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
466 	 * that the page was not maliciously altered and it is still zeroed.
467 	 */
468 	set_memory_rox((unsigned long)page, 1);
469 
470 	return page;
471 }
472 
473 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
474 
475 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
476 {
477 	switch (p->ainsn.opcode) {
478 	case 0xfa:	/* cli */
479 		regs->flags &= ~(X86_EFLAGS_IF);
480 		break;
481 	case 0xfb:	/* sti */
482 		regs->flags |= X86_EFLAGS_IF;
483 		break;
484 	case 0x9c:	/* pushf */
485 		int3_emulate_push(regs, regs->flags);
486 		break;
487 	case 0x9d:	/* popf */
488 		regs->flags = int3_emulate_pop(regs);
489 		break;
490 	}
491 	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
492 }
493 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
494 
495 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
496 {
497 	int3_emulate_ret(regs);
498 }
499 NOKPROBE_SYMBOL(kprobe_emulate_ret);
500 
501 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
502 {
503 	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
504 
505 	func += p->ainsn.rel32;
506 	int3_emulate_call(regs, func);
507 }
508 NOKPROBE_SYMBOL(kprobe_emulate_call);
509 
510 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
511 {
512 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
513 
514 	ip += p->ainsn.rel32;
515 	int3_emulate_jmp(regs, ip);
516 }
517 NOKPROBE_SYMBOL(kprobe_emulate_jmp);
518 
519 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
520 {
521 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
522 
523 	int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
524 }
525 NOKPROBE_SYMBOL(kprobe_emulate_jcc);
526 
527 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
528 {
529 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
530 	bool match;
531 
532 	if (p->ainsn.loop.type != 3) {	/* LOOP* */
533 		if (p->ainsn.loop.asize == 32)
534 			match = ((*(u32 *)&regs->cx)--) != 0;
535 #ifdef CONFIG_X86_64
536 		else if (p->ainsn.loop.asize == 64)
537 			match = ((*(u64 *)&regs->cx)--) != 0;
538 #endif
539 		else
540 			match = ((*(u16 *)&regs->cx)--) != 0;
541 	} else {			/* JCXZ */
542 		if (p->ainsn.loop.asize == 32)
543 			match = *(u32 *)(&regs->cx) == 0;
544 #ifdef CONFIG_X86_64
545 		else if (p->ainsn.loop.asize == 64)
546 			match = *(u64 *)(&regs->cx) == 0;
547 #endif
548 		else
549 			match = *(u16 *)(&regs->cx) == 0;
550 	}
551 
552 	if (p->ainsn.loop.type == 0)	/* LOOPNE */
553 		match = match && !(regs->flags & X86_EFLAGS_ZF);
554 	else if (p->ainsn.loop.type == 1)	/* LOOPE */
555 		match = match && (regs->flags & X86_EFLAGS_ZF);
556 
557 	if (match)
558 		ip += p->ainsn.rel32;
559 	int3_emulate_jmp(regs, ip);
560 }
561 NOKPROBE_SYMBOL(kprobe_emulate_loop);
562 
563 static const int addrmode_regoffs[] = {
564 	offsetof(struct pt_regs, ax),
565 	offsetof(struct pt_regs, cx),
566 	offsetof(struct pt_regs, dx),
567 	offsetof(struct pt_regs, bx),
568 	offsetof(struct pt_regs, sp),
569 	offsetof(struct pt_regs, bp),
570 	offsetof(struct pt_regs, si),
571 	offsetof(struct pt_regs, di),
572 #ifdef CONFIG_X86_64
573 	offsetof(struct pt_regs, r8),
574 	offsetof(struct pt_regs, r9),
575 	offsetof(struct pt_regs, r10),
576 	offsetof(struct pt_regs, r11),
577 	offsetof(struct pt_regs, r12),
578 	offsetof(struct pt_regs, r13),
579 	offsetof(struct pt_regs, r14),
580 	offsetof(struct pt_regs, r15),
581 #endif
582 };
583 
584 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
585 {
586 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
587 
588 	int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
589 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
590 }
591 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
592 
593 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
594 {
595 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
596 
597 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
598 }
599 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
600 
601 static int prepare_emulation(struct kprobe *p, struct insn *insn)
602 {
603 	insn_byte_t opcode = insn->opcode.bytes[0];
604 
605 	switch (opcode) {
606 	case 0xfa:		/* cli */
607 	case 0xfb:		/* sti */
608 	case 0x9c:		/* pushfl */
609 	case 0x9d:		/* popf/popfd */
610 		/*
611 		 * IF modifiers must be emulated since it will enable interrupt while
612 		 * int3 single stepping.
613 		 */
614 		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
615 		p->ainsn.opcode = opcode;
616 		break;
617 	case 0xc2:	/* ret/lret */
618 	case 0xc3:
619 	case 0xca:
620 	case 0xcb:
621 		p->ainsn.emulate_op = kprobe_emulate_ret;
622 		break;
623 	case 0x9a:	/* far call absolute -- segment is not supported */
624 	case 0xea:	/* far jmp absolute -- segment is not supported */
625 	case 0xcc:	/* int3 */
626 	case 0xcf:	/* iret -- in-kernel IRET is not supported */
627 		return -EOPNOTSUPP;
628 		break;
629 	case 0xe8:	/* near call relative */
630 		p->ainsn.emulate_op = kprobe_emulate_call;
631 		if (insn->immediate.nbytes == 2)
632 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
633 		else
634 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
635 		break;
636 	case 0xeb:	/* short jump relative */
637 	case 0xe9:	/* near jump relative */
638 		p->ainsn.emulate_op = kprobe_emulate_jmp;
639 		if (insn->immediate.nbytes == 1)
640 			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
641 		else if (insn->immediate.nbytes == 2)
642 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
643 		else
644 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
645 		break;
646 	case 0x70 ... 0x7f:
647 		/* 1 byte conditional jump */
648 		p->ainsn.emulate_op = kprobe_emulate_jcc;
649 		p->ainsn.jcc.type = opcode & 0xf;
650 		p->ainsn.rel32 = insn->immediate.value;
651 		break;
652 	case 0x0f:
653 		opcode = insn->opcode.bytes[1];
654 		if ((opcode & 0xf0) == 0x80) {
655 			/* 2 bytes Conditional Jump */
656 			p->ainsn.emulate_op = kprobe_emulate_jcc;
657 			p->ainsn.jcc.type = opcode & 0xf;
658 			if (insn->immediate.nbytes == 2)
659 				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
660 			else
661 				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
662 		} else if (opcode == 0x01 &&
663 			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
664 			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
665 			/* VM extensions - not supported */
666 			return -EOPNOTSUPP;
667 		}
668 		break;
669 	case 0xe0:	/* Loop NZ */
670 	case 0xe1:	/* Loop */
671 	case 0xe2:	/* Loop */
672 	case 0xe3:	/* J*CXZ */
673 		p->ainsn.emulate_op = kprobe_emulate_loop;
674 		p->ainsn.loop.type = opcode & 0x3;
675 		p->ainsn.loop.asize = insn->addr_bytes * 8;
676 		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
677 		break;
678 	case 0xff:
679 		/*
680 		 * Since the 0xff is an extended group opcode, the instruction
681 		 * is determined by the MOD/RM byte.
682 		 */
683 		opcode = insn->modrm.bytes[0];
684 		switch (X86_MODRM_REG(opcode)) {
685 		case 0b010:	/* FF /2, call near, absolute indirect */
686 			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
687 			break;
688 		case 0b100:	/* FF /4, jmp near, absolute indirect */
689 			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
690 			break;
691 		case 0b011:	/* FF /3, call far, absolute indirect */
692 		case 0b101:	/* FF /5, jmp far, absolute indirect */
693 			return -EOPNOTSUPP;
694 		}
695 
696 		if (!p->ainsn.emulate_op)
697 			break;
698 
699 		if (insn->addr_bytes != sizeof(unsigned long))
700 			return -EOPNOTSUPP;	/* Don't support different size */
701 		if (X86_MODRM_MOD(opcode) != 3)
702 			return -EOPNOTSUPP;	/* TODO: support memory addressing */
703 
704 		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
705 #ifdef CONFIG_X86_64
706 		if (X86_REX_B(insn->rex_prefix.value))
707 			p->ainsn.indirect.reg += 8;
708 #endif
709 		break;
710 	default:
711 		break;
712 	}
713 	p->ainsn.size = insn->length;
714 
715 	return 0;
716 }
717 
718 static int arch_copy_kprobe(struct kprobe *p)
719 {
720 	struct insn insn;
721 	kprobe_opcode_t buf[MAX_INSN_SIZE];
722 	int ret, len;
723 
724 	/* Copy an instruction with recovering if other optprobe modifies it.*/
725 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
726 	if (!len)
727 		return -EINVAL;
728 
729 	/* Analyze the opcode and setup emulate functions */
730 	ret = prepare_emulation(p, &insn);
731 	if (ret < 0)
732 		return ret;
733 
734 	/* Add int3 for single-step or booster jmp */
735 	len = prepare_singlestep(buf, p, &insn);
736 	if (len < 0)
737 		return len;
738 
739 	/* Also, displacement change doesn't affect the first byte */
740 	p->opcode = buf[0];
741 
742 	p->ainsn.tp_len = len;
743 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
744 
745 	/* OK, write back the instruction(s) into ROX insn buffer */
746 	text_poke(p->ainsn.insn, buf, len);
747 
748 	return 0;
749 }
750 
751 int arch_prepare_kprobe(struct kprobe *p)
752 {
753 	int ret;
754 
755 	if (alternatives_text_reserved(p->addr, p->addr))
756 		return -EINVAL;
757 
758 	if (!can_probe((unsigned long)p->addr))
759 		return -EILSEQ;
760 
761 	memset(&p->ainsn, 0, sizeof(p->ainsn));
762 
763 	/* insn: must be on special executable page on x86. */
764 	p->ainsn.insn = get_insn_slot();
765 	if (!p->ainsn.insn)
766 		return -ENOMEM;
767 
768 	ret = arch_copy_kprobe(p);
769 	if (ret) {
770 		free_insn_slot(p->ainsn.insn, 0);
771 		p->ainsn.insn = NULL;
772 	}
773 
774 	return ret;
775 }
776 
777 void arch_arm_kprobe(struct kprobe *p)
778 {
779 	u8 int3 = INT3_INSN_OPCODE;
780 
781 	text_poke(p->addr, &int3, 1);
782 	text_poke_sync();
783 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
784 }
785 
786 void arch_disarm_kprobe(struct kprobe *p)
787 {
788 	u8 int3 = INT3_INSN_OPCODE;
789 
790 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
791 	text_poke(p->addr, &p->opcode, 1);
792 	text_poke_sync();
793 }
794 
795 void arch_remove_kprobe(struct kprobe *p)
796 {
797 	if (p->ainsn.insn) {
798 		/* Record the perf event before freeing the slot */
799 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
800 				     p->ainsn.tp_len, NULL, 0);
801 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
802 		p->ainsn.insn = NULL;
803 	}
804 }
805 
806 static nokprobe_inline void
807 save_previous_kprobe(struct kprobe_ctlblk *kcb)
808 {
809 	kcb->prev_kprobe.kp = kprobe_running();
810 	kcb->prev_kprobe.status = kcb->kprobe_status;
811 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
812 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
813 }
814 
815 static nokprobe_inline void
816 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
817 {
818 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
819 	kcb->kprobe_status = kcb->prev_kprobe.status;
820 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
821 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
822 }
823 
824 static nokprobe_inline void
825 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
826 		   struct kprobe_ctlblk *kcb)
827 {
828 	__this_cpu_write(current_kprobe, p);
829 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
830 		= (regs->flags & X86_EFLAGS_IF);
831 }
832 
833 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
834 			       struct kprobe_ctlblk *kcb)
835 {
836 	/* Restore back the original saved kprobes variables and continue. */
837 	if (kcb->kprobe_status == KPROBE_REENTER) {
838 		/* This will restore both kcb and current_kprobe */
839 		restore_previous_kprobe(kcb);
840 	} else {
841 		/*
842 		 * Always update the kcb status because
843 		 * reset_curent_kprobe() doesn't update kcb.
844 		 */
845 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
846 		if (cur->post_handler)
847 			cur->post_handler(cur, regs, 0);
848 		reset_current_kprobe();
849 	}
850 }
851 NOKPROBE_SYMBOL(kprobe_post_process);
852 
853 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
854 			     struct kprobe_ctlblk *kcb, int reenter)
855 {
856 	if (setup_detour_execution(p, regs, reenter))
857 		return;
858 
859 #if !defined(CONFIG_PREEMPTION)
860 	if (p->ainsn.boostable) {
861 		/* Boost up -- we can execute copied instructions directly */
862 		if (!reenter)
863 			reset_current_kprobe();
864 		/*
865 		 * Reentering boosted probe doesn't reset current_kprobe,
866 		 * nor set current_kprobe, because it doesn't use single
867 		 * stepping.
868 		 */
869 		regs->ip = (unsigned long)p->ainsn.insn;
870 		return;
871 	}
872 #endif
873 	if (reenter) {
874 		save_previous_kprobe(kcb);
875 		set_current_kprobe(p, regs, kcb);
876 		kcb->kprobe_status = KPROBE_REENTER;
877 	} else
878 		kcb->kprobe_status = KPROBE_HIT_SS;
879 
880 	if (p->ainsn.emulate_op) {
881 		p->ainsn.emulate_op(p, regs);
882 		kprobe_post_process(p, regs, kcb);
883 		return;
884 	}
885 
886 	/* Disable interrupt, and set ip register on trampoline */
887 	regs->flags &= ~X86_EFLAGS_IF;
888 	regs->ip = (unsigned long)p->ainsn.insn;
889 }
890 NOKPROBE_SYMBOL(setup_singlestep);
891 
892 /*
893  * Called after single-stepping.  p->addr is the address of the
894  * instruction whose first byte has been replaced by the "int3"
895  * instruction.  To avoid the SMP problems that can occur when we
896  * temporarily put back the original opcode to single-step, we
897  * single-stepped a copy of the instruction.  The address of this
898  * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
899  * right after the copied instruction.
900  * Different from the trap single-step, "int3" single-step can not
901  * handle the instruction which changes the ip register, e.g. jmp,
902  * call, conditional jmp, and the instructions which changes the IF
903  * flags because interrupt must be disabled around the single-stepping.
904  * Such instructions are software emulated, but others are single-stepped
905  * using "int3".
906  *
907  * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
908  * be adjusted, so that we can resume execution on correct code.
909  */
910 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
911 			      struct kprobe_ctlblk *kcb)
912 {
913 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
914 	unsigned long orig_ip = (unsigned long)p->addr;
915 
916 	/* Restore saved interrupt flag and ip register */
917 	regs->flags |= kcb->kprobe_saved_flags;
918 	/* Note that regs->ip is executed int3 so must be a step back */
919 	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
920 }
921 NOKPROBE_SYMBOL(resume_singlestep);
922 
923 /*
924  * We have reentered the kprobe_handler(), since another probe was hit while
925  * within the handler. We save the original kprobes variables and just single
926  * step on the instruction of the new probe without calling any user handlers.
927  */
928 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
929 			  struct kprobe_ctlblk *kcb)
930 {
931 	switch (kcb->kprobe_status) {
932 	case KPROBE_HIT_SSDONE:
933 	case KPROBE_HIT_ACTIVE:
934 	case KPROBE_HIT_SS:
935 		kprobes_inc_nmissed_count(p);
936 		setup_singlestep(p, regs, kcb, 1);
937 		break;
938 	case KPROBE_REENTER:
939 		/* A probe has been hit in the codepath leading up to, or just
940 		 * after, single-stepping of a probed instruction. This entire
941 		 * codepath should strictly reside in .kprobes.text section.
942 		 * Raise a BUG or we'll continue in an endless reentering loop
943 		 * and eventually a stack overflow.
944 		 */
945 		pr_err("Unrecoverable kprobe detected.\n");
946 		dump_kprobe(p);
947 		BUG();
948 	default:
949 		/* impossible cases */
950 		WARN_ON(1);
951 		return 0;
952 	}
953 
954 	return 1;
955 }
956 NOKPROBE_SYMBOL(reenter_kprobe);
957 
958 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
959 {
960 	return (kcb->kprobe_status == KPROBE_HIT_SS ||
961 		kcb->kprobe_status == KPROBE_REENTER);
962 }
963 
964 /*
965  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
966  * remain disabled throughout this function.
967  */
968 int kprobe_int3_handler(struct pt_regs *regs)
969 {
970 	kprobe_opcode_t *addr;
971 	struct kprobe *p;
972 	struct kprobe_ctlblk *kcb;
973 
974 	if (user_mode(regs))
975 		return 0;
976 
977 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
978 	/*
979 	 * We don't want to be preempted for the entire duration of kprobe
980 	 * processing. Since int3 and debug trap disables irqs and we clear
981 	 * IF while singlestepping, it must be no preemptible.
982 	 */
983 
984 	kcb = get_kprobe_ctlblk();
985 	p = get_kprobe(addr);
986 
987 	if (p) {
988 		if (kprobe_running()) {
989 			if (reenter_kprobe(p, regs, kcb))
990 				return 1;
991 		} else {
992 			set_current_kprobe(p, regs, kcb);
993 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
994 
995 			/*
996 			 * If we have no pre-handler or it returned 0, we
997 			 * continue with normal processing.  If we have a
998 			 * pre-handler and it returned non-zero, that means
999 			 * user handler setup registers to exit to another
1000 			 * instruction, we must skip the single stepping.
1001 			 */
1002 			if (!p->pre_handler || !p->pre_handler(p, regs))
1003 				setup_singlestep(p, regs, kcb, 0);
1004 			else
1005 				reset_current_kprobe();
1006 			return 1;
1007 		}
1008 	} else if (kprobe_is_ss(kcb)) {
1009 		p = kprobe_running();
1010 		if ((unsigned long)p->ainsn.insn < regs->ip &&
1011 		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
1012 			/* Most provably this is the second int3 for singlestep */
1013 			resume_singlestep(p, regs, kcb);
1014 			kprobe_post_process(p, regs, kcb);
1015 			return 1;
1016 		}
1017 	} /* else: not a kprobe fault; let the kernel handle it */
1018 
1019 	return 0;
1020 }
1021 NOKPROBE_SYMBOL(kprobe_int3_handler);
1022 
1023 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1024 {
1025 	struct kprobe *cur = kprobe_running();
1026 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1027 
1028 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1029 		/* This must happen on single-stepping */
1030 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1031 			kcb->kprobe_status != KPROBE_REENTER);
1032 		/*
1033 		 * We are here because the instruction being single
1034 		 * stepped caused a page fault. We reset the current
1035 		 * kprobe and the ip points back to the probe address
1036 		 * and allow the page fault handler to continue as a
1037 		 * normal page fault.
1038 		 */
1039 		regs->ip = (unsigned long)cur->addr;
1040 
1041 		/*
1042 		 * If the IF flag was set before the kprobe hit,
1043 		 * don't touch it:
1044 		 */
1045 		regs->flags |= kcb->kprobe_old_flags;
1046 
1047 		if (kcb->kprobe_status == KPROBE_REENTER)
1048 			restore_previous_kprobe(kcb);
1049 		else
1050 			reset_current_kprobe();
1051 	}
1052 
1053 	return 0;
1054 }
1055 NOKPROBE_SYMBOL(kprobe_fault_handler);
1056 
1057 int __init arch_populate_kprobe_blacklist(void)
1058 {
1059 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1060 					 (unsigned long)__entry_text_end);
1061 }
1062 
1063 int __init arch_init_kprobes(void)
1064 {
1065 	return 0;
1066 }
1067 
1068 int arch_trampoline_kprobe(struct kprobe *p)
1069 {
1070 	return 0;
1071 }
1072