1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 #include <linux/moduleloader.h> 56 57 #include <asm/text-patching.h> 58 #include <asm/cacheflush.h> 59 #include <asm/desc.h> 60 #include <asm/pgtable.h> 61 #include <linux/uaccess.h> 62 #include <asm/alternative.h> 63 #include <asm/insn.h> 64 #include <asm/debugreg.h> 65 #include <asm/set_memory.h> 66 67 #include "common.h" 68 69 void jprobe_return_end(void); 70 71 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 72 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 73 74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 75 76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 81 << (row % 32)) 82 /* 83 * Undefined/reserved opcodes, conditional jump, Opcode Extension 84 * Groups, and some special opcodes can not boost. 85 * This is non-const and volatile to keep gcc from statically 86 * optimizing it out, as variable_test_bit makes gcc think only 87 * *(unsigned long*) is used. 88 */ 89 static volatile u32 twobyte_is_boostable[256 / 32] = { 90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 91 /* ---------------------------------------------- */ 92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 108 /* ----------------------------------------------- */ 109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 110 }; 111 #undef W 112 113 struct kretprobe_blackpoint kretprobe_blacklist[] = { 114 {"__switch_to", }, /* This function switches only current task, but 115 doesn't switch kernel stack.*/ 116 {NULL, NULL} /* Terminator */ 117 }; 118 119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 120 121 static nokprobe_inline void 122 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 123 { 124 struct __arch_relative_insn { 125 u8 op; 126 s32 raddr; 127 } __packed *insn; 128 129 insn = (struct __arch_relative_insn *)dest; 130 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 131 insn->op = op; 132 } 133 134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 135 void synthesize_reljump(void *dest, void *from, void *to) 136 { 137 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE); 138 } 139 NOKPROBE_SYMBOL(synthesize_reljump); 140 141 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 142 void synthesize_relcall(void *dest, void *from, void *to) 143 { 144 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE); 145 } 146 NOKPROBE_SYMBOL(synthesize_relcall); 147 148 /* 149 * Skip the prefixes of the instruction. 150 */ 151 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 152 { 153 insn_attr_t attr; 154 155 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 156 while (inat_is_legacy_prefix(attr)) { 157 insn++; 158 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 159 } 160 #ifdef CONFIG_X86_64 161 if (inat_is_rex_prefix(attr)) 162 insn++; 163 #endif 164 return insn; 165 } 166 NOKPROBE_SYMBOL(skip_prefixes); 167 168 /* 169 * Returns non-zero if INSN is boostable. 170 * RIP relative instructions are adjusted at copying time in 64 bits mode 171 */ 172 int can_boost(struct insn *insn, void *addr) 173 { 174 kprobe_opcode_t opcode; 175 176 if (search_exception_tables((unsigned long)addr)) 177 return 0; /* Page fault may occur on this address. */ 178 179 /* 2nd-byte opcode */ 180 if (insn->opcode.nbytes == 2) 181 return test_bit(insn->opcode.bytes[1], 182 (unsigned long *)twobyte_is_boostable); 183 184 if (insn->opcode.nbytes != 1) 185 return 0; 186 187 /* Can't boost Address-size override prefix */ 188 if (unlikely(inat_is_address_size_prefix(insn->attr))) 189 return 0; 190 191 opcode = insn->opcode.bytes[0]; 192 193 switch (opcode & 0xf0) { 194 case 0x60: 195 /* can't boost "bound" */ 196 return (opcode != 0x62); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0x90: 200 return opcode != 0x9a; /* can't boost call far */ 201 case 0xc0: 202 /* can't boost software-interruptions */ 203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 204 case 0xd0: 205 /* can boost AA* and XLAT */ 206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 207 case 0xe0: 208 /* can boost in/out and absolute jmps */ 209 return ((opcode & 0x04) || opcode == 0xea); 210 case 0xf0: 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* CS override prefix and call are not boostable */ 215 return (opcode != 0x2e && opcode != 0x9a); 216 } 217 } 218 219 static unsigned long 220 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 221 { 222 struct kprobe *kp; 223 unsigned long faddr; 224 225 kp = get_kprobe((void *)addr); 226 faddr = ftrace_location(addr); 227 /* 228 * Addresses inside the ftrace location are refused by 229 * arch_check_ftrace_location(). Something went terribly wrong 230 * if such an address is checked here. 231 */ 232 if (WARN_ON(faddr && faddr != addr)) 233 return 0UL; 234 /* 235 * Use the current code if it is not modified by Kprobe 236 * and it cannot be modified by ftrace. 237 */ 238 if (!kp && !faddr) 239 return addr; 240 241 /* 242 * Basically, kp->ainsn.insn has an original instruction. 243 * However, RIP-relative instruction can not do single-stepping 244 * at different place, __copy_instruction() tweaks the displacement of 245 * that instruction. In that case, we can't recover the instruction 246 * from the kp->ainsn.insn. 247 * 248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 249 * of the first byte of the probed instruction, which is overwritten 250 * by int3. And the instruction at kp->addr is not modified by kprobes 251 * except for the first byte, we can recover the original instruction 252 * from it and kp->opcode. 253 * 254 * In case of Kprobes using ftrace, we do not have a copy of 255 * the original instruction. In fact, the ftrace location might 256 * be modified at anytime and even could be in an inconsistent state. 257 * Fortunately, we know that the original code is the ideal 5-byte 258 * long NOP. 259 */ 260 if (probe_kernel_read(buf, (void *)addr, 261 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 262 return 0UL; 263 264 if (faddr) 265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 266 else 267 buf[0] = kp->opcode; 268 return (unsigned long)buf; 269 } 270 271 /* 272 * Recover the probed instruction at addr for further analysis. 273 * Caller must lock kprobes by kprobe_mutex, or disable preemption 274 * for preventing to release referencing kprobes. 275 * Returns zero if the instruction can not get recovered (or access failed). 276 */ 277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 278 { 279 unsigned long __addr; 280 281 __addr = __recover_optprobed_insn(buf, addr); 282 if (__addr != addr) 283 return __addr; 284 285 return __recover_probed_insn(buf, addr); 286 } 287 288 /* Check if paddr is at an instruction boundary */ 289 static int can_probe(unsigned long paddr) 290 { 291 unsigned long addr, __addr, offset = 0; 292 struct insn insn; 293 kprobe_opcode_t buf[MAX_INSN_SIZE]; 294 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 296 return 0; 297 298 /* Decode instructions */ 299 addr = paddr - offset; 300 while (addr < paddr) { 301 /* 302 * Check if the instruction has been modified by another 303 * kprobe, in which case we replace the breakpoint by the 304 * original instruction in our buffer. 305 * Also, jump optimization will change the breakpoint to 306 * relative-jump. Since the relative-jump itself is 307 * normally used, we just go through if there is no kprobe. 308 */ 309 __addr = recover_probed_instruction(buf, addr); 310 if (!__addr) 311 return 0; 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 313 insn_get_length(&insn); 314 315 /* 316 * Another debugging subsystem might insert this breakpoint. 317 * In that case, we can't recover it. 318 */ 319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 320 return 0; 321 addr += insn.length; 322 } 323 324 return (addr == paddr); 325 } 326 327 /* 328 * Returns non-zero if opcode modifies the interrupt flag. 329 */ 330 static int is_IF_modifier(kprobe_opcode_t *insn) 331 { 332 /* Skip prefixes */ 333 insn = skip_prefixes(insn); 334 335 switch (*insn) { 336 case 0xfa: /* cli */ 337 case 0xfb: /* sti */ 338 case 0xcf: /* iret/iretd */ 339 case 0x9d: /* popf/popfd */ 340 return 1; 341 } 342 343 return 0; 344 } 345 346 /* 347 * Copy an instruction with recovering modified instruction by kprobes 348 * and adjust the displacement if the instruction uses the %rip-relative 349 * addressing mode. Note that since @real will be the final place of copied 350 * instruction, displacement must be adjust by @real, not @dest. 351 * This returns the length of copied instruction, or 0 if it has an error. 352 */ 353 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 354 { 355 kprobe_opcode_t buf[MAX_INSN_SIZE]; 356 unsigned long recovered_insn = 357 recover_probed_instruction(buf, (unsigned long)src); 358 359 if (!recovered_insn || !insn) 360 return 0; 361 362 /* This can access kernel text if given address is not recovered */ 363 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 364 return 0; 365 366 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 367 insn_get_length(insn); 368 369 /* Another subsystem puts a breakpoint, failed to recover */ 370 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 371 return 0; 372 373 /* We should not singlestep on the exception masking instructions */ 374 if (insn_masking_exception(insn)) 375 return 0; 376 377 #ifdef CONFIG_X86_64 378 /* Only x86_64 has RIP relative instructions */ 379 if (insn_rip_relative(insn)) { 380 s64 newdisp; 381 u8 *disp; 382 /* 383 * The copied instruction uses the %rip-relative addressing 384 * mode. Adjust the displacement for the difference between 385 * the original location of this instruction and the location 386 * of the copy that will actually be run. The tricky bit here 387 * is making sure that the sign extension happens correctly in 388 * this calculation, since we need a signed 32-bit result to 389 * be sign-extended to 64 bits when it's added to the %rip 390 * value and yield the same 64-bit result that the sign- 391 * extension of the original signed 32-bit displacement would 392 * have given. 393 */ 394 newdisp = (u8 *) src + (s64) insn->displacement.value 395 - (u8 *) real; 396 if ((s64) (s32) newdisp != newdisp) { 397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 398 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", 399 src, real, insn->displacement.value); 400 return 0; 401 } 402 disp = (u8 *) dest + insn_offset_displacement(insn); 403 *(s32 *) disp = (s32) newdisp; 404 } 405 #endif 406 return insn->length; 407 } 408 409 /* Prepare reljump right after instruction to boost */ 410 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 411 struct insn *insn) 412 { 413 int len = insn->length; 414 415 if (can_boost(insn, p->addr) && 416 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) { 417 /* 418 * These instructions can be executed directly if it 419 * jumps back to correct address. 420 */ 421 synthesize_reljump(buf + len, p->ainsn.insn + len, 422 p->addr + insn->length); 423 len += RELATIVEJUMP_SIZE; 424 p->ainsn.boostable = true; 425 } else { 426 p->ainsn.boostable = false; 427 } 428 429 return len; 430 } 431 432 /* Make page to RO mode when allocate it */ 433 void *alloc_insn_page(void) 434 { 435 void *page; 436 437 page = module_alloc(PAGE_SIZE); 438 if (page) 439 set_memory_ro((unsigned long)page & PAGE_MASK, 1); 440 441 return page; 442 } 443 444 /* Recover page to RW mode before releasing it */ 445 void free_insn_page(void *page) 446 { 447 set_memory_nx((unsigned long)page & PAGE_MASK, 1); 448 set_memory_rw((unsigned long)page & PAGE_MASK, 1); 449 module_memfree(page); 450 } 451 452 static int arch_copy_kprobe(struct kprobe *p) 453 { 454 struct insn insn; 455 kprobe_opcode_t buf[MAX_INSN_SIZE]; 456 int len; 457 458 /* Copy an instruction with recovering if other optprobe modifies it.*/ 459 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 460 if (!len) 461 return -EINVAL; 462 463 /* 464 * __copy_instruction can modify the displacement of the instruction, 465 * but it doesn't affect boostable check. 466 */ 467 len = prepare_boost(buf, p, &insn); 468 469 /* Check whether the instruction modifies Interrupt Flag or not */ 470 p->ainsn.if_modifier = is_IF_modifier(buf); 471 472 /* Also, displacement change doesn't affect the first byte */ 473 p->opcode = buf[0]; 474 475 /* OK, write back the instruction(s) into ROX insn buffer */ 476 text_poke(p->ainsn.insn, buf, len); 477 478 return 0; 479 } 480 481 int arch_prepare_kprobe(struct kprobe *p) 482 { 483 int ret; 484 485 if (alternatives_text_reserved(p->addr, p->addr)) 486 return -EINVAL; 487 488 if (!can_probe((unsigned long)p->addr)) 489 return -EILSEQ; 490 /* insn: must be on special executable page on x86. */ 491 p->ainsn.insn = get_insn_slot(); 492 if (!p->ainsn.insn) 493 return -ENOMEM; 494 495 ret = arch_copy_kprobe(p); 496 if (ret) { 497 free_insn_slot(p->ainsn.insn, 0); 498 p->ainsn.insn = NULL; 499 } 500 501 return ret; 502 } 503 504 void arch_arm_kprobe(struct kprobe *p) 505 { 506 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 507 } 508 509 void arch_disarm_kprobe(struct kprobe *p) 510 { 511 text_poke(p->addr, &p->opcode, 1); 512 } 513 514 void arch_remove_kprobe(struct kprobe *p) 515 { 516 if (p->ainsn.insn) { 517 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 518 p->ainsn.insn = NULL; 519 } 520 } 521 522 static nokprobe_inline void 523 save_previous_kprobe(struct kprobe_ctlblk *kcb) 524 { 525 kcb->prev_kprobe.kp = kprobe_running(); 526 kcb->prev_kprobe.status = kcb->kprobe_status; 527 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 528 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 529 } 530 531 static nokprobe_inline void 532 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 533 { 534 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 535 kcb->kprobe_status = kcb->prev_kprobe.status; 536 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 537 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 538 } 539 540 static nokprobe_inline void 541 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 542 struct kprobe_ctlblk *kcb) 543 { 544 __this_cpu_write(current_kprobe, p); 545 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 546 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 547 if (p->ainsn.if_modifier) 548 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 549 } 550 551 static nokprobe_inline void clear_btf(void) 552 { 553 if (test_thread_flag(TIF_BLOCKSTEP)) { 554 unsigned long debugctl = get_debugctlmsr(); 555 556 debugctl &= ~DEBUGCTLMSR_BTF; 557 update_debugctlmsr(debugctl); 558 } 559 } 560 561 static nokprobe_inline void restore_btf(void) 562 { 563 if (test_thread_flag(TIF_BLOCKSTEP)) { 564 unsigned long debugctl = get_debugctlmsr(); 565 566 debugctl |= DEBUGCTLMSR_BTF; 567 update_debugctlmsr(debugctl); 568 } 569 } 570 571 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 572 { 573 unsigned long *sara = stack_addr(regs); 574 575 ri->ret_addr = (kprobe_opcode_t *) *sara; 576 577 /* Replace the return addr with trampoline addr */ 578 *sara = (unsigned long) &kretprobe_trampoline; 579 } 580 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 581 582 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 583 struct kprobe_ctlblk *kcb, int reenter) 584 { 585 if (setup_detour_execution(p, regs, reenter)) 586 return; 587 588 #if !defined(CONFIG_PREEMPT) 589 if (p->ainsn.boostable && !p->post_handler) { 590 /* Boost up -- we can execute copied instructions directly */ 591 if (!reenter) 592 reset_current_kprobe(); 593 /* 594 * Reentering boosted probe doesn't reset current_kprobe, 595 * nor set current_kprobe, because it doesn't use single 596 * stepping. 597 */ 598 regs->ip = (unsigned long)p->ainsn.insn; 599 preempt_enable_no_resched(); 600 return; 601 } 602 #endif 603 if (reenter) { 604 save_previous_kprobe(kcb); 605 set_current_kprobe(p, regs, kcb); 606 kcb->kprobe_status = KPROBE_REENTER; 607 } else 608 kcb->kprobe_status = KPROBE_HIT_SS; 609 /* Prepare real single stepping */ 610 clear_btf(); 611 regs->flags |= X86_EFLAGS_TF; 612 regs->flags &= ~X86_EFLAGS_IF; 613 /* single step inline if the instruction is an int3 */ 614 if (p->opcode == BREAKPOINT_INSTRUCTION) 615 regs->ip = (unsigned long)p->addr; 616 else 617 regs->ip = (unsigned long)p->ainsn.insn; 618 } 619 NOKPROBE_SYMBOL(setup_singlestep); 620 621 /* 622 * We have reentered the kprobe_handler(), since another probe was hit while 623 * within the handler. We save the original kprobes variables and just single 624 * step on the instruction of the new probe without calling any user handlers. 625 */ 626 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 627 struct kprobe_ctlblk *kcb) 628 { 629 switch (kcb->kprobe_status) { 630 case KPROBE_HIT_SSDONE: 631 case KPROBE_HIT_ACTIVE: 632 case KPROBE_HIT_SS: 633 kprobes_inc_nmissed_count(p); 634 setup_singlestep(p, regs, kcb, 1); 635 break; 636 case KPROBE_REENTER: 637 /* A probe has been hit in the codepath leading up to, or just 638 * after, single-stepping of a probed instruction. This entire 639 * codepath should strictly reside in .kprobes.text section. 640 * Raise a BUG or we'll continue in an endless reentering loop 641 * and eventually a stack overflow. 642 */ 643 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 644 p->addr); 645 dump_kprobe(p); 646 BUG(); 647 default: 648 /* impossible cases */ 649 WARN_ON(1); 650 return 0; 651 } 652 653 return 1; 654 } 655 NOKPROBE_SYMBOL(reenter_kprobe); 656 657 /* 658 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 659 * remain disabled throughout this function. 660 */ 661 int kprobe_int3_handler(struct pt_regs *regs) 662 { 663 kprobe_opcode_t *addr; 664 struct kprobe *p; 665 struct kprobe_ctlblk *kcb; 666 667 if (user_mode(regs)) 668 return 0; 669 670 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 671 /* 672 * We don't want to be preempted for the entire 673 * duration of kprobe processing. We conditionally 674 * re-enable preemption at the end of this function, 675 * and also in reenter_kprobe() and setup_singlestep(). 676 */ 677 preempt_disable(); 678 679 kcb = get_kprobe_ctlblk(); 680 p = get_kprobe(addr); 681 682 if (p) { 683 if (kprobe_running()) { 684 if (reenter_kprobe(p, regs, kcb)) 685 return 1; 686 } else { 687 set_current_kprobe(p, regs, kcb); 688 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 689 690 /* 691 * If we have no pre-handler or it returned 0, we 692 * continue with normal processing. If we have a 693 * pre-handler and it returned non-zero, it prepped 694 * for calling the break_handler below on re-entry 695 * for jprobe processing, so get out doing nothing 696 * more here. 697 */ 698 if (!p->pre_handler || !p->pre_handler(p, regs)) 699 setup_singlestep(p, regs, kcb, 0); 700 return 1; 701 } 702 } else if (*addr != BREAKPOINT_INSTRUCTION) { 703 /* 704 * The breakpoint instruction was removed right 705 * after we hit it. Another cpu has removed 706 * either a probepoint or a debugger breakpoint 707 * at this address. In either case, no further 708 * handling of this interrupt is appropriate. 709 * Back up over the (now missing) int3 and run 710 * the original instruction. 711 */ 712 regs->ip = (unsigned long)addr; 713 preempt_enable_no_resched(); 714 return 1; 715 } else if (kprobe_running()) { 716 p = __this_cpu_read(current_kprobe); 717 if (p->break_handler && p->break_handler(p, regs)) { 718 if (!skip_singlestep(p, regs, kcb)) 719 setup_singlestep(p, regs, kcb, 0); 720 return 1; 721 } 722 } /* else: not a kprobe fault; let the kernel handle it */ 723 724 preempt_enable_no_resched(); 725 return 0; 726 } 727 NOKPROBE_SYMBOL(kprobe_int3_handler); 728 729 /* 730 * When a retprobed function returns, this code saves registers and 731 * calls trampoline_handler() runs, which calls the kretprobe's handler. 732 */ 733 asm( 734 ".global kretprobe_trampoline\n" 735 ".type kretprobe_trampoline, @function\n" 736 "kretprobe_trampoline:\n" 737 #ifdef CONFIG_X86_64 738 /* We don't bother saving the ss register */ 739 " pushq %rsp\n" 740 " pushfq\n" 741 SAVE_REGS_STRING 742 " movq %rsp, %rdi\n" 743 " call trampoline_handler\n" 744 /* Replace saved sp with true return address. */ 745 " movq %rax, 152(%rsp)\n" 746 RESTORE_REGS_STRING 747 " popfq\n" 748 #else 749 " pushf\n" 750 SAVE_REGS_STRING 751 " movl %esp, %eax\n" 752 " call trampoline_handler\n" 753 /* Move flags to cs */ 754 " movl 56(%esp), %edx\n" 755 " movl %edx, 52(%esp)\n" 756 /* Replace saved flags with true return address. */ 757 " movl %eax, 56(%esp)\n" 758 RESTORE_REGS_STRING 759 " popf\n" 760 #endif 761 " ret\n" 762 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 763 ); 764 NOKPROBE_SYMBOL(kretprobe_trampoline); 765 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 766 767 /* 768 * Called from kretprobe_trampoline 769 */ 770 __visible __used void *trampoline_handler(struct pt_regs *regs) 771 { 772 struct kretprobe_instance *ri = NULL; 773 struct hlist_head *head, empty_rp; 774 struct hlist_node *tmp; 775 unsigned long flags, orig_ret_address = 0; 776 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 777 kprobe_opcode_t *correct_ret_addr = NULL; 778 779 INIT_HLIST_HEAD(&empty_rp); 780 kretprobe_hash_lock(current, &head, &flags); 781 /* fixup registers */ 782 #ifdef CONFIG_X86_64 783 regs->cs = __KERNEL_CS; 784 #else 785 regs->cs = __KERNEL_CS | get_kernel_rpl(); 786 regs->gs = 0; 787 #endif 788 regs->ip = trampoline_address; 789 regs->orig_ax = ~0UL; 790 791 /* 792 * It is possible to have multiple instances associated with a given 793 * task either because multiple functions in the call path have 794 * return probes installed on them, and/or more than one 795 * return probe was registered for a target function. 796 * 797 * We can handle this because: 798 * - instances are always pushed into the head of the list 799 * - when multiple return probes are registered for the same 800 * function, the (chronologically) first instance's ret_addr 801 * will be the real return address, and all the rest will 802 * point to kretprobe_trampoline. 803 */ 804 hlist_for_each_entry(ri, head, hlist) { 805 if (ri->task != current) 806 /* another task is sharing our hash bucket */ 807 continue; 808 809 orig_ret_address = (unsigned long)ri->ret_addr; 810 811 if (orig_ret_address != trampoline_address) 812 /* 813 * This is the real return address. Any other 814 * instances associated with this task are for 815 * other calls deeper on the call stack 816 */ 817 break; 818 } 819 820 kretprobe_assert(ri, orig_ret_address, trampoline_address); 821 822 correct_ret_addr = ri->ret_addr; 823 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 824 if (ri->task != current) 825 /* another task is sharing our hash bucket */ 826 continue; 827 828 orig_ret_address = (unsigned long)ri->ret_addr; 829 if (ri->rp && ri->rp->handler) { 830 __this_cpu_write(current_kprobe, &ri->rp->kp); 831 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 832 ri->ret_addr = correct_ret_addr; 833 ri->rp->handler(ri, regs); 834 __this_cpu_write(current_kprobe, NULL); 835 } 836 837 recycle_rp_inst(ri, &empty_rp); 838 839 if (orig_ret_address != trampoline_address) 840 /* 841 * This is the real return address. Any other 842 * instances associated with this task are for 843 * other calls deeper on the call stack 844 */ 845 break; 846 } 847 848 kretprobe_hash_unlock(current, &flags); 849 850 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 851 hlist_del(&ri->hlist); 852 kfree(ri); 853 } 854 return (void *)orig_ret_address; 855 } 856 NOKPROBE_SYMBOL(trampoline_handler); 857 858 /* 859 * Called after single-stepping. p->addr is the address of the 860 * instruction whose first byte has been replaced by the "int 3" 861 * instruction. To avoid the SMP problems that can occur when we 862 * temporarily put back the original opcode to single-step, we 863 * single-stepped a copy of the instruction. The address of this 864 * copy is p->ainsn.insn. 865 * 866 * This function prepares to return from the post-single-step 867 * interrupt. We have to fix up the stack as follows: 868 * 869 * 0) Except in the case of absolute or indirect jump or call instructions, 870 * the new ip is relative to the copied instruction. We need to make 871 * it relative to the original instruction. 872 * 873 * 1) If the single-stepped instruction was pushfl, then the TF and IF 874 * flags are set in the just-pushed flags, and may need to be cleared. 875 * 876 * 2) If the single-stepped instruction was a call, the return address 877 * that is atop the stack is the address following the copied instruction. 878 * We need to make it the address following the original instruction. 879 * 880 * If this is the first time we've single-stepped the instruction at 881 * this probepoint, and the instruction is boostable, boost it: add a 882 * jump instruction after the copied instruction, that jumps to the next 883 * instruction after the probepoint. 884 */ 885 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 886 struct kprobe_ctlblk *kcb) 887 { 888 unsigned long *tos = stack_addr(regs); 889 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 890 unsigned long orig_ip = (unsigned long)p->addr; 891 kprobe_opcode_t *insn = p->ainsn.insn; 892 893 /* Skip prefixes */ 894 insn = skip_prefixes(insn); 895 896 regs->flags &= ~X86_EFLAGS_TF; 897 switch (*insn) { 898 case 0x9c: /* pushfl */ 899 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 900 *tos |= kcb->kprobe_old_flags; 901 break; 902 case 0xc2: /* iret/ret/lret */ 903 case 0xc3: 904 case 0xca: 905 case 0xcb: 906 case 0xcf: 907 case 0xea: /* jmp absolute -- ip is correct */ 908 /* ip is already adjusted, no more changes required */ 909 p->ainsn.boostable = true; 910 goto no_change; 911 case 0xe8: /* call relative - Fix return addr */ 912 *tos = orig_ip + (*tos - copy_ip); 913 break; 914 #ifdef CONFIG_X86_32 915 case 0x9a: /* call absolute -- same as call absolute, indirect */ 916 *tos = orig_ip + (*tos - copy_ip); 917 goto no_change; 918 #endif 919 case 0xff: 920 if ((insn[1] & 0x30) == 0x10) { 921 /* 922 * call absolute, indirect 923 * Fix return addr; ip is correct. 924 * But this is not boostable 925 */ 926 *tos = orig_ip + (*tos - copy_ip); 927 goto no_change; 928 } else if (((insn[1] & 0x31) == 0x20) || 929 ((insn[1] & 0x31) == 0x21)) { 930 /* 931 * jmp near and far, absolute indirect 932 * ip is correct. And this is boostable 933 */ 934 p->ainsn.boostable = true; 935 goto no_change; 936 } 937 default: 938 break; 939 } 940 941 regs->ip += orig_ip - copy_ip; 942 943 no_change: 944 restore_btf(); 945 } 946 NOKPROBE_SYMBOL(resume_execution); 947 948 /* 949 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 950 * remain disabled throughout this function. 951 */ 952 int kprobe_debug_handler(struct pt_regs *regs) 953 { 954 struct kprobe *cur = kprobe_running(); 955 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 956 957 if (!cur) 958 return 0; 959 960 resume_execution(cur, regs, kcb); 961 regs->flags |= kcb->kprobe_saved_flags; 962 963 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 964 kcb->kprobe_status = KPROBE_HIT_SSDONE; 965 cur->post_handler(cur, regs, 0); 966 } 967 968 /* Restore back the original saved kprobes variables and continue. */ 969 if (kcb->kprobe_status == KPROBE_REENTER) { 970 restore_previous_kprobe(kcb); 971 goto out; 972 } 973 reset_current_kprobe(); 974 out: 975 preempt_enable_no_resched(); 976 977 /* 978 * if somebody else is singlestepping across a probe point, flags 979 * will have TF set, in which case, continue the remaining processing 980 * of do_debug, as if this is not a probe hit. 981 */ 982 if (regs->flags & X86_EFLAGS_TF) 983 return 0; 984 985 return 1; 986 } 987 NOKPROBE_SYMBOL(kprobe_debug_handler); 988 989 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 990 { 991 struct kprobe *cur = kprobe_running(); 992 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 993 994 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 995 /* This must happen on single-stepping */ 996 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 997 kcb->kprobe_status != KPROBE_REENTER); 998 /* 999 * We are here because the instruction being single 1000 * stepped caused a page fault. We reset the current 1001 * kprobe and the ip points back to the probe address 1002 * and allow the page fault handler to continue as a 1003 * normal page fault. 1004 */ 1005 regs->ip = (unsigned long)cur->addr; 1006 /* 1007 * Trap flag (TF) has been set here because this fault 1008 * happened where the single stepping will be done. 1009 * So clear it by resetting the current kprobe: 1010 */ 1011 regs->flags &= ~X86_EFLAGS_TF; 1012 1013 /* 1014 * If the TF flag was set before the kprobe hit, 1015 * don't touch it: 1016 */ 1017 regs->flags |= kcb->kprobe_old_flags; 1018 1019 if (kcb->kprobe_status == KPROBE_REENTER) 1020 restore_previous_kprobe(kcb); 1021 else 1022 reset_current_kprobe(); 1023 preempt_enable_no_resched(); 1024 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1025 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1026 /* 1027 * We increment the nmissed count for accounting, 1028 * we can also use npre/npostfault count for accounting 1029 * these specific fault cases. 1030 */ 1031 kprobes_inc_nmissed_count(cur); 1032 1033 /* 1034 * We come here because instructions in the pre/post 1035 * handler caused the page_fault, this could happen 1036 * if handler tries to access user space by 1037 * copy_from_user(), get_user() etc. Let the 1038 * user-specified handler try to fix it first. 1039 */ 1040 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1041 return 1; 1042 1043 /* 1044 * In case the user-specified fault handler returned 1045 * zero, try to fix up. 1046 */ 1047 if (fixup_exception(regs, trapnr)) 1048 return 1; 1049 1050 /* 1051 * fixup routine could not handle it, 1052 * Let do_page_fault() fix it. 1053 */ 1054 } 1055 1056 return 0; 1057 } 1058 NOKPROBE_SYMBOL(kprobe_fault_handler); 1059 1060 /* 1061 * Wrapper routine for handling exceptions. 1062 */ 1063 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1064 void *data) 1065 { 1066 struct die_args *args = data; 1067 int ret = NOTIFY_DONE; 1068 1069 if (args->regs && user_mode(args->regs)) 1070 return ret; 1071 1072 if (val == DIE_GPF) { 1073 /* 1074 * To be potentially processing a kprobe fault and to 1075 * trust the result from kprobe_running(), we have 1076 * be non-preemptible. 1077 */ 1078 if (!preemptible() && kprobe_running() && 1079 kprobe_fault_handler(args->regs, args->trapnr)) 1080 ret = NOTIFY_STOP; 1081 } 1082 return ret; 1083 } 1084 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1085 1086 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1087 { 1088 struct jprobe *jp = container_of(p, struct jprobe, kp); 1089 unsigned long addr; 1090 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1091 1092 kcb->jprobe_saved_regs = *regs; 1093 kcb->jprobe_saved_sp = stack_addr(regs); 1094 addr = (unsigned long)(kcb->jprobe_saved_sp); 1095 1096 /* 1097 * As Linus pointed out, gcc assumes that the callee 1098 * owns the argument space and could overwrite it, e.g. 1099 * tailcall optimization. So, to be absolutely safe 1100 * we also save and restore enough stack bytes to cover 1101 * the argument area. 1102 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1103 * raw stack chunk with redzones: 1104 */ 1105 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1106 regs->ip = (unsigned long)(jp->entry); 1107 1108 /* 1109 * jprobes use jprobe_return() which skips the normal return 1110 * path of the function, and this messes up the accounting of the 1111 * function graph tracer to get messed up. 1112 * 1113 * Pause function graph tracing while performing the jprobe function. 1114 */ 1115 pause_graph_tracing(); 1116 return 1; 1117 } 1118 NOKPROBE_SYMBOL(setjmp_pre_handler); 1119 1120 void jprobe_return(void) 1121 { 1122 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1123 1124 /* Unpoison stack redzones in the frames we are going to jump over. */ 1125 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1126 1127 asm volatile ( 1128 #ifdef CONFIG_X86_64 1129 " xchg %%rbx,%%rsp \n" 1130 #else 1131 " xchgl %%ebx,%%esp \n" 1132 #endif 1133 " int3 \n" 1134 " .globl jprobe_return_end\n" 1135 " jprobe_return_end: \n" 1136 " nop \n"::"b" 1137 (kcb->jprobe_saved_sp):"memory"); 1138 } 1139 NOKPROBE_SYMBOL(jprobe_return); 1140 NOKPROBE_SYMBOL(jprobe_return_end); 1141 1142 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1143 { 1144 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1145 u8 *addr = (u8 *) (regs->ip - 1); 1146 struct jprobe *jp = container_of(p, struct jprobe, kp); 1147 void *saved_sp = kcb->jprobe_saved_sp; 1148 1149 if ((addr > (u8 *) jprobe_return) && 1150 (addr < (u8 *) jprobe_return_end)) { 1151 if (stack_addr(regs) != saved_sp) { 1152 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1153 printk(KERN_ERR 1154 "current sp %p does not match saved sp %p\n", 1155 stack_addr(regs), saved_sp); 1156 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1157 show_regs(saved_regs); 1158 printk(KERN_ERR "Current registers\n"); 1159 show_regs(regs); 1160 BUG(); 1161 } 1162 /* It's OK to start function graph tracing again */ 1163 unpause_graph_tracing(); 1164 *regs = kcb->jprobe_saved_regs; 1165 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1166 preempt_enable_no_resched(); 1167 return 1; 1168 } 1169 return 0; 1170 } 1171 NOKPROBE_SYMBOL(longjmp_break_handler); 1172 1173 bool arch_within_kprobe_blacklist(unsigned long addr) 1174 { 1175 bool is_in_entry_trampoline_section = false; 1176 1177 #ifdef CONFIG_X86_64 1178 is_in_entry_trampoline_section = 1179 (addr >= (unsigned long)__entry_trampoline_start && 1180 addr < (unsigned long)__entry_trampoline_end); 1181 #endif 1182 return (addr >= (unsigned long)__kprobes_text_start && 1183 addr < (unsigned long)__kprobes_text_end) || 1184 (addr >= (unsigned long)__entry_text_start && 1185 addr < (unsigned long)__entry_text_end) || 1186 is_in_entry_trampoline_section; 1187 } 1188 1189 int __init arch_init_kprobes(void) 1190 { 1191 return 0; 1192 } 1193 1194 int arch_trampoline_kprobe(struct kprobe *p) 1195 { 1196 return 0; 1197 } 1198