1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 53 #include <asm/cacheflush.h> 54 #include <asm/desc.h> 55 #include <asm/pgtable.h> 56 #include <asm/uaccess.h> 57 #include <asm/alternative.h> 58 #include <asm/insn.h> 59 #include <asm/debugreg.h> 60 61 #include "common.h" 62 63 void jprobe_return_end(void); 64 65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 67 68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 69 70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 75 << (row % 32)) 76 /* 77 * Undefined/reserved opcodes, conditional jump, Opcode Extension 78 * Groups, and some special opcodes can not boost. 79 * This is non-const and volatile to keep gcc from statically 80 * optimizing it out, as variable_test_bit makes gcc think only 81 * *(unsigned long*) is used. 82 */ 83 static volatile u32 twobyte_is_boostable[256 / 32] = { 84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 85 /* ---------------------------------------------- */ 86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 102 /* ----------------------------------------------- */ 103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 104 }; 105 #undef W 106 107 struct kretprobe_blackpoint kretprobe_blacklist[] = { 108 {"__switch_to", }, /* This function switches only current task, but 109 doesn't switch kernel stack.*/ 110 {NULL, NULL} /* Terminator */ 111 }; 112 113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 114 115 static nokprobe_inline void 116 __synthesize_relative_insn(void *from, void *to, u8 op) 117 { 118 struct __arch_relative_insn { 119 u8 op; 120 s32 raddr; 121 } __packed *insn; 122 123 insn = (struct __arch_relative_insn *)from; 124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 125 insn->op = op; 126 } 127 128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 129 void synthesize_reljump(void *from, void *to) 130 { 131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 132 } 133 NOKPROBE_SYMBOL(synthesize_reljump); 134 135 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 136 void synthesize_relcall(void *from, void *to) 137 { 138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 139 } 140 NOKPROBE_SYMBOL(synthesize_relcall); 141 142 /* 143 * Skip the prefixes of the instruction. 144 */ 145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 146 { 147 insn_attr_t attr; 148 149 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 150 while (inat_is_legacy_prefix(attr)) { 151 insn++; 152 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 153 } 154 #ifdef CONFIG_X86_64 155 if (inat_is_rex_prefix(attr)) 156 insn++; 157 #endif 158 return insn; 159 } 160 NOKPROBE_SYMBOL(skip_prefixes); 161 162 /* 163 * Returns non-zero if opcode is boostable. 164 * RIP relative instructions are adjusted at copying time in 64 bits mode 165 */ 166 int can_boost(kprobe_opcode_t *opcodes) 167 { 168 kprobe_opcode_t opcode; 169 kprobe_opcode_t *orig_opcodes = opcodes; 170 171 if (search_exception_tables((unsigned long)opcodes)) 172 return 0; /* Page fault may occur on this address. */ 173 174 retry: 175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 176 return 0; 177 opcode = *(opcodes++); 178 179 /* 2nd-byte opcode */ 180 if (opcode == 0x0f) { 181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 182 return 0; 183 return test_bit(*opcodes, 184 (unsigned long *)twobyte_is_boostable); 185 } 186 187 switch (opcode & 0xf0) { 188 #ifdef CONFIG_X86_64 189 case 0x40: 190 goto retry; /* REX prefix is boostable */ 191 #endif 192 case 0x60: 193 if (0x63 < opcode && opcode < 0x67) 194 goto retry; /* prefixes */ 195 /* can't boost Address-size override and bound */ 196 return (opcode != 0x62 && opcode != 0x67); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0xc0: 200 /* can't boost software-interruptions */ 201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 202 case 0xd0: 203 /* can boost AA* and XLAT */ 204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 205 case 0xe0: 206 /* can boost in/out and absolute jmps */ 207 return ((opcode & 0x04) || opcode == 0xea); 208 case 0xf0: 209 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 210 goto retry; /* lock/rep(ne) prefix */ 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* segment override prefixes are boostable */ 215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 216 goto retry; /* prefixes */ 217 /* CS override prefix and call are not boostable */ 218 return (opcode != 0x2e && opcode != 0x9a); 219 } 220 } 221 222 static unsigned long 223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 224 { 225 struct kprobe *kp; 226 227 kp = get_kprobe((void *)addr); 228 /* There is no probe, return original address */ 229 if (!kp) 230 return addr; 231 232 /* 233 * Basically, kp->ainsn.insn has an original instruction. 234 * However, RIP-relative instruction can not do single-stepping 235 * at different place, __copy_instruction() tweaks the displacement of 236 * that instruction. In that case, we can't recover the instruction 237 * from the kp->ainsn.insn. 238 * 239 * On the other hand, kp->opcode has a copy of the first byte of 240 * the probed instruction, which is overwritten by int3. And 241 * the instruction at kp->addr is not modified by kprobes except 242 * for the first byte, we can recover the original instruction 243 * from it and kp->opcode. 244 */ 245 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 246 buf[0] = kp->opcode; 247 return (unsigned long)buf; 248 } 249 250 /* 251 * Recover the probed instruction at addr for further analysis. 252 * Caller must lock kprobes by kprobe_mutex, or disable preemption 253 * for preventing to release referencing kprobes. 254 */ 255 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 256 { 257 unsigned long __addr; 258 259 __addr = __recover_optprobed_insn(buf, addr); 260 if (__addr != addr) 261 return __addr; 262 263 return __recover_probed_insn(buf, addr); 264 } 265 266 /* Check if paddr is at an instruction boundary */ 267 static int can_probe(unsigned long paddr) 268 { 269 unsigned long addr, __addr, offset = 0; 270 struct insn insn; 271 kprobe_opcode_t buf[MAX_INSN_SIZE]; 272 273 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 274 return 0; 275 276 /* Decode instructions */ 277 addr = paddr - offset; 278 while (addr < paddr) { 279 /* 280 * Check if the instruction has been modified by another 281 * kprobe, in which case we replace the breakpoint by the 282 * original instruction in our buffer. 283 * Also, jump optimization will change the breakpoint to 284 * relative-jump. Since the relative-jump itself is 285 * normally used, we just go through if there is no kprobe. 286 */ 287 __addr = recover_probed_instruction(buf, addr); 288 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 289 insn_get_length(&insn); 290 291 /* 292 * Another debugging subsystem might insert this breakpoint. 293 * In that case, we can't recover it. 294 */ 295 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 296 return 0; 297 addr += insn.length; 298 } 299 300 return (addr == paddr); 301 } 302 303 /* 304 * Returns non-zero if opcode modifies the interrupt flag. 305 */ 306 static int is_IF_modifier(kprobe_opcode_t *insn) 307 { 308 /* Skip prefixes */ 309 insn = skip_prefixes(insn); 310 311 switch (*insn) { 312 case 0xfa: /* cli */ 313 case 0xfb: /* sti */ 314 case 0xcf: /* iret/iretd */ 315 case 0x9d: /* popf/popfd */ 316 return 1; 317 } 318 319 return 0; 320 } 321 322 /* 323 * Copy an instruction and adjust the displacement if the instruction 324 * uses the %rip-relative addressing mode. 325 * If it does, Return the address of the 32-bit displacement word. 326 * If not, return null. 327 * Only applicable to 64-bit x86. 328 */ 329 int __copy_instruction(u8 *dest, u8 *src) 330 { 331 struct insn insn; 332 kprobe_opcode_t buf[MAX_INSN_SIZE]; 333 unsigned long recovered_insn = 334 recover_probed_instruction(buf, (unsigned long)src); 335 336 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); 337 insn_get_length(&insn); 338 /* Another subsystem puts a breakpoint, failed to recover */ 339 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 340 return 0; 341 memcpy(dest, insn.kaddr, insn.length); 342 343 #ifdef CONFIG_X86_64 344 if (insn_rip_relative(&insn)) { 345 s64 newdisp; 346 u8 *disp; 347 kernel_insn_init(&insn, dest, insn.length); 348 insn_get_displacement(&insn); 349 /* 350 * The copied instruction uses the %rip-relative addressing 351 * mode. Adjust the displacement for the difference between 352 * the original location of this instruction and the location 353 * of the copy that will actually be run. The tricky bit here 354 * is making sure that the sign extension happens correctly in 355 * this calculation, since we need a signed 32-bit result to 356 * be sign-extended to 64 bits when it's added to the %rip 357 * value and yield the same 64-bit result that the sign- 358 * extension of the original signed 32-bit displacement would 359 * have given. 360 */ 361 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 362 if ((s64) (s32) newdisp != newdisp) { 363 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 364 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 365 return 0; 366 } 367 disp = (u8 *) dest + insn_offset_displacement(&insn); 368 *(s32 *) disp = (s32) newdisp; 369 } 370 #endif 371 return insn.length; 372 } 373 374 static int arch_copy_kprobe(struct kprobe *p) 375 { 376 int ret; 377 378 /* Copy an instruction with recovering if other optprobe modifies it.*/ 379 ret = __copy_instruction(p->ainsn.insn, p->addr); 380 if (!ret) 381 return -EINVAL; 382 383 /* 384 * __copy_instruction can modify the displacement of the instruction, 385 * but it doesn't affect boostable check. 386 */ 387 if (can_boost(p->ainsn.insn)) 388 p->ainsn.boostable = 0; 389 else 390 p->ainsn.boostable = -1; 391 392 /* Check whether the instruction modifies Interrupt Flag or not */ 393 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 394 395 /* Also, displacement change doesn't affect the first byte */ 396 p->opcode = p->ainsn.insn[0]; 397 398 return 0; 399 } 400 401 int arch_prepare_kprobe(struct kprobe *p) 402 { 403 if (alternatives_text_reserved(p->addr, p->addr)) 404 return -EINVAL; 405 406 if (!can_probe((unsigned long)p->addr)) 407 return -EILSEQ; 408 /* insn: must be on special executable page on x86. */ 409 p->ainsn.insn = get_insn_slot(); 410 if (!p->ainsn.insn) 411 return -ENOMEM; 412 413 return arch_copy_kprobe(p); 414 } 415 416 void arch_arm_kprobe(struct kprobe *p) 417 { 418 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 419 } 420 421 void arch_disarm_kprobe(struct kprobe *p) 422 { 423 text_poke(p->addr, &p->opcode, 1); 424 } 425 426 void arch_remove_kprobe(struct kprobe *p) 427 { 428 if (p->ainsn.insn) { 429 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 430 p->ainsn.insn = NULL; 431 } 432 } 433 434 static nokprobe_inline void 435 save_previous_kprobe(struct kprobe_ctlblk *kcb) 436 { 437 kcb->prev_kprobe.kp = kprobe_running(); 438 kcb->prev_kprobe.status = kcb->kprobe_status; 439 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 440 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 441 } 442 443 static nokprobe_inline void 444 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 445 { 446 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 447 kcb->kprobe_status = kcb->prev_kprobe.status; 448 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 449 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 450 } 451 452 static nokprobe_inline void 453 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 454 struct kprobe_ctlblk *kcb) 455 { 456 __this_cpu_write(current_kprobe, p); 457 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 458 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 459 if (p->ainsn.if_modifier) 460 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 461 } 462 463 static nokprobe_inline void clear_btf(void) 464 { 465 if (test_thread_flag(TIF_BLOCKSTEP)) { 466 unsigned long debugctl = get_debugctlmsr(); 467 468 debugctl &= ~DEBUGCTLMSR_BTF; 469 update_debugctlmsr(debugctl); 470 } 471 } 472 473 static nokprobe_inline void restore_btf(void) 474 { 475 if (test_thread_flag(TIF_BLOCKSTEP)) { 476 unsigned long debugctl = get_debugctlmsr(); 477 478 debugctl |= DEBUGCTLMSR_BTF; 479 update_debugctlmsr(debugctl); 480 } 481 } 482 483 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 484 { 485 unsigned long *sara = stack_addr(regs); 486 487 ri->ret_addr = (kprobe_opcode_t *) *sara; 488 489 /* Replace the return addr with trampoline addr */ 490 *sara = (unsigned long) &kretprobe_trampoline; 491 } 492 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 493 494 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 495 struct kprobe_ctlblk *kcb, int reenter) 496 { 497 if (setup_detour_execution(p, regs, reenter)) 498 return; 499 500 #if !defined(CONFIG_PREEMPT) 501 if (p->ainsn.boostable == 1 && !p->post_handler) { 502 /* Boost up -- we can execute copied instructions directly */ 503 if (!reenter) 504 reset_current_kprobe(); 505 /* 506 * Reentering boosted probe doesn't reset current_kprobe, 507 * nor set current_kprobe, because it doesn't use single 508 * stepping. 509 */ 510 regs->ip = (unsigned long)p->ainsn.insn; 511 preempt_enable_no_resched(); 512 return; 513 } 514 #endif 515 if (reenter) { 516 save_previous_kprobe(kcb); 517 set_current_kprobe(p, regs, kcb); 518 kcb->kprobe_status = KPROBE_REENTER; 519 } else 520 kcb->kprobe_status = KPROBE_HIT_SS; 521 /* Prepare real single stepping */ 522 clear_btf(); 523 regs->flags |= X86_EFLAGS_TF; 524 regs->flags &= ~X86_EFLAGS_IF; 525 /* single step inline if the instruction is an int3 */ 526 if (p->opcode == BREAKPOINT_INSTRUCTION) 527 regs->ip = (unsigned long)p->addr; 528 else 529 regs->ip = (unsigned long)p->ainsn.insn; 530 } 531 NOKPROBE_SYMBOL(setup_singlestep); 532 533 /* 534 * We have reentered the kprobe_handler(), since another probe was hit while 535 * within the handler. We save the original kprobes variables and just single 536 * step on the instruction of the new probe without calling any user handlers. 537 */ 538 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 539 struct kprobe_ctlblk *kcb) 540 { 541 switch (kcb->kprobe_status) { 542 case KPROBE_HIT_SSDONE: 543 case KPROBE_HIT_ACTIVE: 544 case KPROBE_HIT_SS: 545 kprobes_inc_nmissed_count(p); 546 setup_singlestep(p, regs, kcb, 1); 547 break; 548 case KPROBE_REENTER: 549 /* A probe has been hit in the codepath leading up to, or just 550 * after, single-stepping of a probed instruction. This entire 551 * codepath should strictly reside in .kprobes.text section. 552 * Raise a BUG or we'll continue in an endless reentering loop 553 * and eventually a stack overflow. 554 */ 555 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 556 p->addr); 557 dump_kprobe(p); 558 BUG(); 559 default: 560 /* impossible cases */ 561 WARN_ON(1); 562 return 0; 563 } 564 565 return 1; 566 } 567 NOKPROBE_SYMBOL(reenter_kprobe); 568 569 /* 570 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 571 * remain disabled throughout this function. 572 */ 573 int kprobe_int3_handler(struct pt_regs *regs) 574 { 575 kprobe_opcode_t *addr; 576 struct kprobe *p; 577 struct kprobe_ctlblk *kcb; 578 579 if (user_mode_vm(regs)) 580 return 0; 581 582 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 583 /* 584 * We don't want to be preempted for the entire 585 * duration of kprobe processing. We conditionally 586 * re-enable preemption at the end of this function, 587 * and also in reenter_kprobe() and setup_singlestep(). 588 */ 589 preempt_disable(); 590 591 kcb = get_kprobe_ctlblk(); 592 p = get_kprobe(addr); 593 594 if (p) { 595 if (kprobe_running()) { 596 if (reenter_kprobe(p, regs, kcb)) 597 return 1; 598 } else { 599 set_current_kprobe(p, regs, kcb); 600 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 601 602 /* 603 * If we have no pre-handler or it returned 0, we 604 * continue with normal processing. If we have a 605 * pre-handler and it returned non-zero, it prepped 606 * for calling the break_handler below on re-entry 607 * for jprobe processing, so get out doing nothing 608 * more here. 609 */ 610 if (!p->pre_handler || !p->pre_handler(p, regs)) 611 setup_singlestep(p, regs, kcb, 0); 612 return 1; 613 } 614 } else if (*addr != BREAKPOINT_INSTRUCTION) { 615 /* 616 * The breakpoint instruction was removed right 617 * after we hit it. Another cpu has removed 618 * either a probepoint or a debugger breakpoint 619 * at this address. In either case, no further 620 * handling of this interrupt is appropriate. 621 * Back up over the (now missing) int3 and run 622 * the original instruction. 623 */ 624 regs->ip = (unsigned long)addr; 625 preempt_enable_no_resched(); 626 return 1; 627 } else if (kprobe_running()) { 628 p = __this_cpu_read(current_kprobe); 629 if (p->break_handler && p->break_handler(p, regs)) { 630 if (!skip_singlestep(p, regs, kcb)) 631 setup_singlestep(p, regs, kcb, 0); 632 return 1; 633 } 634 } /* else: not a kprobe fault; let the kernel handle it */ 635 636 preempt_enable_no_resched(); 637 return 0; 638 } 639 NOKPROBE_SYMBOL(kprobe_int3_handler); 640 641 /* 642 * When a retprobed function returns, this code saves registers and 643 * calls trampoline_handler() runs, which calls the kretprobe's handler. 644 */ 645 static void __used kretprobe_trampoline_holder(void) 646 { 647 asm volatile ( 648 ".global kretprobe_trampoline\n" 649 "kretprobe_trampoline: \n" 650 #ifdef CONFIG_X86_64 651 /* We don't bother saving the ss register */ 652 " pushq %rsp\n" 653 " pushfq\n" 654 SAVE_REGS_STRING 655 " movq %rsp, %rdi\n" 656 " call trampoline_handler\n" 657 /* Replace saved sp with true return address. */ 658 " movq %rax, 152(%rsp)\n" 659 RESTORE_REGS_STRING 660 " popfq\n" 661 #else 662 " pushf\n" 663 SAVE_REGS_STRING 664 " movl %esp, %eax\n" 665 " call trampoline_handler\n" 666 /* Move flags to cs */ 667 " movl 56(%esp), %edx\n" 668 " movl %edx, 52(%esp)\n" 669 /* Replace saved flags with true return address. */ 670 " movl %eax, 56(%esp)\n" 671 RESTORE_REGS_STRING 672 " popf\n" 673 #endif 674 " ret\n"); 675 } 676 NOKPROBE_SYMBOL(kretprobe_trampoline_holder); 677 NOKPROBE_SYMBOL(kretprobe_trampoline); 678 679 /* 680 * Called from kretprobe_trampoline 681 */ 682 __visible __used void *trampoline_handler(struct pt_regs *regs) 683 { 684 struct kretprobe_instance *ri = NULL; 685 struct hlist_head *head, empty_rp; 686 struct hlist_node *tmp; 687 unsigned long flags, orig_ret_address = 0; 688 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 689 kprobe_opcode_t *correct_ret_addr = NULL; 690 691 INIT_HLIST_HEAD(&empty_rp); 692 kretprobe_hash_lock(current, &head, &flags); 693 /* fixup registers */ 694 #ifdef CONFIG_X86_64 695 regs->cs = __KERNEL_CS; 696 #else 697 regs->cs = __KERNEL_CS | get_kernel_rpl(); 698 regs->gs = 0; 699 #endif 700 regs->ip = trampoline_address; 701 regs->orig_ax = ~0UL; 702 703 /* 704 * It is possible to have multiple instances associated with a given 705 * task either because multiple functions in the call path have 706 * return probes installed on them, and/or more than one 707 * return probe was registered for a target function. 708 * 709 * We can handle this because: 710 * - instances are always pushed into the head of the list 711 * - when multiple return probes are registered for the same 712 * function, the (chronologically) first instance's ret_addr 713 * will be the real return address, and all the rest will 714 * point to kretprobe_trampoline. 715 */ 716 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 717 if (ri->task != current) 718 /* another task is sharing our hash bucket */ 719 continue; 720 721 orig_ret_address = (unsigned long)ri->ret_addr; 722 723 if (orig_ret_address != trampoline_address) 724 /* 725 * This is the real return address. Any other 726 * instances associated with this task are for 727 * other calls deeper on the call stack 728 */ 729 break; 730 } 731 732 kretprobe_assert(ri, orig_ret_address, trampoline_address); 733 734 correct_ret_addr = ri->ret_addr; 735 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 736 if (ri->task != current) 737 /* another task is sharing our hash bucket */ 738 continue; 739 740 orig_ret_address = (unsigned long)ri->ret_addr; 741 if (ri->rp && ri->rp->handler) { 742 __this_cpu_write(current_kprobe, &ri->rp->kp); 743 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 744 ri->ret_addr = correct_ret_addr; 745 ri->rp->handler(ri, regs); 746 __this_cpu_write(current_kprobe, NULL); 747 } 748 749 recycle_rp_inst(ri, &empty_rp); 750 751 if (orig_ret_address != trampoline_address) 752 /* 753 * This is the real return address. Any other 754 * instances associated with this task are for 755 * other calls deeper on the call stack 756 */ 757 break; 758 } 759 760 kretprobe_hash_unlock(current, &flags); 761 762 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 763 hlist_del(&ri->hlist); 764 kfree(ri); 765 } 766 return (void *)orig_ret_address; 767 } 768 NOKPROBE_SYMBOL(trampoline_handler); 769 770 /* 771 * Called after single-stepping. p->addr is the address of the 772 * instruction whose first byte has been replaced by the "int 3" 773 * instruction. To avoid the SMP problems that can occur when we 774 * temporarily put back the original opcode to single-step, we 775 * single-stepped a copy of the instruction. The address of this 776 * copy is p->ainsn.insn. 777 * 778 * This function prepares to return from the post-single-step 779 * interrupt. We have to fix up the stack as follows: 780 * 781 * 0) Except in the case of absolute or indirect jump or call instructions, 782 * the new ip is relative to the copied instruction. We need to make 783 * it relative to the original instruction. 784 * 785 * 1) If the single-stepped instruction was pushfl, then the TF and IF 786 * flags are set in the just-pushed flags, and may need to be cleared. 787 * 788 * 2) If the single-stepped instruction was a call, the return address 789 * that is atop the stack is the address following the copied instruction. 790 * We need to make it the address following the original instruction. 791 * 792 * If this is the first time we've single-stepped the instruction at 793 * this probepoint, and the instruction is boostable, boost it: add a 794 * jump instruction after the copied instruction, that jumps to the next 795 * instruction after the probepoint. 796 */ 797 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 798 struct kprobe_ctlblk *kcb) 799 { 800 unsigned long *tos = stack_addr(regs); 801 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 802 unsigned long orig_ip = (unsigned long)p->addr; 803 kprobe_opcode_t *insn = p->ainsn.insn; 804 805 /* Skip prefixes */ 806 insn = skip_prefixes(insn); 807 808 regs->flags &= ~X86_EFLAGS_TF; 809 switch (*insn) { 810 case 0x9c: /* pushfl */ 811 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 812 *tos |= kcb->kprobe_old_flags; 813 break; 814 case 0xc2: /* iret/ret/lret */ 815 case 0xc3: 816 case 0xca: 817 case 0xcb: 818 case 0xcf: 819 case 0xea: /* jmp absolute -- ip is correct */ 820 /* ip is already adjusted, no more changes required */ 821 p->ainsn.boostable = 1; 822 goto no_change; 823 case 0xe8: /* call relative - Fix return addr */ 824 *tos = orig_ip + (*tos - copy_ip); 825 break; 826 #ifdef CONFIG_X86_32 827 case 0x9a: /* call absolute -- same as call absolute, indirect */ 828 *tos = orig_ip + (*tos - copy_ip); 829 goto no_change; 830 #endif 831 case 0xff: 832 if ((insn[1] & 0x30) == 0x10) { 833 /* 834 * call absolute, indirect 835 * Fix return addr; ip is correct. 836 * But this is not boostable 837 */ 838 *tos = orig_ip + (*tos - copy_ip); 839 goto no_change; 840 } else if (((insn[1] & 0x31) == 0x20) || 841 ((insn[1] & 0x31) == 0x21)) { 842 /* 843 * jmp near and far, absolute indirect 844 * ip is correct. And this is boostable 845 */ 846 p->ainsn.boostable = 1; 847 goto no_change; 848 } 849 default: 850 break; 851 } 852 853 if (p->ainsn.boostable == 0) { 854 if ((regs->ip > copy_ip) && 855 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 856 /* 857 * These instructions can be executed directly if it 858 * jumps back to correct address. 859 */ 860 synthesize_reljump((void *)regs->ip, 861 (void *)orig_ip + (regs->ip - copy_ip)); 862 p->ainsn.boostable = 1; 863 } else { 864 p->ainsn.boostable = -1; 865 } 866 } 867 868 regs->ip += orig_ip - copy_ip; 869 870 no_change: 871 restore_btf(); 872 } 873 NOKPROBE_SYMBOL(resume_execution); 874 875 /* 876 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 877 * remain disabled throughout this function. 878 */ 879 int kprobe_debug_handler(struct pt_regs *regs) 880 { 881 struct kprobe *cur = kprobe_running(); 882 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 883 884 if (!cur) 885 return 0; 886 887 resume_execution(cur, regs, kcb); 888 regs->flags |= kcb->kprobe_saved_flags; 889 890 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 891 kcb->kprobe_status = KPROBE_HIT_SSDONE; 892 cur->post_handler(cur, regs, 0); 893 } 894 895 /* Restore back the original saved kprobes variables and continue. */ 896 if (kcb->kprobe_status == KPROBE_REENTER) { 897 restore_previous_kprobe(kcb); 898 goto out; 899 } 900 reset_current_kprobe(); 901 out: 902 preempt_enable_no_resched(); 903 904 /* 905 * if somebody else is singlestepping across a probe point, flags 906 * will have TF set, in which case, continue the remaining processing 907 * of do_debug, as if this is not a probe hit. 908 */ 909 if (regs->flags & X86_EFLAGS_TF) 910 return 0; 911 912 return 1; 913 } 914 NOKPROBE_SYMBOL(kprobe_debug_handler); 915 916 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 917 { 918 struct kprobe *cur = kprobe_running(); 919 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 920 921 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 922 /* This must happen on single-stepping */ 923 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 924 kcb->kprobe_status != KPROBE_REENTER); 925 /* 926 * We are here because the instruction being single 927 * stepped caused a page fault. We reset the current 928 * kprobe and the ip points back to the probe address 929 * and allow the page fault handler to continue as a 930 * normal page fault. 931 */ 932 regs->ip = (unsigned long)cur->addr; 933 regs->flags |= kcb->kprobe_old_flags; 934 if (kcb->kprobe_status == KPROBE_REENTER) 935 restore_previous_kprobe(kcb); 936 else 937 reset_current_kprobe(); 938 preempt_enable_no_resched(); 939 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 940 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 941 /* 942 * We increment the nmissed count for accounting, 943 * we can also use npre/npostfault count for accounting 944 * these specific fault cases. 945 */ 946 kprobes_inc_nmissed_count(cur); 947 948 /* 949 * We come here because instructions in the pre/post 950 * handler caused the page_fault, this could happen 951 * if handler tries to access user space by 952 * copy_from_user(), get_user() etc. Let the 953 * user-specified handler try to fix it first. 954 */ 955 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 956 return 1; 957 958 /* 959 * In case the user-specified fault handler returned 960 * zero, try to fix up. 961 */ 962 if (fixup_exception(regs)) 963 return 1; 964 965 /* 966 * fixup routine could not handle it, 967 * Let do_page_fault() fix it. 968 */ 969 } 970 971 return 0; 972 } 973 NOKPROBE_SYMBOL(kprobe_fault_handler); 974 975 /* 976 * Wrapper routine for handling exceptions. 977 */ 978 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 979 void *data) 980 { 981 struct die_args *args = data; 982 int ret = NOTIFY_DONE; 983 984 if (args->regs && user_mode_vm(args->regs)) 985 return ret; 986 987 if (val == DIE_GPF) { 988 /* 989 * To be potentially processing a kprobe fault and to 990 * trust the result from kprobe_running(), we have 991 * be non-preemptible. 992 */ 993 if (!preemptible() && kprobe_running() && 994 kprobe_fault_handler(args->regs, args->trapnr)) 995 ret = NOTIFY_STOP; 996 } 997 return ret; 998 } 999 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1000 1001 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1002 { 1003 struct jprobe *jp = container_of(p, struct jprobe, kp); 1004 unsigned long addr; 1005 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1006 1007 kcb->jprobe_saved_regs = *regs; 1008 kcb->jprobe_saved_sp = stack_addr(regs); 1009 addr = (unsigned long)(kcb->jprobe_saved_sp); 1010 1011 /* 1012 * As Linus pointed out, gcc assumes that the callee 1013 * owns the argument space and could overwrite it, e.g. 1014 * tailcall optimization. So, to be absolutely safe 1015 * we also save and restore enough stack bytes to cover 1016 * the argument area. 1017 */ 1018 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1019 MIN_STACK_SIZE(addr)); 1020 regs->flags &= ~X86_EFLAGS_IF; 1021 trace_hardirqs_off(); 1022 regs->ip = (unsigned long)(jp->entry); 1023 1024 /* 1025 * jprobes use jprobe_return() which skips the normal return 1026 * path of the function, and this messes up the accounting of the 1027 * function graph tracer to get messed up. 1028 * 1029 * Pause function graph tracing while performing the jprobe function. 1030 */ 1031 pause_graph_tracing(); 1032 return 1; 1033 } 1034 NOKPROBE_SYMBOL(setjmp_pre_handler); 1035 1036 void jprobe_return(void) 1037 { 1038 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1039 1040 asm volatile ( 1041 #ifdef CONFIG_X86_64 1042 " xchg %%rbx,%%rsp \n" 1043 #else 1044 " xchgl %%ebx,%%esp \n" 1045 #endif 1046 " int3 \n" 1047 " .globl jprobe_return_end\n" 1048 " jprobe_return_end: \n" 1049 " nop \n"::"b" 1050 (kcb->jprobe_saved_sp):"memory"); 1051 } 1052 NOKPROBE_SYMBOL(jprobe_return); 1053 NOKPROBE_SYMBOL(jprobe_return_end); 1054 1055 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1056 { 1057 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1058 u8 *addr = (u8 *) (regs->ip - 1); 1059 struct jprobe *jp = container_of(p, struct jprobe, kp); 1060 void *saved_sp = kcb->jprobe_saved_sp; 1061 1062 if ((addr > (u8 *) jprobe_return) && 1063 (addr < (u8 *) jprobe_return_end)) { 1064 if (stack_addr(regs) != saved_sp) { 1065 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1066 printk(KERN_ERR 1067 "current sp %p does not match saved sp %p\n", 1068 stack_addr(regs), saved_sp); 1069 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1070 show_regs(saved_regs); 1071 printk(KERN_ERR "Current registers\n"); 1072 show_regs(regs); 1073 BUG(); 1074 } 1075 /* It's OK to start function graph tracing again */ 1076 unpause_graph_tracing(); 1077 *regs = kcb->jprobe_saved_regs; 1078 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1079 preempt_enable_no_resched(); 1080 return 1; 1081 } 1082 return 0; 1083 } 1084 NOKPROBE_SYMBOL(longjmp_break_handler); 1085 1086 bool arch_within_kprobe_blacklist(unsigned long addr) 1087 { 1088 return (addr >= (unsigned long)__kprobes_text_start && 1089 addr < (unsigned long)__kprobes_text_end) || 1090 (addr >= (unsigned long)__entry_text_start && 1091 addr < (unsigned long)__entry_text_end); 1092 } 1093 1094 int __init arch_init_kprobes(void) 1095 { 1096 return 0; 1097 } 1098 1099 int arch_trampoline_kprobe(struct kprobe *p) 1100 { 1101 return 0; 1102 } 1103