1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 #include <linux/moduleloader.h> 56 57 #include <asm/text-patching.h> 58 #include <asm/cacheflush.h> 59 #include <asm/desc.h> 60 #include <asm/pgtable.h> 61 #include <linux/uaccess.h> 62 #include <asm/alternative.h> 63 #include <asm/insn.h> 64 #include <asm/debugreg.h> 65 #include <asm/set_memory.h> 66 67 #include "common.h" 68 69 void jprobe_return_end(void); 70 71 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 72 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 73 74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 75 76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 81 << (row % 32)) 82 /* 83 * Undefined/reserved opcodes, conditional jump, Opcode Extension 84 * Groups, and some special opcodes can not boost. 85 * This is non-const and volatile to keep gcc from statically 86 * optimizing it out, as variable_test_bit makes gcc think only 87 * *(unsigned long*) is used. 88 */ 89 static volatile u32 twobyte_is_boostable[256 / 32] = { 90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 91 /* ---------------------------------------------- */ 92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 108 /* ----------------------------------------------- */ 109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 110 }; 111 #undef W 112 113 struct kretprobe_blackpoint kretprobe_blacklist[] = { 114 {"__switch_to", }, /* This function switches only current task, but 115 doesn't switch kernel stack.*/ 116 {NULL, NULL} /* Terminator */ 117 }; 118 119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 120 121 static nokprobe_inline void 122 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 123 { 124 struct __arch_relative_insn { 125 u8 op; 126 s32 raddr; 127 } __packed *insn; 128 129 insn = (struct __arch_relative_insn *)dest; 130 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 131 insn->op = op; 132 } 133 134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 135 void synthesize_reljump(void *dest, void *from, void *to) 136 { 137 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE); 138 } 139 NOKPROBE_SYMBOL(synthesize_reljump); 140 141 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 142 void synthesize_relcall(void *dest, void *from, void *to) 143 { 144 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE); 145 } 146 NOKPROBE_SYMBOL(synthesize_relcall); 147 148 /* 149 * Skip the prefixes of the instruction. 150 */ 151 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 152 { 153 insn_attr_t attr; 154 155 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 156 while (inat_is_legacy_prefix(attr)) { 157 insn++; 158 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 159 } 160 #ifdef CONFIG_X86_64 161 if (inat_is_rex_prefix(attr)) 162 insn++; 163 #endif 164 return insn; 165 } 166 NOKPROBE_SYMBOL(skip_prefixes); 167 168 /* 169 * Returns non-zero if INSN is boostable. 170 * RIP relative instructions are adjusted at copying time in 64 bits mode 171 */ 172 int can_boost(struct insn *insn, void *addr) 173 { 174 kprobe_opcode_t opcode; 175 176 if (search_exception_tables((unsigned long)addr)) 177 return 0; /* Page fault may occur on this address. */ 178 179 /* 2nd-byte opcode */ 180 if (insn->opcode.nbytes == 2) 181 return test_bit(insn->opcode.bytes[1], 182 (unsigned long *)twobyte_is_boostable); 183 184 if (insn->opcode.nbytes != 1) 185 return 0; 186 187 /* Can't boost Address-size override prefix */ 188 if (unlikely(inat_is_address_size_prefix(insn->attr))) 189 return 0; 190 191 opcode = insn->opcode.bytes[0]; 192 193 switch (opcode & 0xf0) { 194 case 0x60: 195 /* can't boost "bound" */ 196 return (opcode != 0x62); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0x90: 200 return opcode != 0x9a; /* can't boost call far */ 201 case 0xc0: 202 /* can't boost software-interruptions */ 203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 204 case 0xd0: 205 /* can boost AA* and XLAT */ 206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 207 case 0xe0: 208 /* can boost in/out and absolute jmps */ 209 return ((opcode & 0x04) || opcode == 0xea); 210 case 0xf0: 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* CS override prefix and call are not boostable */ 215 return (opcode != 0x2e && opcode != 0x9a); 216 } 217 } 218 219 static unsigned long 220 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 221 { 222 struct kprobe *kp; 223 unsigned long faddr; 224 225 kp = get_kprobe((void *)addr); 226 faddr = ftrace_location(addr); 227 /* 228 * Addresses inside the ftrace location are refused by 229 * arch_check_ftrace_location(). Something went terribly wrong 230 * if such an address is checked here. 231 */ 232 if (WARN_ON(faddr && faddr != addr)) 233 return 0UL; 234 /* 235 * Use the current code if it is not modified by Kprobe 236 * and it cannot be modified by ftrace. 237 */ 238 if (!kp && !faddr) 239 return addr; 240 241 /* 242 * Basically, kp->ainsn.insn has an original instruction. 243 * However, RIP-relative instruction can not do single-stepping 244 * at different place, __copy_instruction() tweaks the displacement of 245 * that instruction. In that case, we can't recover the instruction 246 * from the kp->ainsn.insn. 247 * 248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 249 * of the first byte of the probed instruction, which is overwritten 250 * by int3. And the instruction at kp->addr is not modified by kprobes 251 * except for the first byte, we can recover the original instruction 252 * from it and kp->opcode. 253 * 254 * In case of Kprobes using ftrace, we do not have a copy of 255 * the original instruction. In fact, the ftrace location might 256 * be modified at anytime and even could be in an inconsistent state. 257 * Fortunately, we know that the original code is the ideal 5-byte 258 * long NOP. 259 */ 260 if (probe_kernel_read(buf, (void *)addr, 261 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 262 return 0UL; 263 264 if (faddr) 265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 266 else 267 buf[0] = kp->opcode; 268 return (unsigned long)buf; 269 } 270 271 /* 272 * Recover the probed instruction at addr for further analysis. 273 * Caller must lock kprobes by kprobe_mutex, or disable preemption 274 * for preventing to release referencing kprobes. 275 * Returns zero if the instruction can not get recovered (or access failed). 276 */ 277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 278 { 279 unsigned long __addr; 280 281 __addr = __recover_optprobed_insn(buf, addr); 282 if (__addr != addr) 283 return __addr; 284 285 return __recover_probed_insn(buf, addr); 286 } 287 288 /* Check if paddr is at an instruction boundary */ 289 static int can_probe(unsigned long paddr) 290 { 291 unsigned long addr, __addr, offset = 0; 292 struct insn insn; 293 kprobe_opcode_t buf[MAX_INSN_SIZE]; 294 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 296 return 0; 297 298 /* Decode instructions */ 299 addr = paddr - offset; 300 while (addr < paddr) { 301 /* 302 * Check if the instruction has been modified by another 303 * kprobe, in which case we replace the breakpoint by the 304 * original instruction in our buffer. 305 * Also, jump optimization will change the breakpoint to 306 * relative-jump. Since the relative-jump itself is 307 * normally used, we just go through if there is no kprobe. 308 */ 309 __addr = recover_probed_instruction(buf, addr); 310 if (!__addr) 311 return 0; 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 313 insn_get_length(&insn); 314 315 /* 316 * Another debugging subsystem might insert this breakpoint. 317 * In that case, we can't recover it. 318 */ 319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 320 return 0; 321 addr += insn.length; 322 } 323 324 return (addr == paddr); 325 } 326 327 /* 328 * Returns non-zero if opcode modifies the interrupt flag. 329 */ 330 static int is_IF_modifier(kprobe_opcode_t *insn) 331 { 332 /* Skip prefixes */ 333 insn = skip_prefixes(insn); 334 335 switch (*insn) { 336 case 0xfa: /* cli */ 337 case 0xfb: /* sti */ 338 case 0xcf: /* iret/iretd */ 339 case 0x9d: /* popf/popfd */ 340 return 1; 341 } 342 343 return 0; 344 } 345 346 /* 347 * Copy an instruction with recovering modified instruction by kprobes 348 * and adjust the displacement if the instruction uses the %rip-relative 349 * addressing mode. Note that since @real will be the final place of copied 350 * instruction, displacement must be adjust by @real, not @dest. 351 * This returns the length of copied instruction, or 0 if it has an error. 352 */ 353 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 354 { 355 kprobe_opcode_t buf[MAX_INSN_SIZE]; 356 unsigned long recovered_insn = 357 recover_probed_instruction(buf, (unsigned long)src); 358 359 if (!recovered_insn || !insn) 360 return 0; 361 362 /* This can access kernel text if given address is not recovered */ 363 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 364 return 0; 365 366 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 367 insn_get_length(insn); 368 369 /* Another subsystem puts a breakpoint, failed to recover */ 370 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 371 return 0; 372 373 #ifdef CONFIG_X86_64 374 /* Only x86_64 has RIP relative instructions */ 375 if (insn_rip_relative(insn)) { 376 s64 newdisp; 377 u8 *disp; 378 /* 379 * The copied instruction uses the %rip-relative addressing 380 * mode. Adjust the displacement for the difference between 381 * the original location of this instruction and the location 382 * of the copy that will actually be run. The tricky bit here 383 * is making sure that the sign extension happens correctly in 384 * this calculation, since we need a signed 32-bit result to 385 * be sign-extended to 64 bits when it's added to the %rip 386 * value and yield the same 64-bit result that the sign- 387 * extension of the original signed 32-bit displacement would 388 * have given. 389 */ 390 newdisp = (u8 *) src + (s64) insn->displacement.value 391 - (u8 *) real; 392 if ((s64) (s32) newdisp != newdisp) { 393 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 394 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", 395 src, real, insn->displacement.value); 396 return 0; 397 } 398 disp = (u8 *) dest + insn_offset_displacement(insn); 399 *(s32 *) disp = (s32) newdisp; 400 } 401 #endif 402 return insn->length; 403 } 404 405 /* Prepare reljump right after instruction to boost */ 406 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 407 struct insn *insn) 408 { 409 int len = insn->length; 410 411 if (can_boost(insn, p->addr) && 412 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) { 413 /* 414 * These instructions can be executed directly if it 415 * jumps back to correct address. 416 */ 417 synthesize_reljump(buf + len, p->ainsn.insn + len, 418 p->addr + insn->length); 419 len += RELATIVEJUMP_SIZE; 420 p->ainsn.boostable = true; 421 } else { 422 p->ainsn.boostable = false; 423 } 424 425 return len; 426 } 427 428 /* Make page to RO mode when allocate it */ 429 void *alloc_insn_page(void) 430 { 431 void *page; 432 433 page = module_alloc(PAGE_SIZE); 434 if (page) 435 set_memory_ro((unsigned long)page & PAGE_MASK, 1); 436 437 return page; 438 } 439 440 /* Recover page to RW mode before releasing it */ 441 void free_insn_page(void *page) 442 { 443 set_memory_nx((unsigned long)page & PAGE_MASK, 1); 444 set_memory_rw((unsigned long)page & PAGE_MASK, 1); 445 module_memfree(page); 446 } 447 448 static int arch_copy_kprobe(struct kprobe *p) 449 { 450 struct insn insn; 451 kprobe_opcode_t buf[MAX_INSN_SIZE]; 452 int len; 453 454 /* Copy an instruction with recovering if other optprobe modifies it.*/ 455 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 456 if (!len) 457 return -EINVAL; 458 459 /* 460 * __copy_instruction can modify the displacement of the instruction, 461 * but it doesn't affect boostable check. 462 */ 463 len = prepare_boost(buf, p, &insn); 464 465 /* Check whether the instruction modifies Interrupt Flag or not */ 466 p->ainsn.if_modifier = is_IF_modifier(buf); 467 468 /* Also, displacement change doesn't affect the first byte */ 469 p->opcode = buf[0]; 470 471 /* OK, write back the instruction(s) into ROX insn buffer */ 472 text_poke(p->ainsn.insn, buf, len); 473 474 return 0; 475 } 476 477 int arch_prepare_kprobe(struct kprobe *p) 478 { 479 int ret; 480 481 if (alternatives_text_reserved(p->addr, p->addr)) 482 return -EINVAL; 483 484 if (!can_probe((unsigned long)p->addr)) 485 return -EILSEQ; 486 /* insn: must be on special executable page on x86. */ 487 p->ainsn.insn = get_insn_slot(); 488 if (!p->ainsn.insn) 489 return -ENOMEM; 490 491 ret = arch_copy_kprobe(p); 492 if (ret) { 493 free_insn_slot(p->ainsn.insn, 0); 494 p->ainsn.insn = NULL; 495 } 496 497 return ret; 498 } 499 500 void arch_arm_kprobe(struct kprobe *p) 501 { 502 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 503 } 504 505 void arch_disarm_kprobe(struct kprobe *p) 506 { 507 text_poke(p->addr, &p->opcode, 1); 508 } 509 510 void arch_remove_kprobe(struct kprobe *p) 511 { 512 if (p->ainsn.insn) { 513 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 514 p->ainsn.insn = NULL; 515 } 516 } 517 518 static nokprobe_inline void 519 save_previous_kprobe(struct kprobe_ctlblk *kcb) 520 { 521 kcb->prev_kprobe.kp = kprobe_running(); 522 kcb->prev_kprobe.status = kcb->kprobe_status; 523 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 524 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 525 } 526 527 static nokprobe_inline void 528 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 529 { 530 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 531 kcb->kprobe_status = kcb->prev_kprobe.status; 532 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 533 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 534 } 535 536 static nokprobe_inline void 537 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 538 struct kprobe_ctlblk *kcb) 539 { 540 __this_cpu_write(current_kprobe, p); 541 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 542 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 543 if (p->ainsn.if_modifier) 544 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 545 } 546 547 static nokprobe_inline void clear_btf(void) 548 { 549 if (test_thread_flag(TIF_BLOCKSTEP)) { 550 unsigned long debugctl = get_debugctlmsr(); 551 552 debugctl &= ~DEBUGCTLMSR_BTF; 553 update_debugctlmsr(debugctl); 554 } 555 } 556 557 static nokprobe_inline void restore_btf(void) 558 { 559 if (test_thread_flag(TIF_BLOCKSTEP)) { 560 unsigned long debugctl = get_debugctlmsr(); 561 562 debugctl |= DEBUGCTLMSR_BTF; 563 update_debugctlmsr(debugctl); 564 } 565 } 566 567 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 568 { 569 unsigned long *sara = stack_addr(regs); 570 571 ri->ret_addr = (kprobe_opcode_t *) *sara; 572 573 /* Replace the return addr with trampoline addr */ 574 *sara = (unsigned long) &kretprobe_trampoline; 575 } 576 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 577 578 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 579 struct kprobe_ctlblk *kcb, int reenter) 580 { 581 if (setup_detour_execution(p, regs, reenter)) 582 return; 583 584 #if !defined(CONFIG_PREEMPT) 585 if (p->ainsn.boostable && !p->post_handler) { 586 /* Boost up -- we can execute copied instructions directly */ 587 if (!reenter) 588 reset_current_kprobe(); 589 /* 590 * Reentering boosted probe doesn't reset current_kprobe, 591 * nor set current_kprobe, because it doesn't use single 592 * stepping. 593 */ 594 regs->ip = (unsigned long)p->ainsn.insn; 595 preempt_enable_no_resched(); 596 return; 597 } 598 #endif 599 if (reenter) { 600 save_previous_kprobe(kcb); 601 set_current_kprobe(p, regs, kcb); 602 kcb->kprobe_status = KPROBE_REENTER; 603 } else 604 kcb->kprobe_status = KPROBE_HIT_SS; 605 /* Prepare real single stepping */ 606 clear_btf(); 607 regs->flags |= X86_EFLAGS_TF; 608 regs->flags &= ~X86_EFLAGS_IF; 609 /* single step inline if the instruction is an int3 */ 610 if (p->opcode == BREAKPOINT_INSTRUCTION) 611 regs->ip = (unsigned long)p->addr; 612 else 613 regs->ip = (unsigned long)p->ainsn.insn; 614 } 615 NOKPROBE_SYMBOL(setup_singlestep); 616 617 /* 618 * We have reentered the kprobe_handler(), since another probe was hit while 619 * within the handler. We save the original kprobes variables and just single 620 * step on the instruction of the new probe without calling any user handlers. 621 */ 622 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 623 struct kprobe_ctlblk *kcb) 624 { 625 switch (kcb->kprobe_status) { 626 case KPROBE_HIT_SSDONE: 627 case KPROBE_HIT_ACTIVE: 628 case KPROBE_HIT_SS: 629 kprobes_inc_nmissed_count(p); 630 setup_singlestep(p, regs, kcb, 1); 631 break; 632 case KPROBE_REENTER: 633 /* A probe has been hit in the codepath leading up to, or just 634 * after, single-stepping of a probed instruction. This entire 635 * codepath should strictly reside in .kprobes.text section. 636 * Raise a BUG or we'll continue in an endless reentering loop 637 * and eventually a stack overflow. 638 */ 639 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 640 p->addr); 641 dump_kprobe(p); 642 BUG(); 643 default: 644 /* impossible cases */ 645 WARN_ON(1); 646 return 0; 647 } 648 649 return 1; 650 } 651 NOKPROBE_SYMBOL(reenter_kprobe); 652 653 /* 654 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 655 * remain disabled throughout this function. 656 */ 657 int kprobe_int3_handler(struct pt_regs *regs) 658 { 659 kprobe_opcode_t *addr; 660 struct kprobe *p; 661 struct kprobe_ctlblk *kcb; 662 663 if (user_mode(regs)) 664 return 0; 665 666 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 667 /* 668 * We don't want to be preempted for the entire 669 * duration of kprobe processing. We conditionally 670 * re-enable preemption at the end of this function, 671 * and also in reenter_kprobe() and setup_singlestep(). 672 */ 673 preempt_disable(); 674 675 kcb = get_kprobe_ctlblk(); 676 p = get_kprobe(addr); 677 678 if (p) { 679 if (kprobe_running()) { 680 if (reenter_kprobe(p, regs, kcb)) 681 return 1; 682 } else { 683 set_current_kprobe(p, regs, kcb); 684 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 685 686 /* 687 * If we have no pre-handler or it returned 0, we 688 * continue with normal processing. If we have a 689 * pre-handler and it returned non-zero, it prepped 690 * for calling the break_handler below on re-entry 691 * for jprobe processing, so get out doing nothing 692 * more here. 693 */ 694 if (!p->pre_handler || !p->pre_handler(p, regs)) 695 setup_singlestep(p, regs, kcb, 0); 696 return 1; 697 } 698 } else if (*addr != BREAKPOINT_INSTRUCTION) { 699 /* 700 * The breakpoint instruction was removed right 701 * after we hit it. Another cpu has removed 702 * either a probepoint or a debugger breakpoint 703 * at this address. In either case, no further 704 * handling of this interrupt is appropriate. 705 * Back up over the (now missing) int3 and run 706 * the original instruction. 707 */ 708 regs->ip = (unsigned long)addr; 709 preempt_enable_no_resched(); 710 return 1; 711 } else if (kprobe_running()) { 712 p = __this_cpu_read(current_kprobe); 713 if (p->break_handler && p->break_handler(p, regs)) { 714 if (!skip_singlestep(p, regs, kcb)) 715 setup_singlestep(p, regs, kcb, 0); 716 return 1; 717 } 718 } /* else: not a kprobe fault; let the kernel handle it */ 719 720 preempt_enable_no_resched(); 721 return 0; 722 } 723 NOKPROBE_SYMBOL(kprobe_int3_handler); 724 725 /* 726 * When a retprobed function returns, this code saves registers and 727 * calls trampoline_handler() runs, which calls the kretprobe's handler. 728 */ 729 asm( 730 ".global kretprobe_trampoline\n" 731 ".type kretprobe_trampoline, @function\n" 732 "kretprobe_trampoline:\n" 733 #ifdef CONFIG_X86_64 734 /* We don't bother saving the ss register */ 735 " pushq %rsp\n" 736 " pushfq\n" 737 SAVE_REGS_STRING 738 " movq %rsp, %rdi\n" 739 " call trampoline_handler\n" 740 /* Replace saved sp with true return address. */ 741 " movq %rax, 152(%rsp)\n" 742 RESTORE_REGS_STRING 743 " popfq\n" 744 #else 745 " pushf\n" 746 SAVE_REGS_STRING 747 " movl %esp, %eax\n" 748 " call trampoline_handler\n" 749 /* Move flags to cs */ 750 " movl 56(%esp), %edx\n" 751 " movl %edx, 52(%esp)\n" 752 /* Replace saved flags with true return address. */ 753 " movl %eax, 56(%esp)\n" 754 RESTORE_REGS_STRING 755 " popf\n" 756 #endif 757 " ret\n" 758 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 759 ); 760 NOKPROBE_SYMBOL(kretprobe_trampoline); 761 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 762 763 /* 764 * Called from kretprobe_trampoline 765 */ 766 __visible __used void *trampoline_handler(struct pt_regs *regs) 767 { 768 struct kretprobe_instance *ri = NULL; 769 struct hlist_head *head, empty_rp; 770 struct hlist_node *tmp; 771 unsigned long flags, orig_ret_address = 0; 772 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 773 kprobe_opcode_t *correct_ret_addr = NULL; 774 775 INIT_HLIST_HEAD(&empty_rp); 776 kretprobe_hash_lock(current, &head, &flags); 777 /* fixup registers */ 778 #ifdef CONFIG_X86_64 779 regs->cs = __KERNEL_CS; 780 #else 781 regs->cs = __KERNEL_CS | get_kernel_rpl(); 782 regs->gs = 0; 783 #endif 784 regs->ip = trampoline_address; 785 regs->orig_ax = ~0UL; 786 787 /* 788 * It is possible to have multiple instances associated with a given 789 * task either because multiple functions in the call path have 790 * return probes installed on them, and/or more than one 791 * return probe was registered for a target function. 792 * 793 * We can handle this because: 794 * - instances are always pushed into the head of the list 795 * - when multiple return probes are registered for the same 796 * function, the (chronologically) first instance's ret_addr 797 * will be the real return address, and all the rest will 798 * point to kretprobe_trampoline. 799 */ 800 hlist_for_each_entry(ri, head, hlist) { 801 if (ri->task != current) 802 /* another task is sharing our hash bucket */ 803 continue; 804 805 orig_ret_address = (unsigned long)ri->ret_addr; 806 807 if (orig_ret_address != trampoline_address) 808 /* 809 * This is the real return address. Any other 810 * instances associated with this task are for 811 * other calls deeper on the call stack 812 */ 813 break; 814 } 815 816 kretprobe_assert(ri, orig_ret_address, trampoline_address); 817 818 correct_ret_addr = ri->ret_addr; 819 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 820 if (ri->task != current) 821 /* another task is sharing our hash bucket */ 822 continue; 823 824 orig_ret_address = (unsigned long)ri->ret_addr; 825 if (ri->rp && ri->rp->handler) { 826 __this_cpu_write(current_kprobe, &ri->rp->kp); 827 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 828 ri->ret_addr = correct_ret_addr; 829 ri->rp->handler(ri, regs); 830 __this_cpu_write(current_kprobe, NULL); 831 } 832 833 recycle_rp_inst(ri, &empty_rp); 834 835 if (orig_ret_address != trampoline_address) 836 /* 837 * This is the real return address. Any other 838 * instances associated with this task are for 839 * other calls deeper on the call stack 840 */ 841 break; 842 } 843 844 kretprobe_hash_unlock(current, &flags); 845 846 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 847 hlist_del(&ri->hlist); 848 kfree(ri); 849 } 850 return (void *)orig_ret_address; 851 } 852 NOKPROBE_SYMBOL(trampoline_handler); 853 854 /* 855 * Called after single-stepping. p->addr is the address of the 856 * instruction whose first byte has been replaced by the "int 3" 857 * instruction. To avoid the SMP problems that can occur when we 858 * temporarily put back the original opcode to single-step, we 859 * single-stepped a copy of the instruction. The address of this 860 * copy is p->ainsn.insn. 861 * 862 * This function prepares to return from the post-single-step 863 * interrupt. We have to fix up the stack as follows: 864 * 865 * 0) Except in the case of absolute or indirect jump or call instructions, 866 * the new ip is relative to the copied instruction. We need to make 867 * it relative to the original instruction. 868 * 869 * 1) If the single-stepped instruction was pushfl, then the TF and IF 870 * flags are set in the just-pushed flags, and may need to be cleared. 871 * 872 * 2) If the single-stepped instruction was a call, the return address 873 * that is atop the stack is the address following the copied instruction. 874 * We need to make it the address following the original instruction. 875 * 876 * If this is the first time we've single-stepped the instruction at 877 * this probepoint, and the instruction is boostable, boost it: add a 878 * jump instruction after the copied instruction, that jumps to the next 879 * instruction after the probepoint. 880 */ 881 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 882 struct kprobe_ctlblk *kcb) 883 { 884 unsigned long *tos = stack_addr(regs); 885 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 886 unsigned long orig_ip = (unsigned long)p->addr; 887 kprobe_opcode_t *insn = p->ainsn.insn; 888 889 /* Skip prefixes */ 890 insn = skip_prefixes(insn); 891 892 regs->flags &= ~X86_EFLAGS_TF; 893 switch (*insn) { 894 case 0x9c: /* pushfl */ 895 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 896 *tos |= kcb->kprobe_old_flags; 897 break; 898 case 0xc2: /* iret/ret/lret */ 899 case 0xc3: 900 case 0xca: 901 case 0xcb: 902 case 0xcf: 903 case 0xea: /* jmp absolute -- ip is correct */ 904 /* ip is already adjusted, no more changes required */ 905 p->ainsn.boostable = true; 906 goto no_change; 907 case 0xe8: /* call relative - Fix return addr */ 908 *tos = orig_ip + (*tos - copy_ip); 909 break; 910 #ifdef CONFIG_X86_32 911 case 0x9a: /* call absolute -- same as call absolute, indirect */ 912 *tos = orig_ip + (*tos - copy_ip); 913 goto no_change; 914 #endif 915 case 0xff: 916 if ((insn[1] & 0x30) == 0x10) { 917 /* 918 * call absolute, indirect 919 * Fix return addr; ip is correct. 920 * But this is not boostable 921 */ 922 *tos = orig_ip + (*tos - copy_ip); 923 goto no_change; 924 } else if (((insn[1] & 0x31) == 0x20) || 925 ((insn[1] & 0x31) == 0x21)) { 926 /* 927 * jmp near and far, absolute indirect 928 * ip is correct. And this is boostable 929 */ 930 p->ainsn.boostable = true; 931 goto no_change; 932 } 933 default: 934 break; 935 } 936 937 regs->ip += orig_ip - copy_ip; 938 939 no_change: 940 restore_btf(); 941 } 942 NOKPROBE_SYMBOL(resume_execution); 943 944 /* 945 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 946 * remain disabled throughout this function. 947 */ 948 int kprobe_debug_handler(struct pt_regs *regs) 949 { 950 struct kprobe *cur = kprobe_running(); 951 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 952 953 if (!cur) 954 return 0; 955 956 resume_execution(cur, regs, kcb); 957 regs->flags |= kcb->kprobe_saved_flags; 958 959 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 960 kcb->kprobe_status = KPROBE_HIT_SSDONE; 961 cur->post_handler(cur, regs, 0); 962 } 963 964 /* Restore back the original saved kprobes variables and continue. */ 965 if (kcb->kprobe_status == KPROBE_REENTER) { 966 restore_previous_kprobe(kcb); 967 goto out; 968 } 969 reset_current_kprobe(); 970 out: 971 preempt_enable_no_resched(); 972 973 /* 974 * if somebody else is singlestepping across a probe point, flags 975 * will have TF set, in which case, continue the remaining processing 976 * of do_debug, as if this is not a probe hit. 977 */ 978 if (regs->flags & X86_EFLAGS_TF) 979 return 0; 980 981 return 1; 982 } 983 NOKPROBE_SYMBOL(kprobe_debug_handler); 984 985 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 986 { 987 struct kprobe *cur = kprobe_running(); 988 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 989 990 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 991 /* This must happen on single-stepping */ 992 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 993 kcb->kprobe_status != KPROBE_REENTER); 994 /* 995 * We are here because the instruction being single 996 * stepped caused a page fault. We reset the current 997 * kprobe and the ip points back to the probe address 998 * and allow the page fault handler to continue as a 999 * normal page fault. 1000 */ 1001 regs->ip = (unsigned long)cur->addr; 1002 /* 1003 * Trap flag (TF) has been set here because this fault 1004 * happened where the single stepping will be done. 1005 * So clear it by resetting the current kprobe: 1006 */ 1007 regs->flags &= ~X86_EFLAGS_TF; 1008 1009 /* 1010 * If the TF flag was set before the kprobe hit, 1011 * don't touch it: 1012 */ 1013 regs->flags |= kcb->kprobe_old_flags; 1014 1015 if (kcb->kprobe_status == KPROBE_REENTER) 1016 restore_previous_kprobe(kcb); 1017 else 1018 reset_current_kprobe(); 1019 preempt_enable_no_resched(); 1020 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1021 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1022 /* 1023 * We increment the nmissed count for accounting, 1024 * we can also use npre/npostfault count for accounting 1025 * these specific fault cases. 1026 */ 1027 kprobes_inc_nmissed_count(cur); 1028 1029 /* 1030 * We come here because instructions in the pre/post 1031 * handler caused the page_fault, this could happen 1032 * if handler tries to access user space by 1033 * copy_from_user(), get_user() etc. Let the 1034 * user-specified handler try to fix it first. 1035 */ 1036 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1037 return 1; 1038 1039 /* 1040 * In case the user-specified fault handler returned 1041 * zero, try to fix up. 1042 */ 1043 if (fixup_exception(regs, trapnr)) 1044 return 1; 1045 1046 /* 1047 * fixup routine could not handle it, 1048 * Let do_page_fault() fix it. 1049 */ 1050 } 1051 1052 return 0; 1053 } 1054 NOKPROBE_SYMBOL(kprobe_fault_handler); 1055 1056 /* 1057 * Wrapper routine for handling exceptions. 1058 */ 1059 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1060 void *data) 1061 { 1062 struct die_args *args = data; 1063 int ret = NOTIFY_DONE; 1064 1065 if (args->regs && user_mode(args->regs)) 1066 return ret; 1067 1068 if (val == DIE_GPF) { 1069 /* 1070 * To be potentially processing a kprobe fault and to 1071 * trust the result from kprobe_running(), we have 1072 * be non-preemptible. 1073 */ 1074 if (!preemptible() && kprobe_running() && 1075 kprobe_fault_handler(args->regs, args->trapnr)) 1076 ret = NOTIFY_STOP; 1077 } 1078 return ret; 1079 } 1080 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1081 1082 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1083 { 1084 struct jprobe *jp = container_of(p, struct jprobe, kp); 1085 unsigned long addr; 1086 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1087 1088 kcb->jprobe_saved_regs = *regs; 1089 kcb->jprobe_saved_sp = stack_addr(regs); 1090 addr = (unsigned long)(kcb->jprobe_saved_sp); 1091 1092 /* 1093 * As Linus pointed out, gcc assumes that the callee 1094 * owns the argument space and could overwrite it, e.g. 1095 * tailcall optimization. So, to be absolutely safe 1096 * we also save and restore enough stack bytes to cover 1097 * the argument area. 1098 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1099 * raw stack chunk with redzones: 1100 */ 1101 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1102 regs->ip = (unsigned long)(jp->entry); 1103 1104 /* 1105 * jprobes use jprobe_return() which skips the normal return 1106 * path of the function, and this messes up the accounting of the 1107 * function graph tracer to get messed up. 1108 * 1109 * Pause function graph tracing while performing the jprobe function. 1110 */ 1111 pause_graph_tracing(); 1112 return 1; 1113 } 1114 NOKPROBE_SYMBOL(setjmp_pre_handler); 1115 1116 void jprobe_return(void) 1117 { 1118 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1119 1120 /* Unpoison stack redzones in the frames we are going to jump over. */ 1121 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1122 1123 asm volatile ( 1124 #ifdef CONFIG_X86_64 1125 " xchg %%rbx,%%rsp \n" 1126 #else 1127 " xchgl %%ebx,%%esp \n" 1128 #endif 1129 " int3 \n" 1130 " .globl jprobe_return_end\n" 1131 " jprobe_return_end: \n" 1132 " nop \n"::"b" 1133 (kcb->jprobe_saved_sp):"memory"); 1134 } 1135 NOKPROBE_SYMBOL(jprobe_return); 1136 NOKPROBE_SYMBOL(jprobe_return_end); 1137 1138 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1139 { 1140 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1141 u8 *addr = (u8 *) (regs->ip - 1); 1142 struct jprobe *jp = container_of(p, struct jprobe, kp); 1143 void *saved_sp = kcb->jprobe_saved_sp; 1144 1145 if ((addr > (u8 *) jprobe_return) && 1146 (addr < (u8 *) jprobe_return_end)) { 1147 if (stack_addr(regs) != saved_sp) { 1148 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1149 printk(KERN_ERR 1150 "current sp %p does not match saved sp %p\n", 1151 stack_addr(regs), saved_sp); 1152 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1153 show_regs(saved_regs); 1154 printk(KERN_ERR "Current registers\n"); 1155 show_regs(regs); 1156 BUG(); 1157 } 1158 /* It's OK to start function graph tracing again */ 1159 unpause_graph_tracing(); 1160 *regs = kcb->jprobe_saved_regs; 1161 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1162 preempt_enable_no_resched(); 1163 return 1; 1164 } 1165 return 0; 1166 } 1167 NOKPROBE_SYMBOL(longjmp_break_handler); 1168 1169 bool arch_within_kprobe_blacklist(unsigned long addr) 1170 { 1171 return (addr >= (unsigned long)__kprobes_text_start && 1172 addr < (unsigned long)__kprobes_text_end) || 1173 (addr >= (unsigned long)__entry_text_start && 1174 addr < (unsigned long)__entry_text_end); 1175 } 1176 1177 int __init arch_init_kprobes(void) 1178 { 1179 return 0; 1180 } 1181 1182 int arch_trampoline_kprobe(struct kprobe *p) 1183 { 1184 return 0; 1185 } 1186