xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 7c8b9e30)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/ftrace.h>
41 #include <linux/frame.h>
42 #include <linux/kasan.h>
43 #include <linux/moduleloader.h>
44 #include <linux/vmalloc.h>
45 #include <linux/pgtable.h>
46 
47 #include <asm/text-patching.h>
48 #include <asm/cacheflush.h>
49 #include <asm/desc.h>
50 #include <linux/uaccess.h>
51 #include <asm/alternative.h>
52 #include <asm/insn.h>
53 #include <asm/debugreg.h>
54 #include <asm/set_memory.h>
55 
56 #include "common.h"
57 
58 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
59 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
60 
61 #define stack_addr(regs) ((unsigned long *)regs->sp)
62 
63 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
64 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
65 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
66 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
67 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
68 	 << (row % 32))
69 	/*
70 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
71 	 * Groups, and some special opcodes can not boost.
72 	 * This is non-const and volatile to keep gcc from statically
73 	 * optimizing it out, as variable_test_bit makes gcc think only
74 	 * *(unsigned long*) is used.
75 	 */
76 static volatile u32 twobyte_is_boostable[256 / 32] = {
77 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
78 	/*      ----------------------------------------------          */
79 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
80 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
81 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
82 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
83 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
84 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
85 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
86 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
87 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
88 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
89 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
90 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
91 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
92 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
93 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
94 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
95 	/*      -----------------------------------------------         */
96 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
97 };
98 #undef W
99 
100 struct kretprobe_blackpoint kretprobe_blacklist[] = {
101 	{"__switch_to", }, /* This function switches only current task, but
102 			      doesn't switch kernel stack.*/
103 	{NULL, NULL}	/* Terminator */
104 };
105 
106 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
107 
108 static nokprobe_inline void
109 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
110 {
111 	struct __arch_relative_insn {
112 		u8 op;
113 		s32 raddr;
114 	} __packed *insn;
115 
116 	insn = (struct __arch_relative_insn *)dest;
117 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
118 	insn->op = op;
119 }
120 
121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
122 void synthesize_reljump(void *dest, void *from, void *to)
123 {
124 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
125 }
126 NOKPROBE_SYMBOL(synthesize_reljump);
127 
128 /* Insert a call instruction at address 'from', which calls address 'to'.*/
129 void synthesize_relcall(void *dest, void *from, void *to)
130 {
131 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_relcall);
134 
135 /*
136  * Skip the prefixes of the instruction.
137  */
138 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
139 {
140 	insn_attr_t attr;
141 
142 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
143 	while (inat_is_legacy_prefix(attr)) {
144 		insn++;
145 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
146 	}
147 #ifdef CONFIG_X86_64
148 	if (inat_is_rex_prefix(attr))
149 		insn++;
150 #endif
151 	return insn;
152 }
153 NOKPROBE_SYMBOL(skip_prefixes);
154 
155 /*
156  * Returns non-zero if INSN is boostable.
157  * RIP relative instructions are adjusted at copying time in 64 bits mode
158  */
159 int can_boost(struct insn *insn, void *addr)
160 {
161 	kprobe_opcode_t opcode;
162 
163 	if (search_exception_tables((unsigned long)addr))
164 		return 0;	/* Page fault may occur on this address. */
165 
166 	/* 2nd-byte opcode */
167 	if (insn->opcode.nbytes == 2)
168 		return test_bit(insn->opcode.bytes[1],
169 				(unsigned long *)twobyte_is_boostable);
170 
171 	if (insn->opcode.nbytes != 1)
172 		return 0;
173 
174 	/* Can't boost Address-size override prefix */
175 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
176 		return 0;
177 
178 	opcode = insn->opcode.bytes[0];
179 
180 	switch (opcode & 0xf0) {
181 	case 0x60:
182 		/* can't boost "bound" */
183 		return (opcode != 0x62);
184 	case 0x70:
185 		return 0; /* can't boost conditional jump */
186 	case 0x90:
187 		return opcode != 0x9a;	/* can't boost call far */
188 	case 0xc0:
189 		/* can't boost software-interruptions */
190 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
191 	case 0xd0:
192 		/* can boost AA* and XLAT */
193 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
194 	case 0xe0:
195 		/* can boost in/out and absolute jmps */
196 		return ((opcode & 0x04) || opcode == 0xea);
197 	case 0xf0:
198 		/* clear and set flags are boostable */
199 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
200 	default:
201 		/* CS override prefix and call are not boostable */
202 		return (opcode != 0x2e && opcode != 0x9a);
203 	}
204 }
205 
206 static unsigned long
207 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
208 {
209 	struct kprobe *kp;
210 	unsigned long faddr;
211 
212 	kp = get_kprobe((void *)addr);
213 	faddr = ftrace_location(addr);
214 	/*
215 	 * Addresses inside the ftrace location are refused by
216 	 * arch_check_ftrace_location(). Something went terribly wrong
217 	 * if such an address is checked here.
218 	 */
219 	if (WARN_ON(faddr && faddr != addr))
220 		return 0UL;
221 	/*
222 	 * Use the current code if it is not modified by Kprobe
223 	 * and it cannot be modified by ftrace.
224 	 */
225 	if (!kp && !faddr)
226 		return addr;
227 
228 	/*
229 	 * Basically, kp->ainsn.insn has an original instruction.
230 	 * However, RIP-relative instruction can not do single-stepping
231 	 * at different place, __copy_instruction() tweaks the displacement of
232 	 * that instruction. In that case, we can't recover the instruction
233 	 * from the kp->ainsn.insn.
234 	 *
235 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
236 	 * of the first byte of the probed instruction, which is overwritten
237 	 * by int3. And the instruction at kp->addr is not modified by kprobes
238 	 * except for the first byte, we can recover the original instruction
239 	 * from it and kp->opcode.
240 	 *
241 	 * In case of Kprobes using ftrace, we do not have a copy of
242 	 * the original instruction. In fact, the ftrace location might
243 	 * be modified at anytime and even could be in an inconsistent state.
244 	 * Fortunately, we know that the original code is the ideal 5-byte
245 	 * long NOP.
246 	 */
247 	if (copy_from_kernel_nofault(buf, (void *)addr,
248 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
249 		return 0UL;
250 
251 	if (faddr)
252 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
253 	else
254 		buf[0] = kp->opcode;
255 	return (unsigned long)buf;
256 }
257 
258 /*
259  * Recover the probed instruction at addr for further analysis.
260  * Caller must lock kprobes by kprobe_mutex, or disable preemption
261  * for preventing to release referencing kprobes.
262  * Returns zero if the instruction can not get recovered (or access failed).
263  */
264 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
265 {
266 	unsigned long __addr;
267 
268 	__addr = __recover_optprobed_insn(buf, addr);
269 	if (__addr != addr)
270 		return __addr;
271 
272 	return __recover_probed_insn(buf, addr);
273 }
274 
275 /* Check if paddr is at an instruction boundary */
276 static int can_probe(unsigned long paddr)
277 {
278 	unsigned long addr, __addr, offset = 0;
279 	struct insn insn;
280 	kprobe_opcode_t buf[MAX_INSN_SIZE];
281 
282 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
283 		return 0;
284 
285 	/* Decode instructions */
286 	addr = paddr - offset;
287 	while (addr < paddr) {
288 		/*
289 		 * Check if the instruction has been modified by another
290 		 * kprobe, in which case we replace the breakpoint by the
291 		 * original instruction in our buffer.
292 		 * Also, jump optimization will change the breakpoint to
293 		 * relative-jump. Since the relative-jump itself is
294 		 * normally used, we just go through if there is no kprobe.
295 		 */
296 		__addr = recover_probed_instruction(buf, addr);
297 		if (!__addr)
298 			return 0;
299 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
300 		insn_get_length(&insn);
301 
302 		/*
303 		 * Another debugging subsystem might insert this breakpoint.
304 		 * In that case, we can't recover it.
305 		 */
306 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
307 			return 0;
308 		addr += insn.length;
309 	}
310 
311 	return (addr == paddr);
312 }
313 
314 /*
315  * Returns non-zero if opcode modifies the interrupt flag.
316  */
317 static int is_IF_modifier(kprobe_opcode_t *insn)
318 {
319 	/* Skip prefixes */
320 	insn = skip_prefixes(insn);
321 
322 	switch (*insn) {
323 	case 0xfa:		/* cli */
324 	case 0xfb:		/* sti */
325 	case 0xcf:		/* iret/iretd */
326 	case 0x9d:		/* popf/popfd */
327 		return 1;
328 	}
329 
330 	return 0;
331 }
332 
333 /*
334  * Copy an instruction with recovering modified instruction by kprobes
335  * and adjust the displacement if the instruction uses the %rip-relative
336  * addressing mode. Note that since @real will be the final place of copied
337  * instruction, displacement must be adjust by @real, not @dest.
338  * This returns the length of copied instruction, or 0 if it has an error.
339  */
340 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
341 {
342 	kprobe_opcode_t buf[MAX_INSN_SIZE];
343 	unsigned long recovered_insn =
344 		recover_probed_instruction(buf, (unsigned long)src);
345 
346 	if (!recovered_insn || !insn)
347 		return 0;
348 
349 	/* This can access kernel text if given address is not recovered */
350 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
351 			MAX_INSN_SIZE))
352 		return 0;
353 
354 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
355 	insn_get_length(insn);
356 
357 	/* We can not probe force emulate prefixed instruction */
358 	if (insn_has_emulate_prefix(insn))
359 		return 0;
360 
361 	/* Another subsystem puts a breakpoint, failed to recover */
362 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
363 		return 0;
364 
365 	/* We should not singlestep on the exception masking instructions */
366 	if (insn_masking_exception(insn))
367 		return 0;
368 
369 #ifdef CONFIG_X86_64
370 	/* Only x86_64 has RIP relative instructions */
371 	if (insn_rip_relative(insn)) {
372 		s64 newdisp;
373 		u8 *disp;
374 		/*
375 		 * The copied instruction uses the %rip-relative addressing
376 		 * mode.  Adjust the displacement for the difference between
377 		 * the original location of this instruction and the location
378 		 * of the copy that will actually be run.  The tricky bit here
379 		 * is making sure that the sign extension happens correctly in
380 		 * this calculation, since we need a signed 32-bit result to
381 		 * be sign-extended to 64 bits when it's added to the %rip
382 		 * value and yield the same 64-bit result that the sign-
383 		 * extension of the original signed 32-bit displacement would
384 		 * have given.
385 		 */
386 		newdisp = (u8 *) src + (s64) insn->displacement.value
387 			  - (u8 *) real;
388 		if ((s64) (s32) newdisp != newdisp) {
389 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
390 			return 0;
391 		}
392 		disp = (u8 *) dest + insn_offset_displacement(insn);
393 		*(s32 *) disp = (s32) newdisp;
394 	}
395 #endif
396 	return insn->length;
397 }
398 
399 /* Prepare reljump right after instruction to boost */
400 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
401 			  struct insn *insn)
402 {
403 	int len = insn->length;
404 
405 	if (can_boost(insn, p->addr) &&
406 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
407 		/*
408 		 * These instructions can be executed directly if it
409 		 * jumps back to correct address.
410 		 */
411 		synthesize_reljump(buf + len, p->ainsn.insn + len,
412 				   p->addr + insn->length);
413 		len += JMP32_INSN_SIZE;
414 		p->ainsn.boostable = true;
415 	} else {
416 		p->ainsn.boostable = false;
417 	}
418 
419 	return len;
420 }
421 
422 /* Make page to RO mode when allocate it */
423 void *alloc_insn_page(void)
424 {
425 	void *page;
426 
427 	page = module_alloc(PAGE_SIZE);
428 	if (!page)
429 		return NULL;
430 
431 	set_vm_flush_reset_perms(page);
432 	/*
433 	 * First make the page read-only, and only then make it executable to
434 	 * prevent it from being W+X in between.
435 	 */
436 	set_memory_ro((unsigned long)page, 1);
437 
438 	/*
439 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
440 	 * that the page was not maliciously altered and it is still zeroed.
441 	 */
442 	set_memory_x((unsigned long)page, 1);
443 
444 	return page;
445 }
446 
447 /* Recover page to RW mode before releasing it */
448 void free_insn_page(void *page)
449 {
450 	module_memfree(page);
451 }
452 
453 static int arch_copy_kprobe(struct kprobe *p)
454 {
455 	struct insn insn;
456 	kprobe_opcode_t buf[MAX_INSN_SIZE];
457 	int len;
458 
459 	/* Copy an instruction with recovering if other optprobe modifies it.*/
460 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
461 	if (!len)
462 		return -EINVAL;
463 
464 	/*
465 	 * __copy_instruction can modify the displacement of the instruction,
466 	 * but it doesn't affect boostable check.
467 	 */
468 	len = prepare_boost(buf, p, &insn);
469 
470 	/* Check whether the instruction modifies Interrupt Flag or not */
471 	p->ainsn.if_modifier = is_IF_modifier(buf);
472 
473 	/* Also, displacement change doesn't affect the first byte */
474 	p->opcode = buf[0];
475 
476 	p->ainsn.tp_len = len;
477 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
478 
479 	/* OK, write back the instruction(s) into ROX insn buffer */
480 	text_poke(p->ainsn.insn, buf, len);
481 
482 	return 0;
483 }
484 
485 int arch_prepare_kprobe(struct kprobe *p)
486 {
487 	int ret;
488 
489 	if (alternatives_text_reserved(p->addr, p->addr))
490 		return -EINVAL;
491 
492 	if (!can_probe((unsigned long)p->addr))
493 		return -EILSEQ;
494 	/* insn: must be on special executable page on x86. */
495 	p->ainsn.insn = get_insn_slot();
496 	if (!p->ainsn.insn)
497 		return -ENOMEM;
498 
499 	ret = arch_copy_kprobe(p);
500 	if (ret) {
501 		free_insn_slot(p->ainsn.insn, 0);
502 		p->ainsn.insn = NULL;
503 	}
504 
505 	return ret;
506 }
507 
508 void arch_arm_kprobe(struct kprobe *p)
509 {
510 	u8 int3 = INT3_INSN_OPCODE;
511 
512 	text_poke(p->addr, &int3, 1);
513 	text_poke_sync();
514 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
515 }
516 
517 void arch_disarm_kprobe(struct kprobe *p)
518 {
519 	u8 int3 = INT3_INSN_OPCODE;
520 
521 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
522 	text_poke(p->addr, &p->opcode, 1);
523 	text_poke_sync();
524 }
525 
526 void arch_remove_kprobe(struct kprobe *p)
527 {
528 	if (p->ainsn.insn) {
529 		/* Record the perf event before freeing the slot */
530 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
531 				     p->ainsn.tp_len, NULL, 0);
532 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
533 		p->ainsn.insn = NULL;
534 	}
535 }
536 
537 static nokprobe_inline void
538 save_previous_kprobe(struct kprobe_ctlblk *kcb)
539 {
540 	kcb->prev_kprobe.kp = kprobe_running();
541 	kcb->prev_kprobe.status = kcb->kprobe_status;
542 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
543 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
544 }
545 
546 static nokprobe_inline void
547 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
548 {
549 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
550 	kcb->kprobe_status = kcb->prev_kprobe.status;
551 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
552 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
553 }
554 
555 static nokprobe_inline void
556 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
557 		   struct kprobe_ctlblk *kcb)
558 {
559 	__this_cpu_write(current_kprobe, p);
560 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
561 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
562 	if (p->ainsn.if_modifier)
563 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
564 }
565 
566 static nokprobe_inline void clear_btf(void)
567 {
568 	if (test_thread_flag(TIF_BLOCKSTEP)) {
569 		unsigned long debugctl = get_debugctlmsr();
570 
571 		debugctl &= ~DEBUGCTLMSR_BTF;
572 		update_debugctlmsr(debugctl);
573 	}
574 }
575 
576 static nokprobe_inline void restore_btf(void)
577 {
578 	if (test_thread_flag(TIF_BLOCKSTEP)) {
579 		unsigned long debugctl = get_debugctlmsr();
580 
581 		debugctl |= DEBUGCTLMSR_BTF;
582 		update_debugctlmsr(debugctl);
583 	}
584 }
585 
586 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
587 {
588 	unsigned long *sara = stack_addr(regs);
589 
590 	ri->ret_addr = (kprobe_opcode_t *) *sara;
591 	ri->fp = sara;
592 
593 	/* Replace the return addr with trampoline addr */
594 	*sara = (unsigned long) &kretprobe_trampoline;
595 }
596 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
597 
598 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
599 			     struct kprobe_ctlblk *kcb, int reenter)
600 {
601 	if (setup_detour_execution(p, regs, reenter))
602 		return;
603 
604 #if !defined(CONFIG_PREEMPTION)
605 	if (p->ainsn.boostable && !p->post_handler) {
606 		/* Boost up -- we can execute copied instructions directly */
607 		if (!reenter)
608 			reset_current_kprobe();
609 		/*
610 		 * Reentering boosted probe doesn't reset current_kprobe,
611 		 * nor set current_kprobe, because it doesn't use single
612 		 * stepping.
613 		 */
614 		regs->ip = (unsigned long)p->ainsn.insn;
615 		return;
616 	}
617 #endif
618 	if (reenter) {
619 		save_previous_kprobe(kcb);
620 		set_current_kprobe(p, regs, kcb);
621 		kcb->kprobe_status = KPROBE_REENTER;
622 	} else
623 		kcb->kprobe_status = KPROBE_HIT_SS;
624 	/* Prepare real single stepping */
625 	clear_btf();
626 	regs->flags |= X86_EFLAGS_TF;
627 	regs->flags &= ~X86_EFLAGS_IF;
628 	/* single step inline if the instruction is an int3 */
629 	if (p->opcode == INT3_INSN_OPCODE)
630 		regs->ip = (unsigned long)p->addr;
631 	else
632 		regs->ip = (unsigned long)p->ainsn.insn;
633 }
634 NOKPROBE_SYMBOL(setup_singlestep);
635 
636 /*
637  * We have reentered the kprobe_handler(), since another probe was hit while
638  * within the handler. We save the original kprobes variables and just single
639  * step on the instruction of the new probe without calling any user handlers.
640  */
641 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
642 			  struct kprobe_ctlblk *kcb)
643 {
644 	switch (kcb->kprobe_status) {
645 	case KPROBE_HIT_SSDONE:
646 	case KPROBE_HIT_ACTIVE:
647 	case KPROBE_HIT_SS:
648 		kprobes_inc_nmissed_count(p);
649 		setup_singlestep(p, regs, kcb, 1);
650 		break;
651 	case KPROBE_REENTER:
652 		/* A probe has been hit in the codepath leading up to, or just
653 		 * after, single-stepping of a probed instruction. This entire
654 		 * codepath should strictly reside in .kprobes.text section.
655 		 * Raise a BUG or we'll continue in an endless reentering loop
656 		 * and eventually a stack overflow.
657 		 */
658 		pr_err("Unrecoverable kprobe detected.\n");
659 		dump_kprobe(p);
660 		BUG();
661 	default:
662 		/* impossible cases */
663 		WARN_ON(1);
664 		return 0;
665 	}
666 
667 	return 1;
668 }
669 NOKPROBE_SYMBOL(reenter_kprobe);
670 
671 /*
672  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
673  * remain disabled throughout this function.
674  */
675 int kprobe_int3_handler(struct pt_regs *regs)
676 {
677 	kprobe_opcode_t *addr;
678 	struct kprobe *p;
679 	struct kprobe_ctlblk *kcb;
680 
681 	if (user_mode(regs))
682 		return 0;
683 
684 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
685 	/*
686 	 * We don't want to be preempted for the entire duration of kprobe
687 	 * processing. Since int3 and debug trap disables irqs and we clear
688 	 * IF while singlestepping, it must be no preemptible.
689 	 */
690 
691 	kcb = get_kprobe_ctlblk();
692 	p = get_kprobe(addr);
693 
694 	if (p) {
695 		if (kprobe_running()) {
696 			if (reenter_kprobe(p, regs, kcb))
697 				return 1;
698 		} else {
699 			set_current_kprobe(p, regs, kcb);
700 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
701 
702 			/*
703 			 * If we have no pre-handler or it returned 0, we
704 			 * continue with normal processing.  If we have a
705 			 * pre-handler and it returned non-zero, that means
706 			 * user handler setup registers to exit to another
707 			 * instruction, we must skip the single stepping.
708 			 */
709 			if (!p->pre_handler || !p->pre_handler(p, regs))
710 				setup_singlestep(p, regs, kcb, 0);
711 			else
712 				reset_current_kprobe();
713 			return 1;
714 		}
715 	} else if (*addr != INT3_INSN_OPCODE) {
716 		/*
717 		 * The breakpoint instruction was removed right
718 		 * after we hit it.  Another cpu has removed
719 		 * either a probepoint or a debugger breakpoint
720 		 * at this address.  In either case, no further
721 		 * handling of this interrupt is appropriate.
722 		 * Back up over the (now missing) int3 and run
723 		 * the original instruction.
724 		 */
725 		regs->ip = (unsigned long)addr;
726 		return 1;
727 	} /* else: not a kprobe fault; let the kernel handle it */
728 
729 	return 0;
730 }
731 NOKPROBE_SYMBOL(kprobe_int3_handler);
732 
733 /*
734  * When a retprobed function returns, this code saves registers and
735  * calls trampoline_handler() runs, which calls the kretprobe's handler.
736  */
737 asm(
738 	".text\n"
739 	".global kretprobe_trampoline\n"
740 	".type kretprobe_trampoline, @function\n"
741 	"kretprobe_trampoline:\n"
742 	/* We don't bother saving the ss register */
743 #ifdef CONFIG_X86_64
744 	"	pushq %rsp\n"
745 	"	pushfq\n"
746 	SAVE_REGS_STRING
747 	"	movq %rsp, %rdi\n"
748 	"	call trampoline_handler\n"
749 	/* Replace saved sp with true return address. */
750 	"	movq %rax, 19*8(%rsp)\n"
751 	RESTORE_REGS_STRING
752 	"	popfq\n"
753 #else
754 	"	pushl %esp\n"
755 	"	pushfl\n"
756 	SAVE_REGS_STRING
757 	"	movl %esp, %eax\n"
758 	"	call trampoline_handler\n"
759 	/* Replace saved sp with true return address. */
760 	"	movl %eax, 15*4(%esp)\n"
761 	RESTORE_REGS_STRING
762 	"	popfl\n"
763 #endif
764 	"	ret\n"
765 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
766 );
767 NOKPROBE_SYMBOL(kretprobe_trampoline);
768 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
769 
770 /*
771  * Called from kretprobe_trampoline
772  */
773 __used __visible void *trampoline_handler(struct pt_regs *regs)
774 {
775 	struct kretprobe_instance *ri = NULL;
776 	struct hlist_head *head, empty_rp;
777 	struct hlist_node *tmp;
778 	unsigned long flags, orig_ret_address = 0;
779 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
780 	kprobe_opcode_t *correct_ret_addr = NULL;
781 	void *frame_pointer;
782 	bool skipped = false;
783 
784 	/*
785 	 * Set a dummy kprobe for avoiding kretprobe recursion.
786 	 * Since kretprobe never run in kprobe handler, kprobe must not
787 	 * be running at this point.
788 	 */
789 	kprobe_busy_begin();
790 
791 	INIT_HLIST_HEAD(&empty_rp);
792 	kretprobe_hash_lock(current, &head, &flags);
793 	/* fixup registers */
794 	regs->cs = __KERNEL_CS;
795 #ifdef CONFIG_X86_32
796 	regs->cs |= get_kernel_rpl();
797 	regs->gs = 0;
798 #endif
799 	/* We use pt_regs->sp for return address holder. */
800 	frame_pointer = &regs->sp;
801 	regs->ip = trampoline_address;
802 	regs->orig_ax = ~0UL;
803 
804 	/*
805 	 * It is possible to have multiple instances associated with a given
806 	 * task either because multiple functions in the call path have
807 	 * return probes installed on them, and/or more than one
808 	 * return probe was registered for a target function.
809 	 *
810 	 * We can handle this because:
811 	 *     - instances are always pushed into the head of the list
812 	 *     - when multiple return probes are registered for the same
813 	 *	 function, the (chronologically) first instance's ret_addr
814 	 *	 will be the real return address, and all the rest will
815 	 *	 point to kretprobe_trampoline.
816 	 */
817 	hlist_for_each_entry(ri, head, hlist) {
818 		if (ri->task != current)
819 			/* another task is sharing our hash bucket */
820 			continue;
821 		/*
822 		 * Return probes must be pushed on this hash list correct
823 		 * order (same as return order) so that it can be popped
824 		 * correctly. However, if we find it is pushed it incorrect
825 		 * order, this means we find a function which should not be
826 		 * probed, because the wrong order entry is pushed on the
827 		 * path of processing other kretprobe itself.
828 		 */
829 		if (ri->fp != frame_pointer) {
830 			if (!skipped)
831 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
832 			skipped = true;
833 			continue;
834 		}
835 
836 		orig_ret_address = (unsigned long)ri->ret_addr;
837 		if (skipped)
838 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
839 				ri->rp->kp.addr);
840 
841 		if (orig_ret_address != trampoline_address)
842 			/*
843 			 * This is the real return address. Any other
844 			 * instances associated with this task are for
845 			 * other calls deeper on the call stack
846 			 */
847 			break;
848 	}
849 
850 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
851 
852 	correct_ret_addr = ri->ret_addr;
853 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
854 		if (ri->task != current)
855 			/* another task is sharing our hash bucket */
856 			continue;
857 		if (ri->fp != frame_pointer)
858 			continue;
859 
860 		orig_ret_address = (unsigned long)ri->ret_addr;
861 		if (ri->rp && ri->rp->handler) {
862 			__this_cpu_write(current_kprobe, &ri->rp->kp);
863 			ri->ret_addr = correct_ret_addr;
864 			ri->rp->handler(ri, regs);
865 			__this_cpu_write(current_kprobe, &kprobe_busy);
866 		}
867 
868 		recycle_rp_inst(ri, &empty_rp);
869 
870 		if (orig_ret_address != trampoline_address)
871 			/*
872 			 * This is the real return address. Any other
873 			 * instances associated with this task are for
874 			 * other calls deeper on the call stack
875 			 */
876 			break;
877 	}
878 
879 	kretprobe_hash_unlock(current, &flags);
880 
881 	kprobe_busy_end();
882 
883 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
884 		hlist_del(&ri->hlist);
885 		kfree(ri);
886 	}
887 	return (void *)orig_ret_address;
888 }
889 NOKPROBE_SYMBOL(trampoline_handler);
890 
891 /*
892  * Called after single-stepping.  p->addr is the address of the
893  * instruction whose first byte has been replaced by the "int 3"
894  * instruction.  To avoid the SMP problems that can occur when we
895  * temporarily put back the original opcode to single-step, we
896  * single-stepped a copy of the instruction.  The address of this
897  * copy is p->ainsn.insn.
898  *
899  * This function prepares to return from the post-single-step
900  * interrupt.  We have to fix up the stack as follows:
901  *
902  * 0) Except in the case of absolute or indirect jump or call instructions,
903  * the new ip is relative to the copied instruction.  We need to make
904  * it relative to the original instruction.
905  *
906  * 1) If the single-stepped instruction was pushfl, then the TF and IF
907  * flags are set in the just-pushed flags, and may need to be cleared.
908  *
909  * 2) If the single-stepped instruction was a call, the return address
910  * that is atop the stack is the address following the copied instruction.
911  * We need to make it the address following the original instruction.
912  *
913  * If this is the first time we've single-stepped the instruction at
914  * this probepoint, and the instruction is boostable, boost it: add a
915  * jump instruction after the copied instruction, that jumps to the next
916  * instruction after the probepoint.
917  */
918 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
919 			     struct kprobe_ctlblk *kcb)
920 {
921 	unsigned long *tos = stack_addr(regs);
922 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
923 	unsigned long orig_ip = (unsigned long)p->addr;
924 	kprobe_opcode_t *insn = p->ainsn.insn;
925 
926 	/* Skip prefixes */
927 	insn = skip_prefixes(insn);
928 
929 	regs->flags &= ~X86_EFLAGS_TF;
930 	switch (*insn) {
931 	case 0x9c:	/* pushfl */
932 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
933 		*tos |= kcb->kprobe_old_flags;
934 		break;
935 	case 0xc2:	/* iret/ret/lret */
936 	case 0xc3:
937 	case 0xca:
938 	case 0xcb:
939 	case 0xcf:
940 	case 0xea:	/* jmp absolute -- ip is correct */
941 		/* ip is already adjusted, no more changes required */
942 		p->ainsn.boostable = true;
943 		goto no_change;
944 	case 0xe8:	/* call relative - Fix return addr */
945 		*tos = orig_ip + (*tos - copy_ip);
946 		break;
947 #ifdef CONFIG_X86_32
948 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
949 		*tos = orig_ip + (*tos - copy_ip);
950 		goto no_change;
951 #endif
952 	case 0xff:
953 		if ((insn[1] & 0x30) == 0x10) {
954 			/*
955 			 * call absolute, indirect
956 			 * Fix return addr; ip is correct.
957 			 * But this is not boostable
958 			 */
959 			*tos = orig_ip + (*tos - copy_ip);
960 			goto no_change;
961 		} else if (((insn[1] & 0x31) == 0x20) ||
962 			   ((insn[1] & 0x31) == 0x21)) {
963 			/*
964 			 * jmp near and far, absolute indirect
965 			 * ip is correct. And this is boostable
966 			 */
967 			p->ainsn.boostable = true;
968 			goto no_change;
969 		}
970 	default:
971 		break;
972 	}
973 
974 	regs->ip += orig_ip - copy_ip;
975 
976 no_change:
977 	restore_btf();
978 }
979 NOKPROBE_SYMBOL(resume_execution);
980 
981 /*
982  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
983  * remain disabled throughout this function.
984  */
985 int kprobe_debug_handler(struct pt_regs *regs)
986 {
987 	struct kprobe *cur = kprobe_running();
988 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
989 
990 	if (!cur)
991 		return 0;
992 
993 	resume_execution(cur, regs, kcb);
994 	regs->flags |= kcb->kprobe_saved_flags;
995 
996 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
997 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
998 		cur->post_handler(cur, regs, 0);
999 	}
1000 
1001 	/* Restore back the original saved kprobes variables and continue. */
1002 	if (kcb->kprobe_status == KPROBE_REENTER) {
1003 		restore_previous_kprobe(kcb);
1004 		goto out;
1005 	}
1006 	reset_current_kprobe();
1007 out:
1008 	/*
1009 	 * if somebody else is singlestepping across a probe point, flags
1010 	 * will have TF set, in which case, continue the remaining processing
1011 	 * of do_debug, as if this is not a probe hit.
1012 	 */
1013 	if (regs->flags & X86_EFLAGS_TF)
1014 		return 0;
1015 
1016 	return 1;
1017 }
1018 NOKPROBE_SYMBOL(kprobe_debug_handler);
1019 
1020 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1021 {
1022 	struct kprobe *cur = kprobe_running();
1023 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1024 
1025 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1026 		/* This must happen on single-stepping */
1027 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1028 			kcb->kprobe_status != KPROBE_REENTER);
1029 		/*
1030 		 * We are here because the instruction being single
1031 		 * stepped caused a page fault. We reset the current
1032 		 * kprobe and the ip points back to the probe address
1033 		 * and allow the page fault handler to continue as a
1034 		 * normal page fault.
1035 		 */
1036 		regs->ip = (unsigned long)cur->addr;
1037 		/*
1038 		 * Trap flag (TF) has been set here because this fault
1039 		 * happened where the single stepping will be done.
1040 		 * So clear it by resetting the current kprobe:
1041 		 */
1042 		regs->flags &= ~X86_EFLAGS_TF;
1043 
1044 		/*
1045 		 * If the TF flag was set before the kprobe hit,
1046 		 * don't touch it:
1047 		 */
1048 		regs->flags |= kcb->kprobe_old_flags;
1049 
1050 		if (kcb->kprobe_status == KPROBE_REENTER)
1051 			restore_previous_kprobe(kcb);
1052 		else
1053 			reset_current_kprobe();
1054 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1055 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1056 		/*
1057 		 * We increment the nmissed count for accounting,
1058 		 * we can also use npre/npostfault count for accounting
1059 		 * these specific fault cases.
1060 		 */
1061 		kprobes_inc_nmissed_count(cur);
1062 
1063 		/*
1064 		 * We come here because instructions in the pre/post
1065 		 * handler caused the page_fault, this could happen
1066 		 * if handler tries to access user space by
1067 		 * copy_from_user(), get_user() etc. Let the
1068 		 * user-specified handler try to fix it first.
1069 		 */
1070 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1071 			return 1;
1072 	}
1073 
1074 	return 0;
1075 }
1076 NOKPROBE_SYMBOL(kprobe_fault_handler);
1077 
1078 int __init arch_populate_kprobe_blacklist(void)
1079 {
1080 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1081 					 (unsigned long)__entry_text_end);
1082 }
1083 
1084 int __init arch_init_kprobes(void)
1085 {
1086 	return 0;
1087 }
1088 
1089 int arch_trampoline_kprobe(struct kprobe *p)
1090 {
1091 	return 0;
1092 }
1093