1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/ftrace.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/objtool.h> 44 #include <linux/vmalloc.h> 45 #include <linux/pgtable.h> 46 47 #include <asm/text-patching.h> 48 #include <asm/cacheflush.h> 49 #include <asm/desc.h> 50 #include <linux/uaccess.h> 51 #include <asm/alternative.h> 52 #include <asm/insn.h> 53 #include <asm/debugreg.h> 54 #include <asm/set_memory.h> 55 #include <asm/ibt.h> 56 57 #include "common.h" 58 59 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 60 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 61 62 #define stack_addr(regs) ((unsigned long *)regs->sp) 63 64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 65 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 66 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 67 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 68 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 69 << (row % 32)) 70 /* 71 * Undefined/reserved opcodes, conditional jump, Opcode Extension 72 * Groups, and some special opcodes can not boost. 73 * This is non-const and volatile to keep gcc from statically 74 * optimizing it out, as variable_test_bit makes gcc think only 75 * *(unsigned long*) is used. 76 */ 77 static volatile u32 twobyte_is_boostable[256 / 32] = { 78 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 79 /* ---------------------------------------------- */ 80 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 81 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 82 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 83 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 84 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 85 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 86 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 87 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 88 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 89 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 90 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 91 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 92 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 93 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 94 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 95 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 96 /* ----------------------------------------------- */ 97 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 98 }; 99 #undef W 100 101 struct kretprobe_blackpoint kretprobe_blacklist[] = { 102 {"__switch_to", }, /* This function switches only current task, but 103 doesn't switch kernel stack.*/ 104 {NULL, NULL} /* Terminator */ 105 }; 106 107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 108 109 static nokprobe_inline void 110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 111 { 112 struct __arch_relative_insn { 113 u8 op; 114 s32 raddr; 115 } __packed *insn; 116 117 insn = (struct __arch_relative_insn *)dest; 118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 119 insn->op = op; 120 } 121 122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 123 void synthesize_reljump(void *dest, void *from, void *to) 124 { 125 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 126 } 127 NOKPROBE_SYMBOL(synthesize_reljump); 128 129 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 130 void synthesize_relcall(void *dest, void *from, void *to) 131 { 132 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 133 } 134 NOKPROBE_SYMBOL(synthesize_relcall); 135 136 /* 137 * Returns non-zero if INSN is boostable. 138 * RIP relative instructions are adjusted at copying time in 64 bits mode 139 */ 140 int can_boost(struct insn *insn, void *addr) 141 { 142 kprobe_opcode_t opcode; 143 insn_byte_t prefix; 144 int i; 145 146 if (search_exception_tables((unsigned long)addr)) 147 return 0; /* Page fault may occur on this address. */ 148 149 /* 2nd-byte opcode */ 150 if (insn->opcode.nbytes == 2) 151 return test_bit(insn->opcode.bytes[1], 152 (unsigned long *)twobyte_is_boostable); 153 154 if (insn->opcode.nbytes != 1) 155 return 0; 156 157 for_each_insn_prefix(insn, i, prefix) { 158 insn_attr_t attr; 159 160 attr = inat_get_opcode_attribute(prefix); 161 /* Can't boost Address-size override prefix and CS override prefix */ 162 if (prefix == 0x2e || inat_is_address_size_prefix(attr)) 163 return 0; 164 } 165 166 opcode = insn->opcode.bytes[0]; 167 168 switch (opcode) { 169 case 0x62: /* bound */ 170 case 0x70 ... 0x7f: /* Conditional jumps */ 171 case 0x9a: /* Call far */ 172 case 0xc0 ... 0xc1: /* Grp2 */ 173 case 0xcc ... 0xce: /* software exceptions */ 174 case 0xd0 ... 0xd3: /* Grp2 */ 175 case 0xd6: /* (UD) */ 176 case 0xd8 ... 0xdf: /* ESC */ 177 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ 178 case 0xe8 ... 0xe9: /* near Call, JMP */ 179 case 0xeb: /* Short JMP */ 180 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ 181 case 0xf6 ... 0xf7: /* Grp3 */ 182 case 0xfe: /* Grp4 */ 183 /* ... are not boostable */ 184 return 0; 185 case 0xff: /* Grp5 */ 186 /* Only indirect jmp is boostable */ 187 return X86_MODRM_REG(insn->modrm.bytes[0]) == 4; 188 default: 189 return 1; 190 } 191 } 192 193 static unsigned long 194 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 195 { 196 struct kprobe *kp; 197 bool faddr; 198 199 kp = get_kprobe((void *)addr); 200 faddr = ftrace_location(addr) == addr; 201 /* 202 * Use the current code if it is not modified by Kprobe 203 * and it cannot be modified by ftrace. 204 */ 205 if (!kp && !faddr) 206 return addr; 207 208 /* 209 * Basically, kp->ainsn.insn has an original instruction. 210 * However, RIP-relative instruction can not do single-stepping 211 * at different place, __copy_instruction() tweaks the displacement of 212 * that instruction. In that case, we can't recover the instruction 213 * from the kp->ainsn.insn. 214 * 215 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 216 * of the first byte of the probed instruction, which is overwritten 217 * by int3. And the instruction at kp->addr is not modified by kprobes 218 * except for the first byte, we can recover the original instruction 219 * from it and kp->opcode. 220 * 221 * In case of Kprobes using ftrace, we do not have a copy of 222 * the original instruction. In fact, the ftrace location might 223 * be modified at anytime and even could be in an inconsistent state. 224 * Fortunately, we know that the original code is the ideal 5-byte 225 * long NOP. 226 */ 227 if (copy_from_kernel_nofault(buf, (void *)addr, 228 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 229 return 0UL; 230 231 if (faddr) 232 memcpy(buf, x86_nops[5], 5); 233 else 234 buf[0] = kp->opcode; 235 return (unsigned long)buf; 236 } 237 238 /* 239 * Recover the probed instruction at addr for further analysis. 240 * Caller must lock kprobes by kprobe_mutex, or disable preemption 241 * for preventing to release referencing kprobes. 242 * Returns zero if the instruction can not get recovered (or access failed). 243 */ 244 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 245 { 246 unsigned long __addr; 247 248 __addr = __recover_optprobed_insn(buf, addr); 249 if (__addr != addr) 250 return __addr; 251 252 return __recover_probed_insn(buf, addr); 253 } 254 255 /* Check if paddr is at an instruction boundary */ 256 static int can_probe(unsigned long paddr) 257 { 258 unsigned long addr, __addr, offset = 0; 259 struct insn insn; 260 kprobe_opcode_t buf[MAX_INSN_SIZE]; 261 262 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 263 return 0; 264 265 /* Decode instructions */ 266 addr = paddr - offset; 267 while (addr < paddr) { 268 int ret; 269 270 /* 271 * Check if the instruction has been modified by another 272 * kprobe, in which case we replace the breakpoint by the 273 * original instruction in our buffer. 274 * Also, jump optimization will change the breakpoint to 275 * relative-jump. Since the relative-jump itself is 276 * normally used, we just go through if there is no kprobe. 277 */ 278 __addr = recover_probed_instruction(buf, addr); 279 if (!__addr) 280 return 0; 281 282 ret = insn_decode_kernel(&insn, (void *)__addr); 283 if (ret < 0) 284 return 0; 285 286 /* 287 * Another debugging subsystem might insert this breakpoint. 288 * In that case, we can't recover it. 289 */ 290 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 291 return 0; 292 addr += insn.length; 293 } 294 295 return (addr == paddr); 296 } 297 298 /* If x86 supports IBT (ENDBR) it must be skipped. */ 299 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset, 300 bool *on_func_entry) 301 { 302 if (is_endbr(*(u32 *)addr)) { 303 *on_func_entry = !offset || offset == 4; 304 if (*on_func_entry) 305 offset = 4; 306 307 } else { 308 *on_func_entry = !offset; 309 } 310 311 return (kprobe_opcode_t *)(addr + offset); 312 } 313 314 /* 315 * Copy an instruction with recovering modified instruction by kprobes 316 * and adjust the displacement if the instruction uses the %rip-relative 317 * addressing mode. Note that since @real will be the final place of copied 318 * instruction, displacement must be adjust by @real, not @dest. 319 * This returns the length of copied instruction, or 0 if it has an error. 320 */ 321 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 322 { 323 kprobe_opcode_t buf[MAX_INSN_SIZE]; 324 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); 325 int ret; 326 327 if (!recovered_insn || !insn) 328 return 0; 329 330 /* This can access kernel text if given address is not recovered */ 331 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 332 MAX_INSN_SIZE)) 333 return 0; 334 335 ret = insn_decode_kernel(insn, dest); 336 if (ret < 0) 337 return 0; 338 339 /* We can not probe force emulate prefixed instruction */ 340 if (insn_has_emulate_prefix(insn)) 341 return 0; 342 343 /* Another subsystem puts a breakpoint, failed to recover */ 344 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 345 return 0; 346 347 /* We should not singlestep on the exception masking instructions */ 348 if (insn_masking_exception(insn)) 349 return 0; 350 351 #ifdef CONFIG_X86_64 352 /* Only x86_64 has RIP relative instructions */ 353 if (insn_rip_relative(insn)) { 354 s64 newdisp; 355 u8 *disp; 356 /* 357 * The copied instruction uses the %rip-relative addressing 358 * mode. Adjust the displacement for the difference between 359 * the original location of this instruction and the location 360 * of the copy that will actually be run. The tricky bit here 361 * is making sure that the sign extension happens correctly in 362 * this calculation, since we need a signed 32-bit result to 363 * be sign-extended to 64 bits when it's added to the %rip 364 * value and yield the same 64-bit result that the sign- 365 * extension of the original signed 32-bit displacement would 366 * have given. 367 */ 368 newdisp = (u8 *) src + (s64) insn->displacement.value 369 - (u8 *) real; 370 if ((s64) (s32) newdisp != newdisp) { 371 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 372 return 0; 373 } 374 disp = (u8 *) dest + insn_offset_displacement(insn); 375 *(s32 *) disp = (s32) newdisp; 376 } 377 #endif 378 return insn->length; 379 } 380 381 /* Prepare reljump or int3 right after instruction */ 382 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, 383 struct insn *insn) 384 { 385 int len = insn->length; 386 387 if (!IS_ENABLED(CONFIG_PREEMPTION) && 388 !p->post_handler && can_boost(insn, p->addr) && 389 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 390 /* 391 * These instructions can be executed directly if it 392 * jumps back to correct address. 393 */ 394 synthesize_reljump(buf + len, p->ainsn.insn + len, 395 p->addr + insn->length); 396 len += JMP32_INSN_SIZE; 397 p->ainsn.boostable = 1; 398 } else { 399 /* Otherwise, put an int3 for trapping singlestep */ 400 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) 401 return -ENOSPC; 402 403 buf[len] = INT3_INSN_OPCODE; 404 len += INT3_INSN_SIZE; 405 } 406 407 return len; 408 } 409 410 /* Make page to RO mode when allocate it */ 411 void *alloc_insn_page(void) 412 { 413 void *page; 414 415 page = module_alloc(PAGE_SIZE); 416 if (!page) 417 return NULL; 418 419 set_vm_flush_reset_perms(page); 420 /* 421 * First make the page read-only, and only then make it executable to 422 * prevent it from being W+X in between. 423 */ 424 set_memory_ro((unsigned long)page, 1); 425 426 /* 427 * TODO: Once additional kernel code protection mechanisms are set, ensure 428 * that the page was not maliciously altered and it is still zeroed. 429 */ 430 set_memory_x((unsigned long)page, 1); 431 432 return page; 433 } 434 435 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ 436 437 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) 438 { 439 switch (p->ainsn.opcode) { 440 case 0xfa: /* cli */ 441 regs->flags &= ~(X86_EFLAGS_IF); 442 break; 443 case 0xfb: /* sti */ 444 regs->flags |= X86_EFLAGS_IF; 445 break; 446 case 0x9c: /* pushf */ 447 int3_emulate_push(regs, regs->flags); 448 break; 449 case 0x9d: /* popf */ 450 regs->flags = int3_emulate_pop(regs); 451 break; 452 } 453 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 454 } 455 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); 456 457 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) 458 { 459 int3_emulate_ret(regs); 460 } 461 NOKPROBE_SYMBOL(kprobe_emulate_ret); 462 463 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) 464 { 465 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 466 467 func += p->ainsn.rel32; 468 int3_emulate_call(regs, func); 469 } 470 NOKPROBE_SYMBOL(kprobe_emulate_call); 471 472 static nokprobe_inline 473 void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond) 474 { 475 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 476 477 if (cond) 478 ip += p->ainsn.rel32; 479 int3_emulate_jmp(regs, ip); 480 } 481 482 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) 483 { 484 __kprobe_emulate_jmp(p, regs, true); 485 } 486 NOKPROBE_SYMBOL(kprobe_emulate_jmp); 487 488 static const unsigned long jcc_mask[6] = { 489 [0] = X86_EFLAGS_OF, 490 [1] = X86_EFLAGS_CF, 491 [2] = X86_EFLAGS_ZF, 492 [3] = X86_EFLAGS_CF | X86_EFLAGS_ZF, 493 [4] = X86_EFLAGS_SF, 494 [5] = X86_EFLAGS_PF, 495 }; 496 497 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) 498 { 499 bool invert = p->ainsn.jcc.type & 1; 500 bool match; 501 502 if (p->ainsn.jcc.type < 0xc) { 503 match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1]; 504 } else { 505 match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^ 506 ((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT); 507 if (p->ainsn.jcc.type >= 0xe) 508 match = match && (regs->flags & X86_EFLAGS_ZF); 509 } 510 __kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert)); 511 } 512 NOKPROBE_SYMBOL(kprobe_emulate_jcc); 513 514 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) 515 { 516 bool match; 517 518 if (p->ainsn.loop.type != 3) { /* LOOP* */ 519 if (p->ainsn.loop.asize == 32) 520 match = ((*(u32 *)®s->cx)--) != 0; 521 #ifdef CONFIG_X86_64 522 else if (p->ainsn.loop.asize == 64) 523 match = ((*(u64 *)®s->cx)--) != 0; 524 #endif 525 else 526 match = ((*(u16 *)®s->cx)--) != 0; 527 } else { /* JCXZ */ 528 if (p->ainsn.loop.asize == 32) 529 match = *(u32 *)(®s->cx) == 0; 530 #ifdef CONFIG_X86_64 531 else if (p->ainsn.loop.asize == 64) 532 match = *(u64 *)(®s->cx) == 0; 533 #endif 534 else 535 match = *(u16 *)(®s->cx) == 0; 536 } 537 538 if (p->ainsn.loop.type == 0) /* LOOPNE */ 539 match = match && !(regs->flags & X86_EFLAGS_ZF); 540 else if (p->ainsn.loop.type == 1) /* LOOPE */ 541 match = match && (regs->flags & X86_EFLAGS_ZF); 542 543 __kprobe_emulate_jmp(p, regs, match); 544 } 545 NOKPROBE_SYMBOL(kprobe_emulate_loop); 546 547 static const int addrmode_regoffs[] = { 548 offsetof(struct pt_regs, ax), 549 offsetof(struct pt_regs, cx), 550 offsetof(struct pt_regs, dx), 551 offsetof(struct pt_regs, bx), 552 offsetof(struct pt_regs, sp), 553 offsetof(struct pt_regs, bp), 554 offsetof(struct pt_regs, si), 555 offsetof(struct pt_regs, di), 556 #ifdef CONFIG_X86_64 557 offsetof(struct pt_regs, r8), 558 offsetof(struct pt_regs, r9), 559 offsetof(struct pt_regs, r10), 560 offsetof(struct pt_regs, r11), 561 offsetof(struct pt_regs, r12), 562 offsetof(struct pt_regs, r13), 563 offsetof(struct pt_regs, r14), 564 offsetof(struct pt_regs, r15), 565 #endif 566 }; 567 568 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) 569 { 570 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 571 572 int3_emulate_call(regs, regs_get_register(regs, offs)); 573 } 574 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); 575 576 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) 577 { 578 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 579 580 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 581 } 582 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); 583 584 static int prepare_emulation(struct kprobe *p, struct insn *insn) 585 { 586 insn_byte_t opcode = insn->opcode.bytes[0]; 587 588 switch (opcode) { 589 case 0xfa: /* cli */ 590 case 0xfb: /* sti */ 591 case 0x9c: /* pushfl */ 592 case 0x9d: /* popf/popfd */ 593 /* 594 * IF modifiers must be emulated since it will enable interrupt while 595 * int3 single stepping. 596 */ 597 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; 598 p->ainsn.opcode = opcode; 599 break; 600 case 0xc2: /* ret/lret */ 601 case 0xc3: 602 case 0xca: 603 case 0xcb: 604 p->ainsn.emulate_op = kprobe_emulate_ret; 605 break; 606 case 0x9a: /* far call absolute -- segment is not supported */ 607 case 0xea: /* far jmp absolute -- segment is not supported */ 608 case 0xcc: /* int3 */ 609 case 0xcf: /* iret -- in-kernel IRET is not supported */ 610 return -EOPNOTSUPP; 611 break; 612 case 0xe8: /* near call relative */ 613 p->ainsn.emulate_op = kprobe_emulate_call; 614 if (insn->immediate.nbytes == 2) 615 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 616 else 617 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 618 break; 619 case 0xeb: /* short jump relative */ 620 case 0xe9: /* near jump relative */ 621 p->ainsn.emulate_op = kprobe_emulate_jmp; 622 if (insn->immediate.nbytes == 1) 623 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 624 else if (insn->immediate.nbytes == 2) 625 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 626 else 627 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 628 break; 629 case 0x70 ... 0x7f: 630 /* 1 byte conditional jump */ 631 p->ainsn.emulate_op = kprobe_emulate_jcc; 632 p->ainsn.jcc.type = opcode & 0xf; 633 p->ainsn.rel32 = *(char *)insn->immediate.bytes; 634 break; 635 case 0x0f: 636 opcode = insn->opcode.bytes[1]; 637 if ((opcode & 0xf0) == 0x80) { 638 /* 2 bytes Conditional Jump */ 639 p->ainsn.emulate_op = kprobe_emulate_jcc; 640 p->ainsn.jcc.type = opcode & 0xf; 641 if (insn->immediate.nbytes == 2) 642 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 643 else 644 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 645 } else if (opcode == 0x01 && 646 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && 647 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { 648 /* VM extensions - not supported */ 649 return -EOPNOTSUPP; 650 } 651 break; 652 case 0xe0: /* Loop NZ */ 653 case 0xe1: /* Loop */ 654 case 0xe2: /* Loop */ 655 case 0xe3: /* J*CXZ */ 656 p->ainsn.emulate_op = kprobe_emulate_loop; 657 p->ainsn.loop.type = opcode & 0x3; 658 p->ainsn.loop.asize = insn->addr_bytes * 8; 659 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 660 break; 661 case 0xff: 662 /* 663 * Since the 0xff is an extended group opcode, the instruction 664 * is determined by the MOD/RM byte. 665 */ 666 opcode = insn->modrm.bytes[0]; 667 if ((opcode & 0x30) == 0x10) { 668 if ((opcode & 0x8) == 0x8) 669 return -EOPNOTSUPP; /* far call */ 670 /* call absolute, indirect */ 671 p->ainsn.emulate_op = kprobe_emulate_call_indirect; 672 } else if ((opcode & 0x30) == 0x20) { 673 if ((opcode & 0x8) == 0x8) 674 return -EOPNOTSUPP; /* far jmp */ 675 /* jmp near absolute indirect */ 676 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; 677 } else 678 break; 679 680 if (insn->addr_bytes != sizeof(unsigned long)) 681 return -EOPNOTSUPP; /* Don't support different size */ 682 if (X86_MODRM_MOD(opcode) != 3) 683 return -EOPNOTSUPP; /* TODO: support memory addressing */ 684 685 p->ainsn.indirect.reg = X86_MODRM_RM(opcode); 686 #ifdef CONFIG_X86_64 687 if (X86_REX_B(insn->rex_prefix.value)) 688 p->ainsn.indirect.reg += 8; 689 #endif 690 break; 691 default: 692 break; 693 } 694 p->ainsn.size = insn->length; 695 696 return 0; 697 } 698 699 static int arch_copy_kprobe(struct kprobe *p) 700 { 701 struct insn insn; 702 kprobe_opcode_t buf[MAX_INSN_SIZE]; 703 int ret, len; 704 705 /* Copy an instruction with recovering if other optprobe modifies it.*/ 706 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 707 if (!len) 708 return -EINVAL; 709 710 /* Analyze the opcode and setup emulate functions */ 711 ret = prepare_emulation(p, &insn); 712 if (ret < 0) 713 return ret; 714 715 /* Add int3 for single-step or booster jmp */ 716 len = prepare_singlestep(buf, p, &insn); 717 if (len < 0) 718 return len; 719 720 /* Also, displacement change doesn't affect the first byte */ 721 p->opcode = buf[0]; 722 723 p->ainsn.tp_len = len; 724 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 725 726 /* OK, write back the instruction(s) into ROX insn buffer */ 727 text_poke(p->ainsn.insn, buf, len); 728 729 return 0; 730 } 731 732 int arch_prepare_kprobe(struct kprobe *p) 733 { 734 int ret; 735 736 if (alternatives_text_reserved(p->addr, p->addr)) 737 return -EINVAL; 738 739 if (!can_probe((unsigned long)p->addr)) 740 return -EILSEQ; 741 742 memset(&p->ainsn, 0, sizeof(p->ainsn)); 743 744 /* insn: must be on special executable page on x86. */ 745 p->ainsn.insn = get_insn_slot(); 746 if (!p->ainsn.insn) 747 return -ENOMEM; 748 749 ret = arch_copy_kprobe(p); 750 if (ret) { 751 free_insn_slot(p->ainsn.insn, 0); 752 p->ainsn.insn = NULL; 753 } 754 755 return ret; 756 } 757 758 void arch_arm_kprobe(struct kprobe *p) 759 { 760 u8 int3 = INT3_INSN_OPCODE; 761 762 text_poke(p->addr, &int3, 1); 763 text_poke_sync(); 764 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 765 } 766 767 void arch_disarm_kprobe(struct kprobe *p) 768 { 769 u8 int3 = INT3_INSN_OPCODE; 770 771 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 772 text_poke(p->addr, &p->opcode, 1); 773 text_poke_sync(); 774 } 775 776 void arch_remove_kprobe(struct kprobe *p) 777 { 778 if (p->ainsn.insn) { 779 /* Record the perf event before freeing the slot */ 780 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 781 p->ainsn.tp_len, NULL, 0); 782 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 783 p->ainsn.insn = NULL; 784 } 785 } 786 787 static nokprobe_inline void 788 save_previous_kprobe(struct kprobe_ctlblk *kcb) 789 { 790 kcb->prev_kprobe.kp = kprobe_running(); 791 kcb->prev_kprobe.status = kcb->kprobe_status; 792 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 793 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 794 } 795 796 static nokprobe_inline void 797 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 798 { 799 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 800 kcb->kprobe_status = kcb->prev_kprobe.status; 801 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 802 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 803 } 804 805 static nokprobe_inline void 806 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 807 struct kprobe_ctlblk *kcb) 808 { 809 __this_cpu_write(current_kprobe, p); 810 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 811 = (regs->flags & X86_EFLAGS_IF); 812 } 813 814 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, 815 struct kprobe_ctlblk *kcb) 816 { 817 /* Restore back the original saved kprobes variables and continue. */ 818 if (kcb->kprobe_status == KPROBE_REENTER) { 819 /* This will restore both kcb and current_kprobe */ 820 restore_previous_kprobe(kcb); 821 } else { 822 /* 823 * Always update the kcb status because 824 * reset_curent_kprobe() doesn't update kcb. 825 */ 826 kcb->kprobe_status = KPROBE_HIT_SSDONE; 827 if (cur->post_handler) 828 cur->post_handler(cur, regs, 0); 829 reset_current_kprobe(); 830 } 831 } 832 NOKPROBE_SYMBOL(kprobe_post_process); 833 834 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 835 struct kprobe_ctlblk *kcb, int reenter) 836 { 837 if (setup_detour_execution(p, regs, reenter)) 838 return; 839 840 #if !defined(CONFIG_PREEMPTION) 841 if (p->ainsn.boostable) { 842 /* Boost up -- we can execute copied instructions directly */ 843 if (!reenter) 844 reset_current_kprobe(); 845 /* 846 * Reentering boosted probe doesn't reset current_kprobe, 847 * nor set current_kprobe, because it doesn't use single 848 * stepping. 849 */ 850 regs->ip = (unsigned long)p->ainsn.insn; 851 return; 852 } 853 #endif 854 if (reenter) { 855 save_previous_kprobe(kcb); 856 set_current_kprobe(p, regs, kcb); 857 kcb->kprobe_status = KPROBE_REENTER; 858 } else 859 kcb->kprobe_status = KPROBE_HIT_SS; 860 861 if (p->ainsn.emulate_op) { 862 p->ainsn.emulate_op(p, regs); 863 kprobe_post_process(p, regs, kcb); 864 return; 865 } 866 867 /* Disable interrupt, and set ip register on trampoline */ 868 regs->flags &= ~X86_EFLAGS_IF; 869 regs->ip = (unsigned long)p->ainsn.insn; 870 } 871 NOKPROBE_SYMBOL(setup_singlestep); 872 873 /* 874 * Called after single-stepping. p->addr is the address of the 875 * instruction whose first byte has been replaced by the "int3" 876 * instruction. To avoid the SMP problems that can occur when we 877 * temporarily put back the original opcode to single-step, we 878 * single-stepped a copy of the instruction. The address of this 879 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again 880 * right after the copied instruction. 881 * Different from the trap single-step, "int3" single-step can not 882 * handle the instruction which changes the ip register, e.g. jmp, 883 * call, conditional jmp, and the instructions which changes the IF 884 * flags because interrupt must be disabled around the single-stepping. 885 * Such instructions are software emulated, but others are single-stepped 886 * using "int3". 887 * 888 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to 889 * be adjusted, so that we can resume execution on correct code. 890 */ 891 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, 892 struct kprobe_ctlblk *kcb) 893 { 894 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 895 unsigned long orig_ip = (unsigned long)p->addr; 896 897 /* Restore saved interrupt flag and ip register */ 898 regs->flags |= kcb->kprobe_saved_flags; 899 /* Note that regs->ip is executed int3 so must be a step back */ 900 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; 901 } 902 NOKPROBE_SYMBOL(resume_singlestep); 903 904 /* 905 * We have reentered the kprobe_handler(), since another probe was hit while 906 * within the handler. We save the original kprobes variables and just single 907 * step on the instruction of the new probe without calling any user handlers. 908 */ 909 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 910 struct kprobe_ctlblk *kcb) 911 { 912 switch (kcb->kprobe_status) { 913 case KPROBE_HIT_SSDONE: 914 case KPROBE_HIT_ACTIVE: 915 case KPROBE_HIT_SS: 916 kprobes_inc_nmissed_count(p); 917 setup_singlestep(p, regs, kcb, 1); 918 break; 919 case KPROBE_REENTER: 920 /* A probe has been hit in the codepath leading up to, or just 921 * after, single-stepping of a probed instruction. This entire 922 * codepath should strictly reside in .kprobes.text section. 923 * Raise a BUG or we'll continue in an endless reentering loop 924 * and eventually a stack overflow. 925 */ 926 pr_err("Unrecoverable kprobe detected.\n"); 927 dump_kprobe(p); 928 BUG(); 929 default: 930 /* impossible cases */ 931 WARN_ON(1); 932 return 0; 933 } 934 935 return 1; 936 } 937 NOKPROBE_SYMBOL(reenter_kprobe); 938 939 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) 940 { 941 return (kcb->kprobe_status == KPROBE_HIT_SS || 942 kcb->kprobe_status == KPROBE_REENTER); 943 } 944 945 /* 946 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 947 * remain disabled throughout this function. 948 */ 949 int kprobe_int3_handler(struct pt_regs *regs) 950 { 951 kprobe_opcode_t *addr; 952 struct kprobe *p; 953 struct kprobe_ctlblk *kcb; 954 955 if (user_mode(regs)) 956 return 0; 957 958 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 959 /* 960 * We don't want to be preempted for the entire duration of kprobe 961 * processing. Since int3 and debug trap disables irqs and we clear 962 * IF while singlestepping, it must be no preemptible. 963 */ 964 965 kcb = get_kprobe_ctlblk(); 966 p = get_kprobe(addr); 967 968 if (p) { 969 if (kprobe_running()) { 970 if (reenter_kprobe(p, regs, kcb)) 971 return 1; 972 } else { 973 set_current_kprobe(p, regs, kcb); 974 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 975 976 /* 977 * If we have no pre-handler or it returned 0, we 978 * continue with normal processing. If we have a 979 * pre-handler and it returned non-zero, that means 980 * user handler setup registers to exit to another 981 * instruction, we must skip the single stepping. 982 */ 983 if (!p->pre_handler || !p->pre_handler(p, regs)) 984 setup_singlestep(p, regs, kcb, 0); 985 else 986 reset_current_kprobe(); 987 return 1; 988 } 989 } else if (kprobe_is_ss(kcb)) { 990 p = kprobe_running(); 991 if ((unsigned long)p->ainsn.insn < regs->ip && 992 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { 993 /* Most provably this is the second int3 for singlestep */ 994 resume_singlestep(p, regs, kcb); 995 kprobe_post_process(p, regs, kcb); 996 return 1; 997 } 998 } 999 1000 if (*addr != INT3_INSN_OPCODE) { 1001 /* 1002 * The breakpoint instruction was removed right 1003 * after we hit it. Another cpu has removed 1004 * either a probepoint or a debugger breakpoint 1005 * at this address. In either case, no further 1006 * handling of this interrupt is appropriate. 1007 * Back up over the (now missing) int3 and run 1008 * the original instruction. 1009 */ 1010 regs->ip = (unsigned long)addr; 1011 return 1; 1012 } /* else: not a kprobe fault; let the kernel handle it */ 1013 1014 return 0; 1015 } 1016 NOKPROBE_SYMBOL(kprobe_int3_handler); 1017 1018 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1019 { 1020 struct kprobe *cur = kprobe_running(); 1021 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1022 1023 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1024 /* This must happen on single-stepping */ 1025 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1026 kcb->kprobe_status != KPROBE_REENTER); 1027 /* 1028 * We are here because the instruction being single 1029 * stepped caused a page fault. We reset the current 1030 * kprobe and the ip points back to the probe address 1031 * and allow the page fault handler to continue as a 1032 * normal page fault. 1033 */ 1034 regs->ip = (unsigned long)cur->addr; 1035 1036 /* 1037 * If the IF flag was set before the kprobe hit, 1038 * don't touch it: 1039 */ 1040 regs->flags |= kcb->kprobe_old_flags; 1041 1042 if (kcb->kprobe_status == KPROBE_REENTER) 1043 restore_previous_kprobe(kcb); 1044 else 1045 reset_current_kprobe(); 1046 } 1047 1048 return 0; 1049 } 1050 NOKPROBE_SYMBOL(kprobe_fault_handler); 1051 1052 int __init arch_populate_kprobe_blacklist(void) 1053 { 1054 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1055 (unsigned long)__entry_text_end); 1056 } 1057 1058 int __init arch_init_kprobes(void) 1059 { 1060 return 0; 1061 } 1062 1063 int arch_trampoline_kprobe(struct kprobe *p) 1064 { 1065 return 0; 1066 } 1067