xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 7ae5c03a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/ftrace.h>
41 #include <linux/kasan.h>
42 #include <linux/moduleloader.h>
43 #include <linux/objtool.h>
44 #include <linux/vmalloc.h>
45 #include <linux/pgtable.h>
46 
47 #include <asm/text-patching.h>
48 #include <asm/cacheflush.h>
49 #include <asm/desc.h>
50 #include <linux/uaccess.h>
51 #include <asm/alternative.h>
52 #include <asm/insn.h>
53 #include <asm/debugreg.h>
54 #include <asm/set_memory.h>
55 #include <asm/ibt.h>
56 
57 #include "common.h"
58 
59 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
60 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
61 
62 #define stack_addr(regs) ((unsigned long *)regs->sp)
63 
64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
65 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
66 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
67 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
68 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
69 	 << (row % 32))
70 	/*
71 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
72 	 * Groups, and some special opcodes can not boost.
73 	 * This is non-const and volatile to keep gcc from statically
74 	 * optimizing it out, as variable_test_bit makes gcc think only
75 	 * *(unsigned long*) is used.
76 	 */
77 static volatile u32 twobyte_is_boostable[256 / 32] = {
78 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
79 	/*      ----------------------------------------------          */
80 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
81 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
82 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
83 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
84 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
85 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
86 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
87 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
88 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
89 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
90 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
91 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
92 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
93 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
94 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
95 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
96 	/*      -----------------------------------------------         */
97 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
98 };
99 #undef W
100 
101 struct kretprobe_blackpoint kretprobe_blacklist[] = {
102 	{"__switch_to", }, /* This function switches only current task, but
103 			      doesn't switch kernel stack.*/
104 	{NULL, NULL}	/* Terminator */
105 };
106 
107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108 
109 static nokprobe_inline void
110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111 {
112 	struct __arch_relative_insn {
113 		u8 op;
114 		s32 raddr;
115 	} __packed *insn;
116 
117 	insn = (struct __arch_relative_insn *)dest;
118 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 	insn->op = op;
120 }
121 
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 void synthesize_reljump(void *dest, void *from, void *to)
124 {
125 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126 }
127 NOKPROBE_SYMBOL(synthesize_reljump);
128 
129 /* Insert a call instruction at address 'from', which calls address 'to'.*/
130 void synthesize_relcall(void *dest, void *from, void *to)
131 {
132 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133 }
134 NOKPROBE_SYMBOL(synthesize_relcall);
135 
136 /*
137  * Returns non-zero if INSN is boostable.
138  * RIP relative instructions are adjusted at copying time in 64 bits mode
139  */
140 int can_boost(struct insn *insn, void *addr)
141 {
142 	kprobe_opcode_t opcode;
143 	insn_byte_t prefix;
144 	int i;
145 
146 	if (search_exception_tables((unsigned long)addr))
147 		return 0;	/* Page fault may occur on this address. */
148 
149 	/* 2nd-byte opcode */
150 	if (insn->opcode.nbytes == 2)
151 		return test_bit(insn->opcode.bytes[1],
152 				(unsigned long *)twobyte_is_boostable);
153 
154 	if (insn->opcode.nbytes != 1)
155 		return 0;
156 
157 	for_each_insn_prefix(insn, i, prefix) {
158 		insn_attr_t attr;
159 
160 		attr = inat_get_opcode_attribute(prefix);
161 		/* Can't boost Address-size override prefix and CS override prefix */
162 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
163 			return 0;
164 	}
165 
166 	opcode = insn->opcode.bytes[0];
167 
168 	switch (opcode) {
169 	case 0x62:		/* bound */
170 	case 0x70 ... 0x7f:	/* Conditional jumps */
171 	case 0x9a:		/* Call far */
172 	case 0xc0 ... 0xc1:	/* Grp2 */
173 	case 0xcc ... 0xce:	/* software exceptions */
174 	case 0xd0 ... 0xd3:	/* Grp2 */
175 	case 0xd6:		/* (UD) */
176 	case 0xd8 ... 0xdf:	/* ESC */
177 	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
178 	case 0xe8 ... 0xe9:	/* near Call, JMP */
179 	case 0xeb:		/* Short JMP */
180 	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
181 	case 0xf6 ... 0xf7:	/* Grp3 */
182 	case 0xfe:		/* Grp4 */
183 		/* ... are not boostable */
184 		return 0;
185 	case 0xff:		/* Grp5 */
186 		/* Only indirect jmp is boostable */
187 		return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
188 	default:
189 		return 1;
190 	}
191 }
192 
193 static unsigned long
194 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
195 {
196 	struct kprobe *kp;
197 	bool faddr;
198 
199 	kp = get_kprobe((void *)addr);
200 	faddr = ftrace_location(addr) == addr;
201 	/*
202 	 * Use the current code if it is not modified by Kprobe
203 	 * and it cannot be modified by ftrace.
204 	 */
205 	if (!kp && !faddr)
206 		return addr;
207 
208 	/*
209 	 * Basically, kp->ainsn.insn has an original instruction.
210 	 * However, RIP-relative instruction can not do single-stepping
211 	 * at different place, __copy_instruction() tweaks the displacement of
212 	 * that instruction. In that case, we can't recover the instruction
213 	 * from the kp->ainsn.insn.
214 	 *
215 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
216 	 * of the first byte of the probed instruction, which is overwritten
217 	 * by int3. And the instruction at kp->addr is not modified by kprobes
218 	 * except for the first byte, we can recover the original instruction
219 	 * from it and kp->opcode.
220 	 *
221 	 * In case of Kprobes using ftrace, we do not have a copy of
222 	 * the original instruction. In fact, the ftrace location might
223 	 * be modified at anytime and even could be in an inconsistent state.
224 	 * Fortunately, we know that the original code is the ideal 5-byte
225 	 * long NOP.
226 	 */
227 	if (copy_from_kernel_nofault(buf, (void *)addr,
228 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
229 		return 0UL;
230 
231 	if (faddr)
232 		memcpy(buf, x86_nops[5], 5);
233 	else
234 		buf[0] = kp->opcode;
235 	return (unsigned long)buf;
236 }
237 
238 /*
239  * Recover the probed instruction at addr for further analysis.
240  * Caller must lock kprobes by kprobe_mutex, or disable preemption
241  * for preventing to release referencing kprobes.
242  * Returns zero if the instruction can not get recovered (or access failed).
243  */
244 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
245 {
246 	unsigned long __addr;
247 
248 	__addr = __recover_optprobed_insn(buf, addr);
249 	if (__addr != addr)
250 		return __addr;
251 
252 	return __recover_probed_insn(buf, addr);
253 }
254 
255 /* Check if paddr is at an instruction boundary */
256 static int can_probe(unsigned long paddr)
257 {
258 	unsigned long addr, __addr, offset = 0;
259 	struct insn insn;
260 	kprobe_opcode_t buf[MAX_INSN_SIZE];
261 
262 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
263 		return 0;
264 
265 	/* Decode instructions */
266 	addr = paddr - offset;
267 	while (addr < paddr) {
268 		int ret;
269 
270 		/*
271 		 * Check if the instruction has been modified by another
272 		 * kprobe, in which case we replace the breakpoint by the
273 		 * original instruction in our buffer.
274 		 * Also, jump optimization will change the breakpoint to
275 		 * relative-jump. Since the relative-jump itself is
276 		 * normally used, we just go through if there is no kprobe.
277 		 */
278 		__addr = recover_probed_instruction(buf, addr);
279 		if (!__addr)
280 			return 0;
281 
282 		ret = insn_decode_kernel(&insn, (void *)__addr);
283 		if (ret < 0)
284 			return 0;
285 
286 		/*
287 		 * Another debugging subsystem might insert this breakpoint.
288 		 * In that case, we can't recover it.
289 		 */
290 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
291 			return 0;
292 		addr += insn.length;
293 	}
294 
295 	return (addr == paddr);
296 }
297 
298 /* If x86 supports IBT (ENDBR) it must be skipped. */
299 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
300 					 bool *on_func_entry)
301 {
302 	if (is_endbr(*(u32 *)addr)) {
303 		*on_func_entry = !offset || offset == 4;
304 		if (*on_func_entry)
305 			offset = 4;
306 
307 	} else {
308 		*on_func_entry = !offset;
309 	}
310 
311 	return (kprobe_opcode_t *)(addr + offset);
312 }
313 
314 /*
315  * Copy an instruction with recovering modified instruction by kprobes
316  * and adjust the displacement if the instruction uses the %rip-relative
317  * addressing mode. Note that since @real will be the final place of copied
318  * instruction, displacement must be adjust by @real, not @dest.
319  * This returns the length of copied instruction, or 0 if it has an error.
320  */
321 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
322 {
323 	kprobe_opcode_t buf[MAX_INSN_SIZE];
324 	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
325 	int ret;
326 
327 	if (!recovered_insn || !insn)
328 		return 0;
329 
330 	/* This can access kernel text if given address is not recovered */
331 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
332 			MAX_INSN_SIZE))
333 		return 0;
334 
335 	ret = insn_decode_kernel(insn, dest);
336 	if (ret < 0)
337 		return 0;
338 
339 	/* We can not probe force emulate prefixed instruction */
340 	if (insn_has_emulate_prefix(insn))
341 		return 0;
342 
343 	/* Another subsystem puts a breakpoint, failed to recover */
344 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
345 		return 0;
346 
347 	/* We should not singlestep on the exception masking instructions */
348 	if (insn_masking_exception(insn))
349 		return 0;
350 
351 #ifdef CONFIG_X86_64
352 	/* Only x86_64 has RIP relative instructions */
353 	if (insn_rip_relative(insn)) {
354 		s64 newdisp;
355 		u8 *disp;
356 		/*
357 		 * The copied instruction uses the %rip-relative addressing
358 		 * mode.  Adjust the displacement for the difference between
359 		 * the original location of this instruction and the location
360 		 * of the copy that will actually be run.  The tricky bit here
361 		 * is making sure that the sign extension happens correctly in
362 		 * this calculation, since we need a signed 32-bit result to
363 		 * be sign-extended to 64 bits when it's added to the %rip
364 		 * value and yield the same 64-bit result that the sign-
365 		 * extension of the original signed 32-bit displacement would
366 		 * have given.
367 		 */
368 		newdisp = (u8 *) src + (s64) insn->displacement.value
369 			  - (u8 *) real;
370 		if ((s64) (s32) newdisp != newdisp) {
371 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
372 			return 0;
373 		}
374 		disp = (u8 *) dest + insn_offset_displacement(insn);
375 		*(s32 *) disp = (s32) newdisp;
376 	}
377 #endif
378 	return insn->length;
379 }
380 
381 /* Prepare reljump or int3 right after instruction */
382 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
383 			      struct insn *insn)
384 {
385 	int len = insn->length;
386 
387 	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
388 	    !p->post_handler && can_boost(insn, p->addr) &&
389 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
390 		/*
391 		 * These instructions can be executed directly if it
392 		 * jumps back to correct address.
393 		 */
394 		synthesize_reljump(buf + len, p->ainsn.insn + len,
395 				   p->addr + insn->length);
396 		len += JMP32_INSN_SIZE;
397 		p->ainsn.boostable = 1;
398 	} else {
399 		/* Otherwise, put an int3 for trapping singlestep */
400 		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
401 			return -ENOSPC;
402 
403 		buf[len] = INT3_INSN_OPCODE;
404 		len += INT3_INSN_SIZE;
405 	}
406 
407 	return len;
408 }
409 
410 /* Make page to RO mode when allocate it */
411 void *alloc_insn_page(void)
412 {
413 	void *page;
414 
415 	page = module_alloc(PAGE_SIZE);
416 	if (!page)
417 		return NULL;
418 
419 	set_vm_flush_reset_perms(page);
420 	/*
421 	 * First make the page read-only, and only then make it executable to
422 	 * prevent it from being W+X in between.
423 	 */
424 	set_memory_ro((unsigned long)page, 1);
425 
426 	/*
427 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
428 	 * that the page was not maliciously altered and it is still zeroed.
429 	 */
430 	set_memory_x((unsigned long)page, 1);
431 
432 	return page;
433 }
434 
435 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
436 
437 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
438 {
439 	switch (p->ainsn.opcode) {
440 	case 0xfa:	/* cli */
441 		regs->flags &= ~(X86_EFLAGS_IF);
442 		break;
443 	case 0xfb:	/* sti */
444 		regs->flags |= X86_EFLAGS_IF;
445 		break;
446 	case 0x9c:	/* pushf */
447 		int3_emulate_push(regs, regs->flags);
448 		break;
449 	case 0x9d:	/* popf */
450 		regs->flags = int3_emulate_pop(regs);
451 		break;
452 	}
453 	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
454 }
455 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
456 
457 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
458 {
459 	int3_emulate_ret(regs);
460 }
461 NOKPROBE_SYMBOL(kprobe_emulate_ret);
462 
463 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
464 {
465 	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
466 
467 	func += p->ainsn.rel32;
468 	int3_emulate_call(regs, func);
469 }
470 NOKPROBE_SYMBOL(kprobe_emulate_call);
471 
472 static nokprobe_inline
473 void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond)
474 {
475 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
476 
477 	if (cond)
478 		ip += p->ainsn.rel32;
479 	int3_emulate_jmp(regs, ip);
480 }
481 
482 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
483 {
484 	__kprobe_emulate_jmp(p, regs, true);
485 }
486 NOKPROBE_SYMBOL(kprobe_emulate_jmp);
487 
488 static const unsigned long jcc_mask[6] = {
489 	[0] = X86_EFLAGS_OF,
490 	[1] = X86_EFLAGS_CF,
491 	[2] = X86_EFLAGS_ZF,
492 	[3] = X86_EFLAGS_CF | X86_EFLAGS_ZF,
493 	[4] = X86_EFLAGS_SF,
494 	[5] = X86_EFLAGS_PF,
495 };
496 
497 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
498 {
499 	bool invert = p->ainsn.jcc.type & 1;
500 	bool match;
501 
502 	if (p->ainsn.jcc.type < 0xc) {
503 		match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1];
504 	} else {
505 		match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^
506 			((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT);
507 		if (p->ainsn.jcc.type >= 0xe)
508 			match = match && (regs->flags & X86_EFLAGS_ZF);
509 	}
510 	__kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert));
511 }
512 NOKPROBE_SYMBOL(kprobe_emulate_jcc);
513 
514 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
515 {
516 	bool match;
517 
518 	if (p->ainsn.loop.type != 3) {	/* LOOP* */
519 		if (p->ainsn.loop.asize == 32)
520 			match = ((*(u32 *)&regs->cx)--) != 0;
521 #ifdef CONFIG_X86_64
522 		else if (p->ainsn.loop.asize == 64)
523 			match = ((*(u64 *)&regs->cx)--) != 0;
524 #endif
525 		else
526 			match = ((*(u16 *)&regs->cx)--) != 0;
527 	} else {			/* JCXZ */
528 		if (p->ainsn.loop.asize == 32)
529 			match = *(u32 *)(&regs->cx) == 0;
530 #ifdef CONFIG_X86_64
531 		else if (p->ainsn.loop.asize == 64)
532 			match = *(u64 *)(&regs->cx) == 0;
533 #endif
534 		else
535 			match = *(u16 *)(&regs->cx) == 0;
536 	}
537 
538 	if (p->ainsn.loop.type == 0)	/* LOOPNE */
539 		match = match && !(regs->flags & X86_EFLAGS_ZF);
540 	else if (p->ainsn.loop.type == 1)	/* LOOPE */
541 		match = match && (regs->flags & X86_EFLAGS_ZF);
542 
543 	__kprobe_emulate_jmp(p, regs, match);
544 }
545 NOKPROBE_SYMBOL(kprobe_emulate_loop);
546 
547 static const int addrmode_regoffs[] = {
548 	offsetof(struct pt_regs, ax),
549 	offsetof(struct pt_regs, cx),
550 	offsetof(struct pt_regs, dx),
551 	offsetof(struct pt_regs, bx),
552 	offsetof(struct pt_regs, sp),
553 	offsetof(struct pt_regs, bp),
554 	offsetof(struct pt_regs, si),
555 	offsetof(struct pt_regs, di),
556 #ifdef CONFIG_X86_64
557 	offsetof(struct pt_regs, r8),
558 	offsetof(struct pt_regs, r9),
559 	offsetof(struct pt_regs, r10),
560 	offsetof(struct pt_regs, r11),
561 	offsetof(struct pt_regs, r12),
562 	offsetof(struct pt_regs, r13),
563 	offsetof(struct pt_regs, r14),
564 	offsetof(struct pt_regs, r15),
565 #endif
566 };
567 
568 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
569 {
570 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
571 
572 	int3_emulate_call(regs, regs_get_register(regs, offs));
573 }
574 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
575 
576 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
577 {
578 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
579 
580 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
581 }
582 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
583 
584 static int prepare_emulation(struct kprobe *p, struct insn *insn)
585 {
586 	insn_byte_t opcode = insn->opcode.bytes[0];
587 
588 	switch (opcode) {
589 	case 0xfa:		/* cli */
590 	case 0xfb:		/* sti */
591 	case 0x9c:		/* pushfl */
592 	case 0x9d:		/* popf/popfd */
593 		/*
594 		 * IF modifiers must be emulated since it will enable interrupt while
595 		 * int3 single stepping.
596 		 */
597 		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
598 		p->ainsn.opcode = opcode;
599 		break;
600 	case 0xc2:	/* ret/lret */
601 	case 0xc3:
602 	case 0xca:
603 	case 0xcb:
604 		p->ainsn.emulate_op = kprobe_emulate_ret;
605 		break;
606 	case 0x9a:	/* far call absolute -- segment is not supported */
607 	case 0xea:	/* far jmp absolute -- segment is not supported */
608 	case 0xcc:	/* int3 */
609 	case 0xcf:	/* iret -- in-kernel IRET is not supported */
610 		return -EOPNOTSUPP;
611 		break;
612 	case 0xe8:	/* near call relative */
613 		p->ainsn.emulate_op = kprobe_emulate_call;
614 		if (insn->immediate.nbytes == 2)
615 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
616 		else
617 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
618 		break;
619 	case 0xeb:	/* short jump relative */
620 	case 0xe9:	/* near jump relative */
621 		p->ainsn.emulate_op = kprobe_emulate_jmp;
622 		if (insn->immediate.nbytes == 1)
623 			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
624 		else if (insn->immediate.nbytes == 2)
625 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
626 		else
627 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
628 		break;
629 	case 0x70 ... 0x7f:
630 		/* 1 byte conditional jump */
631 		p->ainsn.emulate_op = kprobe_emulate_jcc;
632 		p->ainsn.jcc.type = opcode & 0xf;
633 		p->ainsn.rel32 = *(char *)insn->immediate.bytes;
634 		break;
635 	case 0x0f:
636 		opcode = insn->opcode.bytes[1];
637 		if ((opcode & 0xf0) == 0x80) {
638 			/* 2 bytes Conditional Jump */
639 			p->ainsn.emulate_op = kprobe_emulate_jcc;
640 			p->ainsn.jcc.type = opcode & 0xf;
641 			if (insn->immediate.nbytes == 2)
642 				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
643 			else
644 				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
645 		} else if (opcode == 0x01 &&
646 			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
647 			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
648 			/* VM extensions - not supported */
649 			return -EOPNOTSUPP;
650 		}
651 		break;
652 	case 0xe0:	/* Loop NZ */
653 	case 0xe1:	/* Loop */
654 	case 0xe2:	/* Loop */
655 	case 0xe3:	/* J*CXZ */
656 		p->ainsn.emulate_op = kprobe_emulate_loop;
657 		p->ainsn.loop.type = opcode & 0x3;
658 		p->ainsn.loop.asize = insn->addr_bytes * 8;
659 		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
660 		break;
661 	case 0xff:
662 		/*
663 		 * Since the 0xff is an extended group opcode, the instruction
664 		 * is determined by the MOD/RM byte.
665 		 */
666 		opcode = insn->modrm.bytes[0];
667 		if ((opcode & 0x30) == 0x10) {
668 			if ((opcode & 0x8) == 0x8)
669 				return -EOPNOTSUPP;	/* far call */
670 			/* call absolute, indirect */
671 			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
672 		} else if ((opcode & 0x30) == 0x20) {
673 			if ((opcode & 0x8) == 0x8)
674 				return -EOPNOTSUPP;	/* far jmp */
675 			/* jmp near absolute indirect */
676 			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
677 		} else
678 			break;
679 
680 		if (insn->addr_bytes != sizeof(unsigned long))
681 			return -EOPNOTSUPP;	/* Don't support different size */
682 		if (X86_MODRM_MOD(opcode) != 3)
683 			return -EOPNOTSUPP;	/* TODO: support memory addressing */
684 
685 		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
686 #ifdef CONFIG_X86_64
687 		if (X86_REX_B(insn->rex_prefix.value))
688 			p->ainsn.indirect.reg += 8;
689 #endif
690 		break;
691 	default:
692 		break;
693 	}
694 	p->ainsn.size = insn->length;
695 
696 	return 0;
697 }
698 
699 static int arch_copy_kprobe(struct kprobe *p)
700 {
701 	struct insn insn;
702 	kprobe_opcode_t buf[MAX_INSN_SIZE];
703 	int ret, len;
704 
705 	/* Copy an instruction with recovering if other optprobe modifies it.*/
706 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
707 	if (!len)
708 		return -EINVAL;
709 
710 	/* Analyze the opcode and setup emulate functions */
711 	ret = prepare_emulation(p, &insn);
712 	if (ret < 0)
713 		return ret;
714 
715 	/* Add int3 for single-step or booster jmp */
716 	len = prepare_singlestep(buf, p, &insn);
717 	if (len < 0)
718 		return len;
719 
720 	/* Also, displacement change doesn't affect the first byte */
721 	p->opcode = buf[0];
722 
723 	p->ainsn.tp_len = len;
724 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
725 
726 	/* OK, write back the instruction(s) into ROX insn buffer */
727 	text_poke(p->ainsn.insn, buf, len);
728 
729 	return 0;
730 }
731 
732 int arch_prepare_kprobe(struct kprobe *p)
733 {
734 	int ret;
735 
736 	if (alternatives_text_reserved(p->addr, p->addr))
737 		return -EINVAL;
738 
739 	if (!can_probe((unsigned long)p->addr))
740 		return -EILSEQ;
741 
742 	memset(&p->ainsn, 0, sizeof(p->ainsn));
743 
744 	/* insn: must be on special executable page on x86. */
745 	p->ainsn.insn = get_insn_slot();
746 	if (!p->ainsn.insn)
747 		return -ENOMEM;
748 
749 	ret = arch_copy_kprobe(p);
750 	if (ret) {
751 		free_insn_slot(p->ainsn.insn, 0);
752 		p->ainsn.insn = NULL;
753 	}
754 
755 	return ret;
756 }
757 
758 void arch_arm_kprobe(struct kprobe *p)
759 {
760 	u8 int3 = INT3_INSN_OPCODE;
761 
762 	text_poke(p->addr, &int3, 1);
763 	text_poke_sync();
764 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
765 }
766 
767 void arch_disarm_kprobe(struct kprobe *p)
768 {
769 	u8 int3 = INT3_INSN_OPCODE;
770 
771 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
772 	text_poke(p->addr, &p->opcode, 1);
773 	text_poke_sync();
774 }
775 
776 void arch_remove_kprobe(struct kprobe *p)
777 {
778 	if (p->ainsn.insn) {
779 		/* Record the perf event before freeing the slot */
780 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
781 				     p->ainsn.tp_len, NULL, 0);
782 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
783 		p->ainsn.insn = NULL;
784 	}
785 }
786 
787 static nokprobe_inline void
788 save_previous_kprobe(struct kprobe_ctlblk *kcb)
789 {
790 	kcb->prev_kprobe.kp = kprobe_running();
791 	kcb->prev_kprobe.status = kcb->kprobe_status;
792 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
793 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
794 }
795 
796 static nokprobe_inline void
797 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
798 {
799 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
800 	kcb->kprobe_status = kcb->prev_kprobe.status;
801 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
802 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
803 }
804 
805 static nokprobe_inline void
806 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
807 		   struct kprobe_ctlblk *kcb)
808 {
809 	__this_cpu_write(current_kprobe, p);
810 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
811 		= (regs->flags & X86_EFLAGS_IF);
812 }
813 
814 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
815 			       struct kprobe_ctlblk *kcb)
816 {
817 	/* Restore back the original saved kprobes variables and continue. */
818 	if (kcb->kprobe_status == KPROBE_REENTER) {
819 		/* This will restore both kcb and current_kprobe */
820 		restore_previous_kprobe(kcb);
821 	} else {
822 		/*
823 		 * Always update the kcb status because
824 		 * reset_curent_kprobe() doesn't update kcb.
825 		 */
826 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
827 		if (cur->post_handler)
828 			cur->post_handler(cur, regs, 0);
829 		reset_current_kprobe();
830 	}
831 }
832 NOKPROBE_SYMBOL(kprobe_post_process);
833 
834 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
835 			     struct kprobe_ctlblk *kcb, int reenter)
836 {
837 	if (setup_detour_execution(p, regs, reenter))
838 		return;
839 
840 #if !defined(CONFIG_PREEMPTION)
841 	if (p->ainsn.boostable) {
842 		/* Boost up -- we can execute copied instructions directly */
843 		if (!reenter)
844 			reset_current_kprobe();
845 		/*
846 		 * Reentering boosted probe doesn't reset current_kprobe,
847 		 * nor set current_kprobe, because it doesn't use single
848 		 * stepping.
849 		 */
850 		regs->ip = (unsigned long)p->ainsn.insn;
851 		return;
852 	}
853 #endif
854 	if (reenter) {
855 		save_previous_kprobe(kcb);
856 		set_current_kprobe(p, regs, kcb);
857 		kcb->kprobe_status = KPROBE_REENTER;
858 	} else
859 		kcb->kprobe_status = KPROBE_HIT_SS;
860 
861 	if (p->ainsn.emulate_op) {
862 		p->ainsn.emulate_op(p, regs);
863 		kprobe_post_process(p, regs, kcb);
864 		return;
865 	}
866 
867 	/* Disable interrupt, and set ip register on trampoline */
868 	regs->flags &= ~X86_EFLAGS_IF;
869 	regs->ip = (unsigned long)p->ainsn.insn;
870 }
871 NOKPROBE_SYMBOL(setup_singlestep);
872 
873 /*
874  * Called after single-stepping.  p->addr is the address of the
875  * instruction whose first byte has been replaced by the "int3"
876  * instruction.  To avoid the SMP problems that can occur when we
877  * temporarily put back the original opcode to single-step, we
878  * single-stepped a copy of the instruction.  The address of this
879  * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
880  * right after the copied instruction.
881  * Different from the trap single-step, "int3" single-step can not
882  * handle the instruction which changes the ip register, e.g. jmp,
883  * call, conditional jmp, and the instructions which changes the IF
884  * flags because interrupt must be disabled around the single-stepping.
885  * Such instructions are software emulated, but others are single-stepped
886  * using "int3".
887  *
888  * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
889  * be adjusted, so that we can resume execution on correct code.
890  */
891 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
892 			      struct kprobe_ctlblk *kcb)
893 {
894 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
895 	unsigned long orig_ip = (unsigned long)p->addr;
896 
897 	/* Restore saved interrupt flag and ip register */
898 	regs->flags |= kcb->kprobe_saved_flags;
899 	/* Note that regs->ip is executed int3 so must be a step back */
900 	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
901 }
902 NOKPROBE_SYMBOL(resume_singlestep);
903 
904 /*
905  * We have reentered the kprobe_handler(), since another probe was hit while
906  * within the handler. We save the original kprobes variables and just single
907  * step on the instruction of the new probe without calling any user handlers.
908  */
909 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
910 			  struct kprobe_ctlblk *kcb)
911 {
912 	switch (kcb->kprobe_status) {
913 	case KPROBE_HIT_SSDONE:
914 	case KPROBE_HIT_ACTIVE:
915 	case KPROBE_HIT_SS:
916 		kprobes_inc_nmissed_count(p);
917 		setup_singlestep(p, regs, kcb, 1);
918 		break;
919 	case KPROBE_REENTER:
920 		/* A probe has been hit in the codepath leading up to, or just
921 		 * after, single-stepping of a probed instruction. This entire
922 		 * codepath should strictly reside in .kprobes.text section.
923 		 * Raise a BUG or we'll continue in an endless reentering loop
924 		 * and eventually a stack overflow.
925 		 */
926 		pr_err("Unrecoverable kprobe detected.\n");
927 		dump_kprobe(p);
928 		BUG();
929 	default:
930 		/* impossible cases */
931 		WARN_ON(1);
932 		return 0;
933 	}
934 
935 	return 1;
936 }
937 NOKPROBE_SYMBOL(reenter_kprobe);
938 
939 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
940 {
941 	return (kcb->kprobe_status == KPROBE_HIT_SS ||
942 		kcb->kprobe_status == KPROBE_REENTER);
943 }
944 
945 /*
946  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
947  * remain disabled throughout this function.
948  */
949 int kprobe_int3_handler(struct pt_regs *regs)
950 {
951 	kprobe_opcode_t *addr;
952 	struct kprobe *p;
953 	struct kprobe_ctlblk *kcb;
954 
955 	if (user_mode(regs))
956 		return 0;
957 
958 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
959 	/*
960 	 * We don't want to be preempted for the entire duration of kprobe
961 	 * processing. Since int3 and debug trap disables irqs and we clear
962 	 * IF while singlestepping, it must be no preemptible.
963 	 */
964 
965 	kcb = get_kprobe_ctlblk();
966 	p = get_kprobe(addr);
967 
968 	if (p) {
969 		if (kprobe_running()) {
970 			if (reenter_kprobe(p, regs, kcb))
971 				return 1;
972 		} else {
973 			set_current_kprobe(p, regs, kcb);
974 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
975 
976 			/*
977 			 * If we have no pre-handler or it returned 0, we
978 			 * continue with normal processing.  If we have a
979 			 * pre-handler and it returned non-zero, that means
980 			 * user handler setup registers to exit to another
981 			 * instruction, we must skip the single stepping.
982 			 */
983 			if (!p->pre_handler || !p->pre_handler(p, regs))
984 				setup_singlestep(p, regs, kcb, 0);
985 			else
986 				reset_current_kprobe();
987 			return 1;
988 		}
989 	} else if (kprobe_is_ss(kcb)) {
990 		p = kprobe_running();
991 		if ((unsigned long)p->ainsn.insn < regs->ip &&
992 		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
993 			/* Most provably this is the second int3 for singlestep */
994 			resume_singlestep(p, regs, kcb);
995 			kprobe_post_process(p, regs, kcb);
996 			return 1;
997 		}
998 	}
999 
1000 	if (*addr != INT3_INSN_OPCODE) {
1001 		/*
1002 		 * The breakpoint instruction was removed right
1003 		 * after we hit it.  Another cpu has removed
1004 		 * either a probepoint or a debugger breakpoint
1005 		 * at this address.  In either case, no further
1006 		 * handling of this interrupt is appropriate.
1007 		 * Back up over the (now missing) int3 and run
1008 		 * the original instruction.
1009 		 */
1010 		regs->ip = (unsigned long)addr;
1011 		return 1;
1012 	} /* else: not a kprobe fault; let the kernel handle it */
1013 
1014 	return 0;
1015 }
1016 NOKPROBE_SYMBOL(kprobe_int3_handler);
1017 
1018 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1019 {
1020 	struct kprobe *cur = kprobe_running();
1021 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1022 
1023 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1024 		/* This must happen on single-stepping */
1025 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1026 			kcb->kprobe_status != KPROBE_REENTER);
1027 		/*
1028 		 * We are here because the instruction being single
1029 		 * stepped caused a page fault. We reset the current
1030 		 * kprobe and the ip points back to the probe address
1031 		 * and allow the page fault handler to continue as a
1032 		 * normal page fault.
1033 		 */
1034 		regs->ip = (unsigned long)cur->addr;
1035 
1036 		/*
1037 		 * If the IF flag was set before the kprobe hit,
1038 		 * don't touch it:
1039 		 */
1040 		regs->flags |= kcb->kprobe_old_flags;
1041 
1042 		if (kcb->kprobe_status == KPROBE_REENTER)
1043 			restore_previous_kprobe(kcb);
1044 		else
1045 			reset_current_kprobe();
1046 	}
1047 
1048 	return 0;
1049 }
1050 NOKPROBE_SYMBOL(kprobe_fault_handler);
1051 
1052 int __init arch_populate_kprobe_blacklist(void)
1053 {
1054 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1055 					 (unsigned long)__entry_text_end);
1056 }
1057 
1058 int __init arch_init_kprobes(void)
1059 {
1060 	return 0;
1061 }
1062 
1063 int arch_trampoline_kprobe(struct kprobe *p)
1064 {
1065 	return 0;
1066 }
1067