1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/extable.h> 37 #include <linux/kdebug.h> 38 #include <linux/kallsyms.h> 39 #include <linux/ftrace.h> 40 #include <linux/frame.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 44 #include <asm/text-patching.h> 45 #include <asm/cacheflush.h> 46 #include <asm/desc.h> 47 #include <asm/pgtable.h> 48 #include <linux/uaccess.h> 49 #include <asm/alternative.h> 50 #include <asm/insn.h> 51 #include <asm/debugreg.h> 52 #include <asm/set_memory.h> 53 54 #include "common.h" 55 56 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 57 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 58 59 #define stack_addr(regs) ((unsigned long *)regs->sp) 60 61 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 66 << (row % 32)) 67 /* 68 * Undefined/reserved opcodes, conditional jump, Opcode Extension 69 * Groups, and some special opcodes can not boost. 70 * This is non-const and volatile to keep gcc from statically 71 * optimizing it out, as variable_test_bit makes gcc think only 72 * *(unsigned long*) is used. 73 */ 74 static volatile u32 twobyte_is_boostable[256 / 32] = { 75 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 76 /* ---------------------------------------------- */ 77 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 78 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 79 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 80 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 81 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 82 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 83 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 84 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 85 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 86 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 87 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 88 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 89 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 90 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 91 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 92 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 93 /* ----------------------------------------------- */ 94 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 95 }; 96 #undef W 97 98 struct kretprobe_blackpoint kretprobe_blacklist[] = { 99 {"__switch_to", }, /* This function switches only current task, but 100 doesn't switch kernel stack.*/ 101 {NULL, NULL} /* Terminator */ 102 }; 103 104 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 105 106 static nokprobe_inline void 107 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 108 { 109 struct __arch_relative_insn { 110 u8 op; 111 s32 raddr; 112 } __packed *insn; 113 114 insn = (struct __arch_relative_insn *)dest; 115 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 116 insn->op = op; 117 } 118 119 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 120 void synthesize_reljump(void *dest, void *from, void *to) 121 { 122 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE); 123 } 124 NOKPROBE_SYMBOL(synthesize_reljump); 125 126 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 127 void synthesize_relcall(void *dest, void *from, void *to) 128 { 129 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE); 130 } 131 NOKPROBE_SYMBOL(synthesize_relcall); 132 133 /* 134 * Skip the prefixes of the instruction. 135 */ 136 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 137 { 138 insn_attr_t attr; 139 140 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 141 while (inat_is_legacy_prefix(attr)) { 142 insn++; 143 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 144 } 145 #ifdef CONFIG_X86_64 146 if (inat_is_rex_prefix(attr)) 147 insn++; 148 #endif 149 return insn; 150 } 151 NOKPROBE_SYMBOL(skip_prefixes); 152 153 /* 154 * Returns non-zero if INSN is boostable. 155 * RIP relative instructions are adjusted at copying time in 64 bits mode 156 */ 157 int can_boost(struct insn *insn, void *addr) 158 { 159 kprobe_opcode_t opcode; 160 161 if (search_exception_tables((unsigned long)addr)) 162 return 0; /* Page fault may occur on this address. */ 163 164 /* 2nd-byte opcode */ 165 if (insn->opcode.nbytes == 2) 166 return test_bit(insn->opcode.bytes[1], 167 (unsigned long *)twobyte_is_boostable); 168 169 if (insn->opcode.nbytes != 1) 170 return 0; 171 172 /* Can't boost Address-size override prefix */ 173 if (unlikely(inat_is_address_size_prefix(insn->attr))) 174 return 0; 175 176 opcode = insn->opcode.bytes[0]; 177 178 switch (opcode & 0xf0) { 179 case 0x60: 180 /* can't boost "bound" */ 181 return (opcode != 0x62); 182 case 0x70: 183 return 0; /* can't boost conditional jump */ 184 case 0x90: 185 return opcode != 0x9a; /* can't boost call far */ 186 case 0xc0: 187 /* can't boost software-interruptions */ 188 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 189 case 0xd0: 190 /* can boost AA* and XLAT */ 191 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 192 case 0xe0: 193 /* can boost in/out and absolute jmps */ 194 return ((opcode & 0x04) || opcode == 0xea); 195 case 0xf0: 196 /* clear and set flags are boostable */ 197 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 198 default: 199 /* CS override prefix and call are not boostable */ 200 return (opcode != 0x2e && opcode != 0x9a); 201 } 202 } 203 204 static unsigned long 205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 206 { 207 struct kprobe *kp; 208 unsigned long faddr; 209 210 kp = get_kprobe((void *)addr); 211 faddr = ftrace_location(addr); 212 /* 213 * Addresses inside the ftrace location are refused by 214 * arch_check_ftrace_location(). Something went terribly wrong 215 * if such an address is checked here. 216 */ 217 if (WARN_ON(faddr && faddr != addr)) 218 return 0UL; 219 /* 220 * Use the current code if it is not modified by Kprobe 221 * and it cannot be modified by ftrace. 222 */ 223 if (!kp && !faddr) 224 return addr; 225 226 /* 227 * Basically, kp->ainsn.insn has an original instruction. 228 * However, RIP-relative instruction can not do single-stepping 229 * at different place, __copy_instruction() tweaks the displacement of 230 * that instruction. In that case, we can't recover the instruction 231 * from the kp->ainsn.insn. 232 * 233 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 234 * of the first byte of the probed instruction, which is overwritten 235 * by int3. And the instruction at kp->addr is not modified by kprobes 236 * except for the first byte, we can recover the original instruction 237 * from it and kp->opcode. 238 * 239 * In case of Kprobes using ftrace, we do not have a copy of 240 * the original instruction. In fact, the ftrace location might 241 * be modified at anytime and even could be in an inconsistent state. 242 * Fortunately, we know that the original code is the ideal 5-byte 243 * long NOP. 244 */ 245 if (probe_kernel_read(buf, (void *)addr, 246 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 247 return 0UL; 248 249 if (faddr) 250 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 251 else 252 buf[0] = kp->opcode; 253 return (unsigned long)buf; 254 } 255 256 /* 257 * Recover the probed instruction at addr for further analysis. 258 * Caller must lock kprobes by kprobe_mutex, or disable preemption 259 * for preventing to release referencing kprobes. 260 * Returns zero if the instruction can not get recovered (or access failed). 261 */ 262 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 263 { 264 unsigned long __addr; 265 266 __addr = __recover_optprobed_insn(buf, addr); 267 if (__addr != addr) 268 return __addr; 269 270 return __recover_probed_insn(buf, addr); 271 } 272 273 /* Check if paddr is at an instruction boundary */ 274 static int can_probe(unsigned long paddr) 275 { 276 unsigned long addr, __addr, offset = 0; 277 struct insn insn; 278 kprobe_opcode_t buf[MAX_INSN_SIZE]; 279 280 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 281 return 0; 282 283 /* Decode instructions */ 284 addr = paddr - offset; 285 while (addr < paddr) { 286 /* 287 * Check if the instruction has been modified by another 288 * kprobe, in which case we replace the breakpoint by the 289 * original instruction in our buffer. 290 * Also, jump optimization will change the breakpoint to 291 * relative-jump. Since the relative-jump itself is 292 * normally used, we just go through if there is no kprobe. 293 */ 294 __addr = recover_probed_instruction(buf, addr); 295 if (!__addr) 296 return 0; 297 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 298 insn_get_length(&insn); 299 300 /* 301 * Another debugging subsystem might insert this breakpoint. 302 * In that case, we can't recover it. 303 */ 304 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 305 return 0; 306 addr += insn.length; 307 } 308 309 return (addr == paddr); 310 } 311 312 /* 313 * Returns non-zero if opcode modifies the interrupt flag. 314 */ 315 static int is_IF_modifier(kprobe_opcode_t *insn) 316 { 317 /* Skip prefixes */ 318 insn = skip_prefixes(insn); 319 320 switch (*insn) { 321 case 0xfa: /* cli */ 322 case 0xfb: /* sti */ 323 case 0xcf: /* iret/iretd */ 324 case 0x9d: /* popf/popfd */ 325 return 1; 326 } 327 328 return 0; 329 } 330 331 /* 332 * Copy an instruction with recovering modified instruction by kprobes 333 * and adjust the displacement if the instruction uses the %rip-relative 334 * addressing mode. Note that since @real will be the final place of copied 335 * instruction, displacement must be adjust by @real, not @dest. 336 * This returns the length of copied instruction, or 0 if it has an error. 337 */ 338 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 339 { 340 kprobe_opcode_t buf[MAX_INSN_SIZE]; 341 unsigned long recovered_insn = 342 recover_probed_instruction(buf, (unsigned long)src); 343 344 if (!recovered_insn || !insn) 345 return 0; 346 347 /* This can access kernel text if given address is not recovered */ 348 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 349 return 0; 350 351 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 352 insn_get_length(insn); 353 354 /* We can not probe force emulate prefixed instruction */ 355 if (insn_has_emulate_prefix(insn)) 356 return 0; 357 358 /* Another subsystem puts a breakpoint, failed to recover */ 359 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 360 return 0; 361 362 /* We should not singlestep on the exception masking instructions */ 363 if (insn_masking_exception(insn)) 364 return 0; 365 366 #ifdef CONFIG_X86_64 367 /* Only x86_64 has RIP relative instructions */ 368 if (insn_rip_relative(insn)) { 369 s64 newdisp; 370 u8 *disp; 371 /* 372 * The copied instruction uses the %rip-relative addressing 373 * mode. Adjust the displacement for the difference between 374 * the original location of this instruction and the location 375 * of the copy that will actually be run. The tricky bit here 376 * is making sure that the sign extension happens correctly in 377 * this calculation, since we need a signed 32-bit result to 378 * be sign-extended to 64 bits when it's added to the %rip 379 * value and yield the same 64-bit result that the sign- 380 * extension of the original signed 32-bit displacement would 381 * have given. 382 */ 383 newdisp = (u8 *) src + (s64) insn->displacement.value 384 - (u8 *) real; 385 if ((s64) (s32) newdisp != newdisp) { 386 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 387 return 0; 388 } 389 disp = (u8 *) dest + insn_offset_displacement(insn); 390 *(s32 *) disp = (s32) newdisp; 391 } 392 #endif 393 return insn->length; 394 } 395 396 /* Prepare reljump right after instruction to boost */ 397 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 398 struct insn *insn) 399 { 400 int len = insn->length; 401 402 if (can_boost(insn, p->addr) && 403 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) { 404 /* 405 * These instructions can be executed directly if it 406 * jumps back to correct address. 407 */ 408 synthesize_reljump(buf + len, p->ainsn.insn + len, 409 p->addr + insn->length); 410 len += RELATIVEJUMP_SIZE; 411 p->ainsn.boostable = true; 412 } else { 413 p->ainsn.boostable = false; 414 } 415 416 return len; 417 } 418 419 /* Make page to RO mode when allocate it */ 420 void *alloc_insn_page(void) 421 { 422 void *page; 423 424 page = module_alloc(PAGE_SIZE); 425 if (!page) 426 return NULL; 427 428 set_vm_flush_reset_perms(page); 429 /* 430 * First make the page read-only, and only then make it executable to 431 * prevent it from being W+X in between. 432 */ 433 set_memory_ro((unsigned long)page, 1); 434 435 /* 436 * TODO: Once additional kernel code protection mechanisms are set, ensure 437 * that the page was not maliciously altered and it is still zeroed. 438 */ 439 set_memory_x((unsigned long)page, 1); 440 441 return page; 442 } 443 444 /* Recover page to RW mode before releasing it */ 445 void free_insn_page(void *page) 446 { 447 module_memfree(page); 448 } 449 450 static int arch_copy_kprobe(struct kprobe *p) 451 { 452 struct insn insn; 453 kprobe_opcode_t buf[MAX_INSN_SIZE]; 454 int len; 455 456 /* Copy an instruction with recovering if other optprobe modifies it.*/ 457 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 458 if (!len) 459 return -EINVAL; 460 461 /* 462 * __copy_instruction can modify the displacement of the instruction, 463 * but it doesn't affect boostable check. 464 */ 465 len = prepare_boost(buf, p, &insn); 466 467 /* Check whether the instruction modifies Interrupt Flag or not */ 468 p->ainsn.if_modifier = is_IF_modifier(buf); 469 470 /* Also, displacement change doesn't affect the first byte */ 471 p->opcode = buf[0]; 472 473 /* OK, write back the instruction(s) into ROX insn buffer */ 474 text_poke(p->ainsn.insn, buf, len); 475 476 return 0; 477 } 478 479 int arch_prepare_kprobe(struct kprobe *p) 480 { 481 int ret; 482 483 if (alternatives_text_reserved(p->addr, p->addr)) 484 return -EINVAL; 485 486 if (!can_probe((unsigned long)p->addr)) 487 return -EILSEQ; 488 /* insn: must be on special executable page on x86. */ 489 p->ainsn.insn = get_insn_slot(); 490 if (!p->ainsn.insn) 491 return -ENOMEM; 492 493 ret = arch_copy_kprobe(p); 494 if (ret) { 495 free_insn_slot(p->ainsn.insn, 0); 496 p->ainsn.insn = NULL; 497 } 498 499 return ret; 500 } 501 502 void arch_arm_kprobe(struct kprobe *p) 503 { 504 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 505 } 506 507 void arch_disarm_kprobe(struct kprobe *p) 508 { 509 text_poke(p->addr, &p->opcode, 1); 510 } 511 512 void arch_remove_kprobe(struct kprobe *p) 513 { 514 if (p->ainsn.insn) { 515 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 516 p->ainsn.insn = NULL; 517 } 518 } 519 520 static nokprobe_inline void 521 save_previous_kprobe(struct kprobe_ctlblk *kcb) 522 { 523 kcb->prev_kprobe.kp = kprobe_running(); 524 kcb->prev_kprobe.status = kcb->kprobe_status; 525 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 526 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 527 } 528 529 static nokprobe_inline void 530 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 531 { 532 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 533 kcb->kprobe_status = kcb->prev_kprobe.status; 534 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 535 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 536 } 537 538 static nokprobe_inline void 539 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 540 struct kprobe_ctlblk *kcb) 541 { 542 __this_cpu_write(current_kprobe, p); 543 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 544 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 545 if (p->ainsn.if_modifier) 546 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 547 } 548 549 static nokprobe_inline void clear_btf(void) 550 { 551 if (test_thread_flag(TIF_BLOCKSTEP)) { 552 unsigned long debugctl = get_debugctlmsr(); 553 554 debugctl &= ~DEBUGCTLMSR_BTF; 555 update_debugctlmsr(debugctl); 556 } 557 } 558 559 static nokprobe_inline void restore_btf(void) 560 { 561 if (test_thread_flag(TIF_BLOCKSTEP)) { 562 unsigned long debugctl = get_debugctlmsr(); 563 564 debugctl |= DEBUGCTLMSR_BTF; 565 update_debugctlmsr(debugctl); 566 } 567 } 568 569 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 570 { 571 unsigned long *sara = stack_addr(regs); 572 573 ri->ret_addr = (kprobe_opcode_t *) *sara; 574 ri->fp = sara; 575 576 /* Replace the return addr with trampoline addr */ 577 *sara = (unsigned long) &kretprobe_trampoline; 578 } 579 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 580 581 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 582 struct kprobe_ctlblk *kcb, int reenter) 583 { 584 if (setup_detour_execution(p, regs, reenter)) 585 return; 586 587 #if !defined(CONFIG_PREEMPTION) 588 if (p->ainsn.boostable && !p->post_handler) { 589 /* Boost up -- we can execute copied instructions directly */ 590 if (!reenter) 591 reset_current_kprobe(); 592 /* 593 * Reentering boosted probe doesn't reset current_kprobe, 594 * nor set current_kprobe, because it doesn't use single 595 * stepping. 596 */ 597 regs->ip = (unsigned long)p->ainsn.insn; 598 return; 599 } 600 #endif 601 if (reenter) { 602 save_previous_kprobe(kcb); 603 set_current_kprobe(p, regs, kcb); 604 kcb->kprobe_status = KPROBE_REENTER; 605 } else 606 kcb->kprobe_status = KPROBE_HIT_SS; 607 /* Prepare real single stepping */ 608 clear_btf(); 609 regs->flags |= X86_EFLAGS_TF; 610 regs->flags &= ~X86_EFLAGS_IF; 611 /* single step inline if the instruction is an int3 */ 612 if (p->opcode == BREAKPOINT_INSTRUCTION) 613 regs->ip = (unsigned long)p->addr; 614 else 615 regs->ip = (unsigned long)p->ainsn.insn; 616 } 617 NOKPROBE_SYMBOL(setup_singlestep); 618 619 /* 620 * We have reentered the kprobe_handler(), since another probe was hit while 621 * within the handler. We save the original kprobes variables and just single 622 * step on the instruction of the new probe without calling any user handlers. 623 */ 624 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 625 struct kprobe_ctlblk *kcb) 626 { 627 switch (kcb->kprobe_status) { 628 case KPROBE_HIT_SSDONE: 629 case KPROBE_HIT_ACTIVE: 630 case KPROBE_HIT_SS: 631 kprobes_inc_nmissed_count(p); 632 setup_singlestep(p, regs, kcb, 1); 633 break; 634 case KPROBE_REENTER: 635 /* A probe has been hit in the codepath leading up to, or just 636 * after, single-stepping of a probed instruction. This entire 637 * codepath should strictly reside in .kprobes.text section. 638 * Raise a BUG or we'll continue in an endless reentering loop 639 * and eventually a stack overflow. 640 */ 641 pr_err("Unrecoverable kprobe detected.\n"); 642 dump_kprobe(p); 643 BUG(); 644 default: 645 /* impossible cases */ 646 WARN_ON(1); 647 return 0; 648 } 649 650 return 1; 651 } 652 NOKPROBE_SYMBOL(reenter_kprobe); 653 654 /* 655 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 656 * remain disabled throughout this function. 657 */ 658 int kprobe_int3_handler(struct pt_regs *regs) 659 { 660 kprobe_opcode_t *addr; 661 struct kprobe *p; 662 struct kprobe_ctlblk *kcb; 663 664 if (user_mode(regs)) 665 return 0; 666 667 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 668 /* 669 * We don't want to be preempted for the entire duration of kprobe 670 * processing. Since int3 and debug trap disables irqs and we clear 671 * IF while singlestepping, it must be no preemptible. 672 */ 673 674 kcb = get_kprobe_ctlblk(); 675 p = get_kprobe(addr); 676 677 if (p) { 678 if (kprobe_running()) { 679 if (reenter_kprobe(p, regs, kcb)) 680 return 1; 681 } else { 682 set_current_kprobe(p, regs, kcb); 683 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 684 685 /* 686 * If we have no pre-handler or it returned 0, we 687 * continue with normal processing. If we have a 688 * pre-handler and it returned non-zero, that means 689 * user handler setup registers to exit to another 690 * instruction, we must skip the single stepping. 691 */ 692 if (!p->pre_handler || !p->pre_handler(p, regs)) 693 setup_singlestep(p, regs, kcb, 0); 694 else 695 reset_current_kprobe(); 696 return 1; 697 } 698 } else if (*addr != BREAKPOINT_INSTRUCTION) { 699 /* 700 * The breakpoint instruction was removed right 701 * after we hit it. Another cpu has removed 702 * either a probepoint or a debugger breakpoint 703 * at this address. In either case, no further 704 * handling of this interrupt is appropriate. 705 * Back up over the (now missing) int3 and run 706 * the original instruction. 707 */ 708 regs->ip = (unsigned long)addr; 709 return 1; 710 } /* else: not a kprobe fault; let the kernel handle it */ 711 712 return 0; 713 } 714 NOKPROBE_SYMBOL(kprobe_int3_handler); 715 716 /* 717 * When a retprobed function returns, this code saves registers and 718 * calls trampoline_handler() runs, which calls the kretprobe's handler. 719 */ 720 asm( 721 ".text\n" 722 ".global kretprobe_trampoline\n" 723 ".type kretprobe_trampoline, @function\n" 724 "kretprobe_trampoline:\n" 725 /* We don't bother saving the ss register */ 726 #ifdef CONFIG_X86_64 727 " pushq %rsp\n" 728 " pushfq\n" 729 SAVE_REGS_STRING 730 " movq %rsp, %rdi\n" 731 " call trampoline_handler\n" 732 /* Replace saved sp with true return address. */ 733 " movq %rax, 19*8(%rsp)\n" 734 RESTORE_REGS_STRING 735 " popfq\n" 736 #else 737 " pushl %esp\n" 738 " pushfl\n" 739 SAVE_REGS_STRING 740 " movl %esp, %eax\n" 741 " call trampoline_handler\n" 742 /* Replace saved sp with true return address. */ 743 " movl %eax, 15*4(%esp)\n" 744 RESTORE_REGS_STRING 745 " popfl\n" 746 #endif 747 " ret\n" 748 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 749 ); 750 NOKPROBE_SYMBOL(kretprobe_trampoline); 751 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 752 753 static struct kprobe kretprobe_kprobe = { 754 .addr = (void *)kretprobe_trampoline, 755 }; 756 757 /* 758 * Called from kretprobe_trampoline 759 */ 760 __used __visible void *trampoline_handler(struct pt_regs *regs) 761 { 762 struct kprobe_ctlblk *kcb; 763 struct kretprobe_instance *ri = NULL; 764 struct hlist_head *head, empty_rp; 765 struct hlist_node *tmp; 766 unsigned long flags, orig_ret_address = 0; 767 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 768 kprobe_opcode_t *correct_ret_addr = NULL; 769 void *frame_pointer; 770 bool skipped = false; 771 772 preempt_disable(); 773 774 /* 775 * Set a dummy kprobe for avoiding kretprobe recursion. 776 * Since kretprobe never run in kprobe handler, kprobe must not 777 * be running at this point. 778 */ 779 kcb = get_kprobe_ctlblk(); 780 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 781 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 782 783 INIT_HLIST_HEAD(&empty_rp); 784 kretprobe_hash_lock(current, &head, &flags); 785 /* fixup registers */ 786 regs->cs = __KERNEL_CS; 787 #ifdef CONFIG_X86_32 788 regs->cs |= get_kernel_rpl(); 789 regs->gs = 0; 790 #endif 791 /* We use pt_regs->sp for return address holder. */ 792 frame_pointer = ®s->sp; 793 regs->ip = trampoline_address; 794 regs->orig_ax = ~0UL; 795 796 /* 797 * It is possible to have multiple instances associated with a given 798 * task either because multiple functions in the call path have 799 * return probes installed on them, and/or more than one 800 * return probe was registered for a target function. 801 * 802 * We can handle this because: 803 * - instances are always pushed into the head of the list 804 * - when multiple return probes are registered for the same 805 * function, the (chronologically) first instance's ret_addr 806 * will be the real return address, and all the rest will 807 * point to kretprobe_trampoline. 808 */ 809 hlist_for_each_entry(ri, head, hlist) { 810 if (ri->task != current) 811 /* another task is sharing our hash bucket */ 812 continue; 813 /* 814 * Return probes must be pushed on this hash list correct 815 * order (same as return order) so that it can be popped 816 * correctly. However, if we find it is pushed it incorrect 817 * order, this means we find a function which should not be 818 * probed, because the wrong order entry is pushed on the 819 * path of processing other kretprobe itself. 820 */ 821 if (ri->fp != frame_pointer) { 822 if (!skipped) 823 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 824 skipped = true; 825 continue; 826 } 827 828 orig_ret_address = (unsigned long)ri->ret_addr; 829 if (skipped) 830 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 831 ri->rp->kp.addr); 832 833 if (orig_ret_address != trampoline_address) 834 /* 835 * This is the real return address. Any other 836 * instances associated with this task are for 837 * other calls deeper on the call stack 838 */ 839 break; 840 } 841 842 kretprobe_assert(ri, orig_ret_address, trampoline_address); 843 844 correct_ret_addr = ri->ret_addr; 845 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 846 if (ri->task != current) 847 /* another task is sharing our hash bucket */ 848 continue; 849 if (ri->fp != frame_pointer) 850 continue; 851 852 orig_ret_address = (unsigned long)ri->ret_addr; 853 if (ri->rp && ri->rp->handler) { 854 __this_cpu_write(current_kprobe, &ri->rp->kp); 855 ri->ret_addr = correct_ret_addr; 856 ri->rp->handler(ri, regs); 857 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 858 } 859 860 recycle_rp_inst(ri, &empty_rp); 861 862 if (orig_ret_address != trampoline_address) 863 /* 864 * This is the real return address. Any other 865 * instances associated with this task are for 866 * other calls deeper on the call stack 867 */ 868 break; 869 } 870 871 kretprobe_hash_unlock(current, &flags); 872 873 __this_cpu_write(current_kprobe, NULL); 874 preempt_enable(); 875 876 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 877 hlist_del(&ri->hlist); 878 kfree(ri); 879 } 880 return (void *)orig_ret_address; 881 } 882 NOKPROBE_SYMBOL(trampoline_handler); 883 884 /* 885 * Called after single-stepping. p->addr is the address of the 886 * instruction whose first byte has been replaced by the "int 3" 887 * instruction. To avoid the SMP problems that can occur when we 888 * temporarily put back the original opcode to single-step, we 889 * single-stepped a copy of the instruction. The address of this 890 * copy is p->ainsn.insn. 891 * 892 * This function prepares to return from the post-single-step 893 * interrupt. We have to fix up the stack as follows: 894 * 895 * 0) Except in the case of absolute or indirect jump or call instructions, 896 * the new ip is relative to the copied instruction. We need to make 897 * it relative to the original instruction. 898 * 899 * 1) If the single-stepped instruction was pushfl, then the TF and IF 900 * flags are set in the just-pushed flags, and may need to be cleared. 901 * 902 * 2) If the single-stepped instruction was a call, the return address 903 * that is atop the stack is the address following the copied instruction. 904 * We need to make it the address following the original instruction. 905 * 906 * If this is the first time we've single-stepped the instruction at 907 * this probepoint, and the instruction is boostable, boost it: add a 908 * jump instruction after the copied instruction, that jumps to the next 909 * instruction after the probepoint. 910 */ 911 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 912 struct kprobe_ctlblk *kcb) 913 { 914 unsigned long *tos = stack_addr(regs); 915 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 916 unsigned long orig_ip = (unsigned long)p->addr; 917 kprobe_opcode_t *insn = p->ainsn.insn; 918 919 /* Skip prefixes */ 920 insn = skip_prefixes(insn); 921 922 regs->flags &= ~X86_EFLAGS_TF; 923 switch (*insn) { 924 case 0x9c: /* pushfl */ 925 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 926 *tos |= kcb->kprobe_old_flags; 927 break; 928 case 0xc2: /* iret/ret/lret */ 929 case 0xc3: 930 case 0xca: 931 case 0xcb: 932 case 0xcf: 933 case 0xea: /* jmp absolute -- ip is correct */ 934 /* ip is already adjusted, no more changes required */ 935 p->ainsn.boostable = true; 936 goto no_change; 937 case 0xe8: /* call relative - Fix return addr */ 938 *tos = orig_ip + (*tos - copy_ip); 939 break; 940 #ifdef CONFIG_X86_32 941 case 0x9a: /* call absolute -- same as call absolute, indirect */ 942 *tos = orig_ip + (*tos - copy_ip); 943 goto no_change; 944 #endif 945 case 0xff: 946 if ((insn[1] & 0x30) == 0x10) { 947 /* 948 * call absolute, indirect 949 * Fix return addr; ip is correct. 950 * But this is not boostable 951 */ 952 *tos = orig_ip + (*tos - copy_ip); 953 goto no_change; 954 } else if (((insn[1] & 0x31) == 0x20) || 955 ((insn[1] & 0x31) == 0x21)) { 956 /* 957 * jmp near and far, absolute indirect 958 * ip is correct. And this is boostable 959 */ 960 p->ainsn.boostable = true; 961 goto no_change; 962 } 963 default: 964 break; 965 } 966 967 regs->ip += orig_ip - copy_ip; 968 969 no_change: 970 restore_btf(); 971 } 972 NOKPROBE_SYMBOL(resume_execution); 973 974 /* 975 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 976 * remain disabled throughout this function. 977 */ 978 int kprobe_debug_handler(struct pt_regs *regs) 979 { 980 struct kprobe *cur = kprobe_running(); 981 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 982 983 if (!cur) 984 return 0; 985 986 resume_execution(cur, regs, kcb); 987 regs->flags |= kcb->kprobe_saved_flags; 988 989 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 990 kcb->kprobe_status = KPROBE_HIT_SSDONE; 991 cur->post_handler(cur, regs, 0); 992 } 993 994 /* Restore back the original saved kprobes variables and continue. */ 995 if (kcb->kprobe_status == KPROBE_REENTER) { 996 restore_previous_kprobe(kcb); 997 goto out; 998 } 999 reset_current_kprobe(); 1000 out: 1001 /* 1002 * if somebody else is singlestepping across a probe point, flags 1003 * will have TF set, in which case, continue the remaining processing 1004 * of do_debug, as if this is not a probe hit. 1005 */ 1006 if (regs->flags & X86_EFLAGS_TF) 1007 return 0; 1008 1009 return 1; 1010 } 1011 NOKPROBE_SYMBOL(kprobe_debug_handler); 1012 1013 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1014 { 1015 struct kprobe *cur = kprobe_running(); 1016 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1017 1018 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1019 /* This must happen on single-stepping */ 1020 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1021 kcb->kprobe_status != KPROBE_REENTER); 1022 /* 1023 * We are here because the instruction being single 1024 * stepped caused a page fault. We reset the current 1025 * kprobe and the ip points back to the probe address 1026 * and allow the page fault handler to continue as a 1027 * normal page fault. 1028 */ 1029 regs->ip = (unsigned long)cur->addr; 1030 /* 1031 * Trap flag (TF) has been set here because this fault 1032 * happened where the single stepping will be done. 1033 * So clear it by resetting the current kprobe: 1034 */ 1035 regs->flags &= ~X86_EFLAGS_TF; 1036 1037 /* 1038 * If the TF flag was set before the kprobe hit, 1039 * don't touch it: 1040 */ 1041 regs->flags |= kcb->kprobe_old_flags; 1042 1043 if (kcb->kprobe_status == KPROBE_REENTER) 1044 restore_previous_kprobe(kcb); 1045 else 1046 reset_current_kprobe(); 1047 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1048 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1049 /* 1050 * We increment the nmissed count for accounting, 1051 * we can also use npre/npostfault count for accounting 1052 * these specific fault cases. 1053 */ 1054 kprobes_inc_nmissed_count(cur); 1055 1056 /* 1057 * We come here because instructions in the pre/post 1058 * handler caused the page_fault, this could happen 1059 * if handler tries to access user space by 1060 * copy_from_user(), get_user() etc. Let the 1061 * user-specified handler try to fix it first. 1062 */ 1063 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1064 return 1; 1065 } 1066 1067 return 0; 1068 } 1069 NOKPROBE_SYMBOL(kprobe_fault_handler); 1070 1071 int __init arch_populate_kprobe_blacklist(void) 1072 { 1073 int ret; 1074 1075 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 1076 (unsigned long)__irqentry_text_end); 1077 if (ret) 1078 return ret; 1079 1080 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1081 (unsigned long)__entry_text_end); 1082 } 1083 1084 int __init arch_init_kprobes(void) 1085 { 1086 return 0; 1087 } 1088 1089 int arch_trampoline_kprobe(struct kprobe *p) 1090 { 1091 return 0; 1092 } 1093