xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 6f69e2a3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/extable.h>
37 #include <linux/kdebug.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ftrace.h>
40 #include <linux/frame.h>
41 #include <linux/kasan.h>
42 #include <linux/moduleloader.h>
43 
44 #include <asm/text-patching.h>
45 #include <asm/cacheflush.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <linux/uaccess.h>
49 #include <asm/alternative.h>
50 #include <asm/insn.h>
51 #include <asm/debugreg.h>
52 #include <asm/set_memory.h>
53 
54 #include "common.h"
55 
56 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
57 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
58 
59 #define stack_addr(regs) ((unsigned long *)regs->sp)
60 
61 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
62 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
63 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
64 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
65 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
66 	 << (row % 32))
67 	/*
68 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 	 * Groups, and some special opcodes can not boost.
70 	 * This is non-const and volatile to keep gcc from statically
71 	 * optimizing it out, as variable_test_bit makes gcc think only
72 	 * *(unsigned long*) is used.
73 	 */
74 static volatile u32 twobyte_is_boostable[256 / 32] = {
75 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
76 	/*      ----------------------------------------------          */
77 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
78 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
79 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
80 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
81 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
82 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
83 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
84 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
85 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
86 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
87 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
88 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
89 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
90 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
91 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
92 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
93 	/*      -----------------------------------------------         */
94 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
95 };
96 #undef W
97 
98 struct kretprobe_blackpoint kretprobe_blacklist[] = {
99 	{"__switch_to", }, /* This function switches only current task, but
100 			      doesn't switch kernel stack.*/
101 	{NULL, NULL}	/* Terminator */
102 };
103 
104 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
105 
106 static nokprobe_inline void
107 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
108 {
109 	struct __arch_relative_insn {
110 		u8 op;
111 		s32 raddr;
112 	} __packed *insn;
113 
114 	insn = (struct __arch_relative_insn *)dest;
115 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
116 	insn->op = op;
117 }
118 
119 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
120 void synthesize_reljump(void *dest, void *from, void *to)
121 {
122 	__synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
123 }
124 NOKPROBE_SYMBOL(synthesize_reljump);
125 
126 /* Insert a call instruction at address 'from', which calls address 'to'.*/
127 void synthesize_relcall(void *dest, void *from, void *to)
128 {
129 	__synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
130 }
131 NOKPROBE_SYMBOL(synthesize_relcall);
132 
133 /*
134  * Skip the prefixes of the instruction.
135  */
136 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
137 {
138 	insn_attr_t attr;
139 
140 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
141 	while (inat_is_legacy_prefix(attr)) {
142 		insn++;
143 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
144 	}
145 #ifdef CONFIG_X86_64
146 	if (inat_is_rex_prefix(attr))
147 		insn++;
148 #endif
149 	return insn;
150 }
151 NOKPROBE_SYMBOL(skip_prefixes);
152 
153 /*
154  * Returns non-zero if INSN is boostable.
155  * RIP relative instructions are adjusted at copying time in 64 bits mode
156  */
157 int can_boost(struct insn *insn, void *addr)
158 {
159 	kprobe_opcode_t opcode;
160 
161 	if (search_exception_tables((unsigned long)addr))
162 		return 0;	/* Page fault may occur on this address. */
163 
164 	/* 2nd-byte opcode */
165 	if (insn->opcode.nbytes == 2)
166 		return test_bit(insn->opcode.bytes[1],
167 				(unsigned long *)twobyte_is_boostable);
168 
169 	if (insn->opcode.nbytes != 1)
170 		return 0;
171 
172 	/* Can't boost Address-size override prefix */
173 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
174 		return 0;
175 
176 	opcode = insn->opcode.bytes[0];
177 
178 	switch (opcode & 0xf0) {
179 	case 0x60:
180 		/* can't boost "bound" */
181 		return (opcode != 0x62);
182 	case 0x70:
183 		return 0; /* can't boost conditional jump */
184 	case 0x90:
185 		return opcode != 0x9a;	/* can't boost call far */
186 	case 0xc0:
187 		/* can't boost software-interruptions */
188 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
189 	case 0xd0:
190 		/* can boost AA* and XLAT */
191 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
192 	case 0xe0:
193 		/* can boost in/out and absolute jmps */
194 		return ((opcode & 0x04) || opcode == 0xea);
195 	case 0xf0:
196 		/* clear and set flags are boostable */
197 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 	default:
199 		/* CS override prefix and call are not boostable */
200 		return (opcode != 0x2e && opcode != 0x9a);
201 	}
202 }
203 
204 static unsigned long
205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
206 {
207 	struct kprobe *kp;
208 	unsigned long faddr;
209 
210 	kp = get_kprobe((void *)addr);
211 	faddr = ftrace_location(addr);
212 	/*
213 	 * Addresses inside the ftrace location are refused by
214 	 * arch_check_ftrace_location(). Something went terribly wrong
215 	 * if such an address is checked here.
216 	 */
217 	if (WARN_ON(faddr && faddr != addr))
218 		return 0UL;
219 	/*
220 	 * Use the current code if it is not modified by Kprobe
221 	 * and it cannot be modified by ftrace.
222 	 */
223 	if (!kp && !faddr)
224 		return addr;
225 
226 	/*
227 	 * Basically, kp->ainsn.insn has an original instruction.
228 	 * However, RIP-relative instruction can not do single-stepping
229 	 * at different place, __copy_instruction() tweaks the displacement of
230 	 * that instruction. In that case, we can't recover the instruction
231 	 * from the kp->ainsn.insn.
232 	 *
233 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
234 	 * of the first byte of the probed instruction, which is overwritten
235 	 * by int3. And the instruction at kp->addr is not modified by kprobes
236 	 * except for the first byte, we can recover the original instruction
237 	 * from it and kp->opcode.
238 	 *
239 	 * In case of Kprobes using ftrace, we do not have a copy of
240 	 * the original instruction. In fact, the ftrace location might
241 	 * be modified at anytime and even could be in an inconsistent state.
242 	 * Fortunately, we know that the original code is the ideal 5-byte
243 	 * long NOP.
244 	 */
245 	if (probe_kernel_read(buf, (void *)addr,
246 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
247 		return 0UL;
248 
249 	if (faddr)
250 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
251 	else
252 		buf[0] = kp->opcode;
253 	return (unsigned long)buf;
254 }
255 
256 /*
257  * Recover the probed instruction at addr for further analysis.
258  * Caller must lock kprobes by kprobe_mutex, or disable preemption
259  * for preventing to release referencing kprobes.
260  * Returns zero if the instruction can not get recovered (or access failed).
261  */
262 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
263 {
264 	unsigned long __addr;
265 
266 	__addr = __recover_optprobed_insn(buf, addr);
267 	if (__addr != addr)
268 		return __addr;
269 
270 	return __recover_probed_insn(buf, addr);
271 }
272 
273 /* Check if paddr is at an instruction boundary */
274 static int can_probe(unsigned long paddr)
275 {
276 	unsigned long addr, __addr, offset = 0;
277 	struct insn insn;
278 	kprobe_opcode_t buf[MAX_INSN_SIZE];
279 
280 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
281 		return 0;
282 
283 	/* Decode instructions */
284 	addr = paddr - offset;
285 	while (addr < paddr) {
286 		/*
287 		 * Check if the instruction has been modified by another
288 		 * kprobe, in which case we replace the breakpoint by the
289 		 * original instruction in our buffer.
290 		 * Also, jump optimization will change the breakpoint to
291 		 * relative-jump. Since the relative-jump itself is
292 		 * normally used, we just go through if there is no kprobe.
293 		 */
294 		__addr = recover_probed_instruction(buf, addr);
295 		if (!__addr)
296 			return 0;
297 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
298 		insn_get_length(&insn);
299 
300 		/*
301 		 * Another debugging subsystem might insert this breakpoint.
302 		 * In that case, we can't recover it.
303 		 */
304 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
305 			return 0;
306 		addr += insn.length;
307 	}
308 
309 	return (addr == paddr);
310 }
311 
312 /*
313  * Returns non-zero if opcode modifies the interrupt flag.
314  */
315 static int is_IF_modifier(kprobe_opcode_t *insn)
316 {
317 	/* Skip prefixes */
318 	insn = skip_prefixes(insn);
319 
320 	switch (*insn) {
321 	case 0xfa:		/* cli */
322 	case 0xfb:		/* sti */
323 	case 0xcf:		/* iret/iretd */
324 	case 0x9d:		/* popf/popfd */
325 		return 1;
326 	}
327 
328 	return 0;
329 }
330 
331 /*
332  * Copy an instruction with recovering modified instruction by kprobes
333  * and adjust the displacement if the instruction uses the %rip-relative
334  * addressing mode. Note that since @real will be the final place of copied
335  * instruction, displacement must be adjust by @real, not @dest.
336  * This returns the length of copied instruction, or 0 if it has an error.
337  */
338 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
339 {
340 	kprobe_opcode_t buf[MAX_INSN_SIZE];
341 	unsigned long recovered_insn =
342 		recover_probed_instruction(buf, (unsigned long)src);
343 
344 	if (!recovered_insn || !insn)
345 		return 0;
346 
347 	/* This can access kernel text if given address is not recovered */
348 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
349 		return 0;
350 
351 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
352 	insn_get_length(insn);
353 
354 	/* We can not probe force emulate prefixed instruction */
355 	if (insn_has_emulate_prefix(insn))
356 		return 0;
357 
358 	/* Another subsystem puts a breakpoint, failed to recover */
359 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
360 		return 0;
361 
362 	/* We should not singlestep on the exception masking instructions */
363 	if (insn_masking_exception(insn))
364 		return 0;
365 
366 #ifdef CONFIG_X86_64
367 	/* Only x86_64 has RIP relative instructions */
368 	if (insn_rip_relative(insn)) {
369 		s64 newdisp;
370 		u8 *disp;
371 		/*
372 		 * The copied instruction uses the %rip-relative addressing
373 		 * mode.  Adjust the displacement for the difference between
374 		 * the original location of this instruction and the location
375 		 * of the copy that will actually be run.  The tricky bit here
376 		 * is making sure that the sign extension happens correctly in
377 		 * this calculation, since we need a signed 32-bit result to
378 		 * be sign-extended to 64 bits when it's added to the %rip
379 		 * value and yield the same 64-bit result that the sign-
380 		 * extension of the original signed 32-bit displacement would
381 		 * have given.
382 		 */
383 		newdisp = (u8 *) src + (s64) insn->displacement.value
384 			  - (u8 *) real;
385 		if ((s64) (s32) newdisp != newdisp) {
386 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
387 			return 0;
388 		}
389 		disp = (u8 *) dest + insn_offset_displacement(insn);
390 		*(s32 *) disp = (s32) newdisp;
391 	}
392 #endif
393 	return insn->length;
394 }
395 
396 /* Prepare reljump right after instruction to boost */
397 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
398 			  struct insn *insn)
399 {
400 	int len = insn->length;
401 
402 	if (can_boost(insn, p->addr) &&
403 	    MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
404 		/*
405 		 * These instructions can be executed directly if it
406 		 * jumps back to correct address.
407 		 */
408 		synthesize_reljump(buf + len, p->ainsn.insn + len,
409 				   p->addr + insn->length);
410 		len += RELATIVEJUMP_SIZE;
411 		p->ainsn.boostable = true;
412 	} else {
413 		p->ainsn.boostable = false;
414 	}
415 
416 	return len;
417 }
418 
419 /* Make page to RO mode when allocate it */
420 void *alloc_insn_page(void)
421 {
422 	void *page;
423 
424 	page = module_alloc(PAGE_SIZE);
425 	if (!page)
426 		return NULL;
427 
428 	set_vm_flush_reset_perms(page);
429 	/*
430 	 * First make the page read-only, and only then make it executable to
431 	 * prevent it from being W+X in between.
432 	 */
433 	set_memory_ro((unsigned long)page, 1);
434 
435 	/*
436 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
437 	 * that the page was not maliciously altered and it is still zeroed.
438 	 */
439 	set_memory_x((unsigned long)page, 1);
440 
441 	return page;
442 }
443 
444 /* Recover page to RW mode before releasing it */
445 void free_insn_page(void *page)
446 {
447 	module_memfree(page);
448 }
449 
450 static int arch_copy_kprobe(struct kprobe *p)
451 {
452 	struct insn insn;
453 	kprobe_opcode_t buf[MAX_INSN_SIZE];
454 	int len;
455 
456 	/* Copy an instruction with recovering if other optprobe modifies it.*/
457 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
458 	if (!len)
459 		return -EINVAL;
460 
461 	/*
462 	 * __copy_instruction can modify the displacement of the instruction,
463 	 * but it doesn't affect boostable check.
464 	 */
465 	len = prepare_boost(buf, p, &insn);
466 
467 	/* Check whether the instruction modifies Interrupt Flag or not */
468 	p->ainsn.if_modifier = is_IF_modifier(buf);
469 
470 	/* Also, displacement change doesn't affect the first byte */
471 	p->opcode = buf[0];
472 
473 	/* OK, write back the instruction(s) into ROX insn buffer */
474 	text_poke(p->ainsn.insn, buf, len);
475 
476 	return 0;
477 }
478 
479 int arch_prepare_kprobe(struct kprobe *p)
480 {
481 	int ret;
482 
483 	if (alternatives_text_reserved(p->addr, p->addr))
484 		return -EINVAL;
485 
486 	if (!can_probe((unsigned long)p->addr))
487 		return -EILSEQ;
488 	/* insn: must be on special executable page on x86. */
489 	p->ainsn.insn = get_insn_slot();
490 	if (!p->ainsn.insn)
491 		return -ENOMEM;
492 
493 	ret = arch_copy_kprobe(p);
494 	if (ret) {
495 		free_insn_slot(p->ainsn.insn, 0);
496 		p->ainsn.insn = NULL;
497 	}
498 
499 	return ret;
500 }
501 
502 void arch_arm_kprobe(struct kprobe *p)
503 {
504 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
505 }
506 
507 void arch_disarm_kprobe(struct kprobe *p)
508 {
509 	text_poke(p->addr, &p->opcode, 1);
510 }
511 
512 void arch_remove_kprobe(struct kprobe *p)
513 {
514 	if (p->ainsn.insn) {
515 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
516 		p->ainsn.insn = NULL;
517 	}
518 }
519 
520 static nokprobe_inline void
521 save_previous_kprobe(struct kprobe_ctlblk *kcb)
522 {
523 	kcb->prev_kprobe.kp = kprobe_running();
524 	kcb->prev_kprobe.status = kcb->kprobe_status;
525 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
526 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
527 }
528 
529 static nokprobe_inline void
530 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
531 {
532 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
533 	kcb->kprobe_status = kcb->prev_kprobe.status;
534 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
535 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
536 }
537 
538 static nokprobe_inline void
539 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
540 		   struct kprobe_ctlblk *kcb)
541 {
542 	__this_cpu_write(current_kprobe, p);
543 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
544 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
545 	if (p->ainsn.if_modifier)
546 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
547 }
548 
549 static nokprobe_inline void clear_btf(void)
550 {
551 	if (test_thread_flag(TIF_BLOCKSTEP)) {
552 		unsigned long debugctl = get_debugctlmsr();
553 
554 		debugctl &= ~DEBUGCTLMSR_BTF;
555 		update_debugctlmsr(debugctl);
556 	}
557 }
558 
559 static nokprobe_inline void restore_btf(void)
560 {
561 	if (test_thread_flag(TIF_BLOCKSTEP)) {
562 		unsigned long debugctl = get_debugctlmsr();
563 
564 		debugctl |= DEBUGCTLMSR_BTF;
565 		update_debugctlmsr(debugctl);
566 	}
567 }
568 
569 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
570 {
571 	unsigned long *sara = stack_addr(regs);
572 
573 	ri->ret_addr = (kprobe_opcode_t *) *sara;
574 	ri->fp = sara;
575 
576 	/* Replace the return addr with trampoline addr */
577 	*sara = (unsigned long) &kretprobe_trampoline;
578 }
579 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
580 
581 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
582 			     struct kprobe_ctlblk *kcb, int reenter)
583 {
584 	if (setup_detour_execution(p, regs, reenter))
585 		return;
586 
587 #if !defined(CONFIG_PREEMPTION)
588 	if (p->ainsn.boostable && !p->post_handler) {
589 		/* Boost up -- we can execute copied instructions directly */
590 		if (!reenter)
591 			reset_current_kprobe();
592 		/*
593 		 * Reentering boosted probe doesn't reset current_kprobe,
594 		 * nor set current_kprobe, because it doesn't use single
595 		 * stepping.
596 		 */
597 		regs->ip = (unsigned long)p->ainsn.insn;
598 		return;
599 	}
600 #endif
601 	if (reenter) {
602 		save_previous_kprobe(kcb);
603 		set_current_kprobe(p, regs, kcb);
604 		kcb->kprobe_status = KPROBE_REENTER;
605 	} else
606 		kcb->kprobe_status = KPROBE_HIT_SS;
607 	/* Prepare real single stepping */
608 	clear_btf();
609 	regs->flags |= X86_EFLAGS_TF;
610 	regs->flags &= ~X86_EFLAGS_IF;
611 	/* single step inline if the instruction is an int3 */
612 	if (p->opcode == BREAKPOINT_INSTRUCTION)
613 		regs->ip = (unsigned long)p->addr;
614 	else
615 		regs->ip = (unsigned long)p->ainsn.insn;
616 }
617 NOKPROBE_SYMBOL(setup_singlestep);
618 
619 /*
620  * We have reentered the kprobe_handler(), since another probe was hit while
621  * within the handler. We save the original kprobes variables and just single
622  * step on the instruction of the new probe without calling any user handlers.
623  */
624 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
625 			  struct kprobe_ctlblk *kcb)
626 {
627 	switch (kcb->kprobe_status) {
628 	case KPROBE_HIT_SSDONE:
629 	case KPROBE_HIT_ACTIVE:
630 	case KPROBE_HIT_SS:
631 		kprobes_inc_nmissed_count(p);
632 		setup_singlestep(p, regs, kcb, 1);
633 		break;
634 	case KPROBE_REENTER:
635 		/* A probe has been hit in the codepath leading up to, or just
636 		 * after, single-stepping of a probed instruction. This entire
637 		 * codepath should strictly reside in .kprobes.text section.
638 		 * Raise a BUG or we'll continue in an endless reentering loop
639 		 * and eventually a stack overflow.
640 		 */
641 		pr_err("Unrecoverable kprobe detected.\n");
642 		dump_kprobe(p);
643 		BUG();
644 	default:
645 		/* impossible cases */
646 		WARN_ON(1);
647 		return 0;
648 	}
649 
650 	return 1;
651 }
652 NOKPROBE_SYMBOL(reenter_kprobe);
653 
654 /*
655  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
656  * remain disabled throughout this function.
657  */
658 int kprobe_int3_handler(struct pt_regs *regs)
659 {
660 	kprobe_opcode_t *addr;
661 	struct kprobe *p;
662 	struct kprobe_ctlblk *kcb;
663 
664 	if (user_mode(regs))
665 		return 0;
666 
667 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
668 	/*
669 	 * We don't want to be preempted for the entire duration of kprobe
670 	 * processing. Since int3 and debug trap disables irqs and we clear
671 	 * IF while singlestepping, it must be no preemptible.
672 	 */
673 
674 	kcb = get_kprobe_ctlblk();
675 	p = get_kprobe(addr);
676 
677 	if (p) {
678 		if (kprobe_running()) {
679 			if (reenter_kprobe(p, regs, kcb))
680 				return 1;
681 		} else {
682 			set_current_kprobe(p, regs, kcb);
683 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
684 
685 			/*
686 			 * If we have no pre-handler or it returned 0, we
687 			 * continue with normal processing.  If we have a
688 			 * pre-handler and it returned non-zero, that means
689 			 * user handler setup registers to exit to another
690 			 * instruction, we must skip the single stepping.
691 			 */
692 			if (!p->pre_handler || !p->pre_handler(p, regs))
693 				setup_singlestep(p, regs, kcb, 0);
694 			else
695 				reset_current_kprobe();
696 			return 1;
697 		}
698 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
699 		/*
700 		 * The breakpoint instruction was removed right
701 		 * after we hit it.  Another cpu has removed
702 		 * either a probepoint or a debugger breakpoint
703 		 * at this address.  In either case, no further
704 		 * handling of this interrupt is appropriate.
705 		 * Back up over the (now missing) int3 and run
706 		 * the original instruction.
707 		 */
708 		regs->ip = (unsigned long)addr;
709 		return 1;
710 	} /* else: not a kprobe fault; let the kernel handle it */
711 
712 	return 0;
713 }
714 NOKPROBE_SYMBOL(kprobe_int3_handler);
715 
716 /*
717  * When a retprobed function returns, this code saves registers and
718  * calls trampoline_handler() runs, which calls the kretprobe's handler.
719  */
720 asm(
721 	".text\n"
722 	".global kretprobe_trampoline\n"
723 	".type kretprobe_trampoline, @function\n"
724 	"kretprobe_trampoline:\n"
725 	/* We don't bother saving the ss register */
726 #ifdef CONFIG_X86_64
727 	"	pushq %rsp\n"
728 	"	pushfq\n"
729 	SAVE_REGS_STRING
730 	"	movq %rsp, %rdi\n"
731 	"	call trampoline_handler\n"
732 	/* Replace saved sp with true return address. */
733 	"	movq %rax, 19*8(%rsp)\n"
734 	RESTORE_REGS_STRING
735 	"	popfq\n"
736 #else
737 	"	pushl %esp\n"
738 	"	pushfl\n"
739 	SAVE_REGS_STRING
740 	"	movl %esp, %eax\n"
741 	"	call trampoline_handler\n"
742 	/* Replace saved sp with true return address. */
743 	"	movl %eax, 15*4(%esp)\n"
744 	RESTORE_REGS_STRING
745 	"	popfl\n"
746 #endif
747 	"	ret\n"
748 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
749 );
750 NOKPROBE_SYMBOL(kretprobe_trampoline);
751 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
752 
753 static struct kprobe kretprobe_kprobe = {
754 	.addr = (void *)kretprobe_trampoline,
755 };
756 
757 /*
758  * Called from kretprobe_trampoline
759  */
760 __used __visible void *trampoline_handler(struct pt_regs *regs)
761 {
762 	struct kprobe_ctlblk *kcb;
763 	struct kretprobe_instance *ri = NULL;
764 	struct hlist_head *head, empty_rp;
765 	struct hlist_node *tmp;
766 	unsigned long flags, orig_ret_address = 0;
767 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
768 	kprobe_opcode_t *correct_ret_addr = NULL;
769 	void *frame_pointer;
770 	bool skipped = false;
771 
772 	preempt_disable();
773 
774 	/*
775 	 * Set a dummy kprobe for avoiding kretprobe recursion.
776 	 * Since kretprobe never run in kprobe handler, kprobe must not
777 	 * be running at this point.
778 	 */
779 	kcb = get_kprobe_ctlblk();
780 	__this_cpu_write(current_kprobe, &kretprobe_kprobe);
781 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
782 
783 	INIT_HLIST_HEAD(&empty_rp);
784 	kretprobe_hash_lock(current, &head, &flags);
785 	/* fixup registers */
786 	regs->cs = __KERNEL_CS;
787 #ifdef CONFIG_X86_32
788 	regs->cs |= get_kernel_rpl();
789 	regs->gs = 0;
790 #endif
791 	/* We use pt_regs->sp for return address holder. */
792 	frame_pointer = &regs->sp;
793 	regs->ip = trampoline_address;
794 	regs->orig_ax = ~0UL;
795 
796 	/*
797 	 * It is possible to have multiple instances associated with a given
798 	 * task either because multiple functions in the call path have
799 	 * return probes installed on them, and/or more than one
800 	 * return probe was registered for a target function.
801 	 *
802 	 * We can handle this because:
803 	 *     - instances are always pushed into the head of the list
804 	 *     - when multiple return probes are registered for the same
805 	 *	 function, the (chronologically) first instance's ret_addr
806 	 *	 will be the real return address, and all the rest will
807 	 *	 point to kretprobe_trampoline.
808 	 */
809 	hlist_for_each_entry(ri, head, hlist) {
810 		if (ri->task != current)
811 			/* another task is sharing our hash bucket */
812 			continue;
813 		/*
814 		 * Return probes must be pushed on this hash list correct
815 		 * order (same as return order) so that it can be popped
816 		 * correctly. However, if we find it is pushed it incorrect
817 		 * order, this means we find a function which should not be
818 		 * probed, because the wrong order entry is pushed on the
819 		 * path of processing other kretprobe itself.
820 		 */
821 		if (ri->fp != frame_pointer) {
822 			if (!skipped)
823 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
824 			skipped = true;
825 			continue;
826 		}
827 
828 		orig_ret_address = (unsigned long)ri->ret_addr;
829 		if (skipped)
830 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
831 				ri->rp->kp.addr);
832 
833 		if (orig_ret_address != trampoline_address)
834 			/*
835 			 * This is the real return address. Any other
836 			 * instances associated with this task are for
837 			 * other calls deeper on the call stack
838 			 */
839 			break;
840 	}
841 
842 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
843 
844 	correct_ret_addr = ri->ret_addr;
845 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
846 		if (ri->task != current)
847 			/* another task is sharing our hash bucket */
848 			continue;
849 		if (ri->fp != frame_pointer)
850 			continue;
851 
852 		orig_ret_address = (unsigned long)ri->ret_addr;
853 		if (ri->rp && ri->rp->handler) {
854 			__this_cpu_write(current_kprobe, &ri->rp->kp);
855 			ri->ret_addr = correct_ret_addr;
856 			ri->rp->handler(ri, regs);
857 			__this_cpu_write(current_kprobe, &kretprobe_kprobe);
858 		}
859 
860 		recycle_rp_inst(ri, &empty_rp);
861 
862 		if (orig_ret_address != trampoline_address)
863 			/*
864 			 * This is the real return address. Any other
865 			 * instances associated with this task are for
866 			 * other calls deeper on the call stack
867 			 */
868 			break;
869 	}
870 
871 	kretprobe_hash_unlock(current, &flags);
872 
873 	__this_cpu_write(current_kprobe, NULL);
874 	preempt_enable();
875 
876 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
877 		hlist_del(&ri->hlist);
878 		kfree(ri);
879 	}
880 	return (void *)orig_ret_address;
881 }
882 NOKPROBE_SYMBOL(trampoline_handler);
883 
884 /*
885  * Called after single-stepping.  p->addr is the address of the
886  * instruction whose first byte has been replaced by the "int 3"
887  * instruction.  To avoid the SMP problems that can occur when we
888  * temporarily put back the original opcode to single-step, we
889  * single-stepped a copy of the instruction.  The address of this
890  * copy is p->ainsn.insn.
891  *
892  * This function prepares to return from the post-single-step
893  * interrupt.  We have to fix up the stack as follows:
894  *
895  * 0) Except in the case of absolute or indirect jump or call instructions,
896  * the new ip is relative to the copied instruction.  We need to make
897  * it relative to the original instruction.
898  *
899  * 1) If the single-stepped instruction was pushfl, then the TF and IF
900  * flags are set in the just-pushed flags, and may need to be cleared.
901  *
902  * 2) If the single-stepped instruction was a call, the return address
903  * that is atop the stack is the address following the copied instruction.
904  * We need to make it the address following the original instruction.
905  *
906  * If this is the first time we've single-stepped the instruction at
907  * this probepoint, and the instruction is boostable, boost it: add a
908  * jump instruction after the copied instruction, that jumps to the next
909  * instruction after the probepoint.
910  */
911 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
912 			     struct kprobe_ctlblk *kcb)
913 {
914 	unsigned long *tos = stack_addr(regs);
915 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
916 	unsigned long orig_ip = (unsigned long)p->addr;
917 	kprobe_opcode_t *insn = p->ainsn.insn;
918 
919 	/* Skip prefixes */
920 	insn = skip_prefixes(insn);
921 
922 	regs->flags &= ~X86_EFLAGS_TF;
923 	switch (*insn) {
924 	case 0x9c:	/* pushfl */
925 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
926 		*tos |= kcb->kprobe_old_flags;
927 		break;
928 	case 0xc2:	/* iret/ret/lret */
929 	case 0xc3:
930 	case 0xca:
931 	case 0xcb:
932 	case 0xcf:
933 	case 0xea:	/* jmp absolute -- ip is correct */
934 		/* ip is already adjusted, no more changes required */
935 		p->ainsn.boostable = true;
936 		goto no_change;
937 	case 0xe8:	/* call relative - Fix return addr */
938 		*tos = orig_ip + (*tos - copy_ip);
939 		break;
940 #ifdef CONFIG_X86_32
941 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
942 		*tos = orig_ip + (*tos - copy_ip);
943 		goto no_change;
944 #endif
945 	case 0xff:
946 		if ((insn[1] & 0x30) == 0x10) {
947 			/*
948 			 * call absolute, indirect
949 			 * Fix return addr; ip is correct.
950 			 * But this is not boostable
951 			 */
952 			*tos = orig_ip + (*tos - copy_ip);
953 			goto no_change;
954 		} else if (((insn[1] & 0x31) == 0x20) ||
955 			   ((insn[1] & 0x31) == 0x21)) {
956 			/*
957 			 * jmp near and far, absolute indirect
958 			 * ip is correct. And this is boostable
959 			 */
960 			p->ainsn.boostable = true;
961 			goto no_change;
962 		}
963 	default:
964 		break;
965 	}
966 
967 	regs->ip += orig_ip - copy_ip;
968 
969 no_change:
970 	restore_btf();
971 }
972 NOKPROBE_SYMBOL(resume_execution);
973 
974 /*
975  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
976  * remain disabled throughout this function.
977  */
978 int kprobe_debug_handler(struct pt_regs *regs)
979 {
980 	struct kprobe *cur = kprobe_running();
981 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
982 
983 	if (!cur)
984 		return 0;
985 
986 	resume_execution(cur, regs, kcb);
987 	regs->flags |= kcb->kprobe_saved_flags;
988 
989 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
990 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
991 		cur->post_handler(cur, regs, 0);
992 	}
993 
994 	/* Restore back the original saved kprobes variables and continue. */
995 	if (kcb->kprobe_status == KPROBE_REENTER) {
996 		restore_previous_kprobe(kcb);
997 		goto out;
998 	}
999 	reset_current_kprobe();
1000 out:
1001 	/*
1002 	 * if somebody else is singlestepping across a probe point, flags
1003 	 * will have TF set, in which case, continue the remaining processing
1004 	 * of do_debug, as if this is not a probe hit.
1005 	 */
1006 	if (regs->flags & X86_EFLAGS_TF)
1007 		return 0;
1008 
1009 	return 1;
1010 }
1011 NOKPROBE_SYMBOL(kprobe_debug_handler);
1012 
1013 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1014 {
1015 	struct kprobe *cur = kprobe_running();
1016 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1017 
1018 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1019 		/* This must happen on single-stepping */
1020 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1021 			kcb->kprobe_status != KPROBE_REENTER);
1022 		/*
1023 		 * We are here because the instruction being single
1024 		 * stepped caused a page fault. We reset the current
1025 		 * kprobe and the ip points back to the probe address
1026 		 * and allow the page fault handler to continue as a
1027 		 * normal page fault.
1028 		 */
1029 		regs->ip = (unsigned long)cur->addr;
1030 		/*
1031 		 * Trap flag (TF) has been set here because this fault
1032 		 * happened where the single stepping will be done.
1033 		 * So clear it by resetting the current kprobe:
1034 		 */
1035 		regs->flags &= ~X86_EFLAGS_TF;
1036 
1037 		/*
1038 		 * If the TF flag was set before the kprobe hit,
1039 		 * don't touch it:
1040 		 */
1041 		regs->flags |= kcb->kprobe_old_flags;
1042 
1043 		if (kcb->kprobe_status == KPROBE_REENTER)
1044 			restore_previous_kprobe(kcb);
1045 		else
1046 			reset_current_kprobe();
1047 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1048 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1049 		/*
1050 		 * We increment the nmissed count for accounting,
1051 		 * we can also use npre/npostfault count for accounting
1052 		 * these specific fault cases.
1053 		 */
1054 		kprobes_inc_nmissed_count(cur);
1055 
1056 		/*
1057 		 * We come here because instructions in the pre/post
1058 		 * handler caused the page_fault, this could happen
1059 		 * if handler tries to access user space by
1060 		 * copy_from_user(), get_user() etc. Let the
1061 		 * user-specified handler try to fix it first.
1062 		 */
1063 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1064 			return 1;
1065 	}
1066 
1067 	return 0;
1068 }
1069 NOKPROBE_SYMBOL(kprobe_fault_handler);
1070 
1071 int __init arch_populate_kprobe_blacklist(void)
1072 {
1073 	int ret;
1074 
1075 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1076 					 (unsigned long)__irqentry_text_end);
1077 	if (ret)
1078 		return ret;
1079 
1080 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1081 					 (unsigned long)__entry_text_end);
1082 }
1083 
1084 int __init arch_init_kprobes(void)
1085 {
1086 	return 0;
1087 }
1088 
1089 int arch_trampoline_kprobe(struct kprobe *p)
1090 {
1091 	return 0;
1092 }
1093