xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 4e1a33b1)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/extable.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 #include <linux/frame.h>
53 #include <linux/kasan.h>
54 
55 #include <asm/text-patching.h>
56 #include <asm/cacheflush.h>
57 #include <asm/desc.h>
58 #include <asm/pgtable.h>
59 #include <linux/uaccess.h>
60 #include <asm/alternative.h>
61 #include <asm/insn.h>
62 #include <asm/debugreg.h>
63 
64 #include "common.h"
65 
66 void jprobe_return_end(void);
67 
68 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
69 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
70 
71 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
72 
73 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
74 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
75 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
76 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
77 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
78 	 << (row % 32))
79 	/*
80 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
81 	 * Groups, and some special opcodes can not boost.
82 	 * This is non-const and volatile to keep gcc from statically
83 	 * optimizing it out, as variable_test_bit makes gcc think only
84 	 * *(unsigned long*) is used.
85 	 */
86 static volatile u32 twobyte_is_boostable[256 / 32] = {
87 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
88 	/*      ----------------------------------------------          */
89 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
90 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
91 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
92 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
93 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
95 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
96 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
97 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
98 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
100 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
101 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
102 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
103 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
104 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
105 	/*      -----------------------------------------------         */
106 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
107 };
108 #undef W
109 
110 struct kretprobe_blackpoint kretprobe_blacklist[] = {
111 	{"__switch_to", }, /* This function switches only current task, but
112 			      doesn't switch kernel stack.*/
113 	{NULL, NULL}	/* Terminator */
114 };
115 
116 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
117 
118 static nokprobe_inline void
119 __synthesize_relative_insn(void *from, void *to, u8 op)
120 {
121 	struct __arch_relative_insn {
122 		u8 op;
123 		s32 raddr;
124 	} __packed *insn;
125 
126 	insn = (struct __arch_relative_insn *)from;
127 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
128 	insn->op = op;
129 }
130 
131 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
132 void synthesize_reljump(void *from, void *to)
133 {
134 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
135 }
136 NOKPROBE_SYMBOL(synthesize_reljump);
137 
138 /* Insert a call instruction at address 'from', which calls address 'to'.*/
139 void synthesize_relcall(void *from, void *to)
140 {
141 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
142 }
143 NOKPROBE_SYMBOL(synthesize_relcall);
144 
145 /*
146  * Skip the prefixes of the instruction.
147  */
148 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
149 {
150 	insn_attr_t attr;
151 
152 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 	while (inat_is_legacy_prefix(attr)) {
154 		insn++;
155 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
156 	}
157 #ifdef CONFIG_X86_64
158 	if (inat_is_rex_prefix(attr))
159 		insn++;
160 #endif
161 	return insn;
162 }
163 NOKPROBE_SYMBOL(skip_prefixes);
164 
165 /*
166  * Returns non-zero if opcode is boostable.
167  * RIP relative instructions are adjusted at copying time in 64 bits mode
168  */
169 int can_boost(kprobe_opcode_t *opcodes)
170 {
171 	kprobe_opcode_t opcode;
172 	kprobe_opcode_t *orig_opcodes = opcodes;
173 
174 	if (search_exception_tables((unsigned long)opcodes))
175 		return 0;	/* Page fault may occur on this address. */
176 
177 retry:
178 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
179 		return 0;
180 	opcode = *(opcodes++);
181 
182 	/* 2nd-byte opcode */
183 	if (opcode == 0x0f) {
184 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
185 			return 0;
186 		return test_bit(*opcodes,
187 				(unsigned long *)twobyte_is_boostable);
188 	}
189 
190 	switch (opcode & 0xf0) {
191 #ifdef CONFIG_X86_64
192 	case 0x40:
193 		goto retry; /* REX prefix is boostable */
194 #endif
195 	case 0x60:
196 		if (0x63 < opcode && opcode < 0x67)
197 			goto retry; /* prefixes */
198 		/* can't boost Address-size override and bound */
199 		return (opcode != 0x62 && opcode != 0x67);
200 	case 0x70:
201 		return 0; /* can't boost conditional jump */
202 	case 0xc0:
203 		/* can't boost software-interruptions */
204 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
205 	case 0xd0:
206 		/* can boost AA* and XLAT */
207 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
208 	case 0xe0:
209 		/* can boost in/out and absolute jmps */
210 		return ((opcode & 0x04) || opcode == 0xea);
211 	case 0xf0:
212 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
213 			goto retry; /* lock/rep(ne) prefix */
214 		/* clear and set flags are boostable */
215 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
216 	default:
217 		/* segment override prefixes are boostable */
218 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
219 			goto retry; /* prefixes */
220 		/* CS override prefix and call are not boostable */
221 		return (opcode != 0x2e && opcode != 0x9a);
222 	}
223 }
224 
225 static unsigned long
226 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
227 {
228 	struct kprobe *kp;
229 	unsigned long faddr;
230 
231 	kp = get_kprobe((void *)addr);
232 	faddr = ftrace_location(addr);
233 	/*
234 	 * Addresses inside the ftrace location are refused by
235 	 * arch_check_ftrace_location(). Something went terribly wrong
236 	 * if such an address is checked here.
237 	 */
238 	if (WARN_ON(faddr && faddr != addr))
239 		return 0UL;
240 	/*
241 	 * Use the current code if it is not modified by Kprobe
242 	 * and it cannot be modified by ftrace.
243 	 */
244 	if (!kp && !faddr)
245 		return addr;
246 
247 	/*
248 	 * Basically, kp->ainsn.insn has an original instruction.
249 	 * However, RIP-relative instruction can not do single-stepping
250 	 * at different place, __copy_instruction() tweaks the displacement of
251 	 * that instruction. In that case, we can't recover the instruction
252 	 * from the kp->ainsn.insn.
253 	 *
254 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
255 	 * of the first byte of the probed instruction, which is overwritten
256 	 * by int3. And the instruction at kp->addr is not modified by kprobes
257 	 * except for the first byte, we can recover the original instruction
258 	 * from it and kp->opcode.
259 	 *
260 	 * In case of Kprobes using ftrace, we do not have a copy of
261 	 * the original instruction. In fact, the ftrace location might
262 	 * be modified at anytime and even could be in an inconsistent state.
263 	 * Fortunately, we know that the original code is the ideal 5-byte
264 	 * long NOP.
265 	 */
266 	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
267 	if (faddr)
268 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
269 	else
270 		buf[0] = kp->opcode;
271 	return (unsigned long)buf;
272 }
273 
274 /*
275  * Recover the probed instruction at addr for further analysis.
276  * Caller must lock kprobes by kprobe_mutex, or disable preemption
277  * for preventing to release referencing kprobes.
278  * Returns zero if the instruction can not get recovered.
279  */
280 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
281 {
282 	unsigned long __addr;
283 
284 	__addr = __recover_optprobed_insn(buf, addr);
285 	if (__addr != addr)
286 		return __addr;
287 
288 	return __recover_probed_insn(buf, addr);
289 }
290 
291 /* Check if paddr is at an instruction boundary */
292 static int can_probe(unsigned long paddr)
293 {
294 	unsigned long addr, __addr, offset = 0;
295 	struct insn insn;
296 	kprobe_opcode_t buf[MAX_INSN_SIZE];
297 
298 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
299 		return 0;
300 
301 	/* Decode instructions */
302 	addr = paddr - offset;
303 	while (addr < paddr) {
304 		/*
305 		 * Check if the instruction has been modified by another
306 		 * kprobe, in which case we replace the breakpoint by the
307 		 * original instruction in our buffer.
308 		 * Also, jump optimization will change the breakpoint to
309 		 * relative-jump. Since the relative-jump itself is
310 		 * normally used, we just go through if there is no kprobe.
311 		 */
312 		__addr = recover_probed_instruction(buf, addr);
313 		if (!__addr)
314 			return 0;
315 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
316 		insn_get_length(&insn);
317 
318 		/*
319 		 * Another debugging subsystem might insert this breakpoint.
320 		 * In that case, we can't recover it.
321 		 */
322 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
323 			return 0;
324 		addr += insn.length;
325 	}
326 
327 	return (addr == paddr);
328 }
329 
330 /*
331  * Returns non-zero if opcode modifies the interrupt flag.
332  */
333 static int is_IF_modifier(kprobe_opcode_t *insn)
334 {
335 	/* Skip prefixes */
336 	insn = skip_prefixes(insn);
337 
338 	switch (*insn) {
339 	case 0xfa:		/* cli */
340 	case 0xfb:		/* sti */
341 	case 0xcf:		/* iret/iretd */
342 	case 0x9d:		/* popf/popfd */
343 		return 1;
344 	}
345 
346 	return 0;
347 }
348 
349 /*
350  * Copy an instruction and adjust the displacement if the instruction
351  * uses the %rip-relative addressing mode.
352  * If it does, Return the address of the 32-bit displacement word.
353  * If not, return null.
354  * Only applicable to 64-bit x86.
355  */
356 int __copy_instruction(u8 *dest, u8 *src)
357 {
358 	struct insn insn;
359 	kprobe_opcode_t buf[MAX_INSN_SIZE];
360 	int length;
361 	unsigned long recovered_insn =
362 		recover_probed_instruction(buf, (unsigned long)src);
363 
364 	if (!recovered_insn)
365 		return 0;
366 	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
367 	insn_get_length(&insn);
368 	length = insn.length;
369 
370 	/* Another subsystem puts a breakpoint, failed to recover */
371 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
372 		return 0;
373 	memcpy(dest, insn.kaddr, length);
374 
375 #ifdef CONFIG_X86_64
376 	if (insn_rip_relative(&insn)) {
377 		s64 newdisp;
378 		u8 *disp;
379 		kernel_insn_init(&insn, dest, length);
380 		insn_get_displacement(&insn);
381 		/*
382 		 * The copied instruction uses the %rip-relative addressing
383 		 * mode.  Adjust the displacement for the difference between
384 		 * the original location of this instruction and the location
385 		 * of the copy that will actually be run.  The tricky bit here
386 		 * is making sure that the sign extension happens correctly in
387 		 * this calculation, since we need a signed 32-bit result to
388 		 * be sign-extended to 64 bits when it's added to the %rip
389 		 * value and yield the same 64-bit result that the sign-
390 		 * extension of the original signed 32-bit displacement would
391 		 * have given.
392 		 */
393 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
394 		if ((s64) (s32) newdisp != newdisp) {
395 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
396 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
397 			return 0;
398 		}
399 		disp = (u8 *) dest + insn_offset_displacement(&insn);
400 		*(s32 *) disp = (s32) newdisp;
401 	}
402 #endif
403 	return length;
404 }
405 
406 static int arch_copy_kprobe(struct kprobe *p)
407 {
408 	int ret;
409 
410 	/* Copy an instruction with recovering if other optprobe modifies it.*/
411 	ret = __copy_instruction(p->ainsn.insn, p->addr);
412 	if (!ret)
413 		return -EINVAL;
414 
415 	/*
416 	 * __copy_instruction can modify the displacement of the instruction,
417 	 * but it doesn't affect boostable check.
418 	 */
419 	if (can_boost(p->ainsn.insn))
420 		p->ainsn.boostable = 0;
421 	else
422 		p->ainsn.boostable = -1;
423 
424 	/* Check whether the instruction modifies Interrupt Flag or not */
425 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
426 
427 	/* Also, displacement change doesn't affect the first byte */
428 	p->opcode = p->ainsn.insn[0];
429 
430 	return 0;
431 }
432 
433 int arch_prepare_kprobe(struct kprobe *p)
434 {
435 	if (alternatives_text_reserved(p->addr, p->addr))
436 		return -EINVAL;
437 
438 	if (!can_probe((unsigned long)p->addr))
439 		return -EILSEQ;
440 	/* insn: must be on special executable page on x86. */
441 	p->ainsn.insn = get_insn_slot();
442 	if (!p->ainsn.insn)
443 		return -ENOMEM;
444 
445 	return arch_copy_kprobe(p);
446 }
447 
448 void arch_arm_kprobe(struct kprobe *p)
449 {
450 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
451 }
452 
453 void arch_disarm_kprobe(struct kprobe *p)
454 {
455 	text_poke(p->addr, &p->opcode, 1);
456 }
457 
458 void arch_remove_kprobe(struct kprobe *p)
459 {
460 	if (p->ainsn.insn) {
461 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
462 		p->ainsn.insn = NULL;
463 	}
464 }
465 
466 static nokprobe_inline void
467 save_previous_kprobe(struct kprobe_ctlblk *kcb)
468 {
469 	kcb->prev_kprobe.kp = kprobe_running();
470 	kcb->prev_kprobe.status = kcb->kprobe_status;
471 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
472 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
473 }
474 
475 static nokprobe_inline void
476 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
477 {
478 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
479 	kcb->kprobe_status = kcb->prev_kprobe.status;
480 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
481 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
482 }
483 
484 static nokprobe_inline void
485 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
486 		   struct kprobe_ctlblk *kcb)
487 {
488 	__this_cpu_write(current_kprobe, p);
489 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
490 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
491 	if (p->ainsn.if_modifier)
492 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
493 }
494 
495 static nokprobe_inline void clear_btf(void)
496 {
497 	if (test_thread_flag(TIF_BLOCKSTEP)) {
498 		unsigned long debugctl = get_debugctlmsr();
499 
500 		debugctl &= ~DEBUGCTLMSR_BTF;
501 		update_debugctlmsr(debugctl);
502 	}
503 }
504 
505 static nokprobe_inline void restore_btf(void)
506 {
507 	if (test_thread_flag(TIF_BLOCKSTEP)) {
508 		unsigned long debugctl = get_debugctlmsr();
509 
510 		debugctl |= DEBUGCTLMSR_BTF;
511 		update_debugctlmsr(debugctl);
512 	}
513 }
514 
515 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
516 {
517 	unsigned long *sara = stack_addr(regs);
518 
519 	ri->ret_addr = (kprobe_opcode_t *) *sara;
520 
521 	/* Replace the return addr with trampoline addr */
522 	*sara = (unsigned long) &kretprobe_trampoline;
523 }
524 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
525 
526 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
527 			     struct kprobe_ctlblk *kcb, int reenter)
528 {
529 	if (setup_detour_execution(p, regs, reenter))
530 		return;
531 
532 #if !defined(CONFIG_PREEMPT)
533 	if (p->ainsn.boostable == 1 && !p->post_handler) {
534 		/* Boost up -- we can execute copied instructions directly */
535 		if (!reenter)
536 			reset_current_kprobe();
537 		/*
538 		 * Reentering boosted probe doesn't reset current_kprobe,
539 		 * nor set current_kprobe, because it doesn't use single
540 		 * stepping.
541 		 */
542 		regs->ip = (unsigned long)p->ainsn.insn;
543 		preempt_enable_no_resched();
544 		return;
545 	}
546 #endif
547 	if (reenter) {
548 		save_previous_kprobe(kcb);
549 		set_current_kprobe(p, regs, kcb);
550 		kcb->kprobe_status = KPROBE_REENTER;
551 	} else
552 		kcb->kprobe_status = KPROBE_HIT_SS;
553 	/* Prepare real single stepping */
554 	clear_btf();
555 	regs->flags |= X86_EFLAGS_TF;
556 	regs->flags &= ~X86_EFLAGS_IF;
557 	/* single step inline if the instruction is an int3 */
558 	if (p->opcode == BREAKPOINT_INSTRUCTION)
559 		regs->ip = (unsigned long)p->addr;
560 	else
561 		regs->ip = (unsigned long)p->ainsn.insn;
562 }
563 NOKPROBE_SYMBOL(setup_singlestep);
564 
565 /*
566  * We have reentered the kprobe_handler(), since another probe was hit while
567  * within the handler. We save the original kprobes variables and just single
568  * step on the instruction of the new probe without calling any user handlers.
569  */
570 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
571 			  struct kprobe_ctlblk *kcb)
572 {
573 	switch (kcb->kprobe_status) {
574 	case KPROBE_HIT_SSDONE:
575 	case KPROBE_HIT_ACTIVE:
576 	case KPROBE_HIT_SS:
577 		kprobes_inc_nmissed_count(p);
578 		setup_singlestep(p, regs, kcb, 1);
579 		break;
580 	case KPROBE_REENTER:
581 		/* A probe has been hit in the codepath leading up to, or just
582 		 * after, single-stepping of a probed instruction. This entire
583 		 * codepath should strictly reside in .kprobes.text section.
584 		 * Raise a BUG or we'll continue in an endless reentering loop
585 		 * and eventually a stack overflow.
586 		 */
587 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
588 		       p->addr);
589 		dump_kprobe(p);
590 		BUG();
591 	default:
592 		/* impossible cases */
593 		WARN_ON(1);
594 		return 0;
595 	}
596 
597 	return 1;
598 }
599 NOKPROBE_SYMBOL(reenter_kprobe);
600 
601 /*
602  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
603  * remain disabled throughout this function.
604  */
605 int kprobe_int3_handler(struct pt_regs *regs)
606 {
607 	kprobe_opcode_t *addr;
608 	struct kprobe *p;
609 	struct kprobe_ctlblk *kcb;
610 
611 	if (user_mode(regs))
612 		return 0;
613 
614 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
615 	/*
616 	 * We don't want to be preempted for the entire
617 	 * duration of kprobe processing. We conditionally
618 	 * re-enable preemption at the end of this function,
619 	 * and also in reenter_kprobe() and setup_singlestep().
620 	 */
621 	preempt_disable();
622 
623 	kcb = get_kprobe_ctlblk();
624 	p = get_kprobe(addr);
625 
626 	if (p) {
627 		if (kprobe_running()) {
628 			if (reenter_kprobe(p, regs, kcb))
629 				return 1;
630 		} else {
631 			set_current_kprobe(p, regs, kcb);
632 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
633 
634 			/*
635 			 * If we have no pre-handler or it returned 0, we
636 			 * continue with normal processing.  If we have a
637 			 * pre-handler and it returned non-zero, it prepped
638 			 * for calling the break_handler below on re-entry
639 			 * for jprobe processing, so get out doing nothing
640 			 * more here.
641 			 */
642 			if (!p->pre_handler || !p->pre_handler(p, regs))
643 				setup_singlestep(p, regs, kcb, 0);
644 			return 1;
645 		}
646 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
647 		/*
648 		 * The breakpoint instruction was removed right
649 		 * after we hit it.  Another cpu has removed
650 		 * either a probepoint or a debugger breakpoint
651 		 * at this address.  In either case, no further
652 		 * handling of this interrupt is appropriate.
653 		 * Back up over the (now missing) int3 and run
654 		 * the original instruction.
655 		 */
656 		regs->ip = (unsigned long)addr;
657 		preempt_enable_no_resched();
658 		return 1;
659 	} else if (kprobe_running()) {
660 		p = __this_cpu_read(current_kprobe);
661 		if (p->break_handler && p->break_handler(p, regs)) {
662 			if (!skip_singlestep(p, regs, kcb))
663 				setup_singlestep(p, regs, kcb, 0);
664 			return 1;
665 		}
666 	} /* else: not a kprobe fault; let the kernel handle it */
667 
668 	preempt_enable_no_resched();
669 	return 0;
670 }
671 NOKPROBE_SYMBOL(kprobe_int3_handler);
672 
673 /*
674  * When a retprobed function returns, this code saves registers and
675  * calls trampoline_handler() runs, which calls the kretprobe's handler.
676  */
677 asm(
678 	".global kretprobe_trampoline\n"
679 	".type kretprobe_trampoline, @function\n"
680 	"kretprobe_trampoline:\n"
681 #ifdef CONFIG_X86_64
682 	/* We don't bother saving the ss register */
683 	"	pushq %rsp\n"
684 	"	pushfq\n"
685 	SAVE_REGS_STRING
686 	"	movq %rsp, %rdi\n"
687 	"	call trampoline_handler\n"
688 	/* Replace saved sp with true return address. */
689 	"	movq %rax, 152(%rsp)\n"
690 	RESTORE_REGS_STRING
691 	"	popfq\n"
692 #else
693 	"	pushf\n"
694 	SAVE_REGS_STRING
695 	"	movl %esp, %eax\n"
696 	"	call trampoline_handler\n"
697 	/* Move flags to cs */
698 	"	movl 56(%esp), %edx\n"
699 	"	movl %edx, 52(%esp)\n"
700 	/* Replace saved flags with true return address. */
701 	"	movl %eax, 56(%esp)\n"
702 	RESTORE_REGS_STRING
703 	"	popf\n"
704 #endif
705 	"	ret\n"
706 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
707 );
708 NOKPROBE_SYMBOL(kretprobe_trampoline);
709 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
710 
711 /*
712  * Called from kretprobe_trampoline
713  */
714 __visible __used void *trampoline_handler(struct pt_regs *regs)
715 {
716 	struct kretprobe_instance *ri = NULL;
717 	struct hlist_head *head, empty_rp;
718 	struct hlist_node *tmp;
719 	unsigned long flags, orig_ret_address = 0;
720 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
721 	kprobe_opcode_t *correct_ret_addr = NULL;
722 
723 	INIT_HLIST_HEAD(&empty_rp);
724 	kretprobe_hash_lock(current, &head, &flags);
725 	/* fixup registers */
726 #ifdef CONFIG_X86_64
727 	regs->cs = __KERNEL_CS;
728 #else
729 	regs->cs = __KERNEL_CS | get_kernel_rpl();
730 	regs->gs = 0;
731 #endif
732 	regs->ip = trampoline_address;
733 	regs->orig_ax = ~0UL;
734 
735 	/*
736 	 * It is possible to have multiple instances associated with a given
737 	 * task either because multiple functions in the call path have
738 	 * return probes installed on them, and/or more than one
739 	 * return probe was registered for a target function.
740 	 *
741 	 * We can handle this because:
742 	 *     - instances are always pushed into the head of the list
743 	 *     - when multiple return probes are registered for the same
744 	 *	 function, the (chronologically) first instance's ret_addr
745 	 *	 will be the real return address, and all the rest will
746 	 *	 point to kretprobe_trampoline.
747 	 */
748 	hlist_for_each_entry(ri, head, hlist) {
749 		if (ri->task != current)
750 			/* another task is sharing our hash bucket */
751 			continue;
752 
753 		orig_ret_address = (unsigned long)ri->ret_addr;
754 
755 		if (orig_ret_address != trampoline_address)
756 			/*
757 			 * This is the real return address. Any other
758 			 * instances associated with this task are for
759 			 * other calls deeper on the call stack
760 			 */
761 			break;
762 	}
763 
764 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
765 
766 	correct_ret_addr = ri->ret_addr;
767 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
768 		if (ri->task != current)
769 			/* another task is sharing our hash bucket */
770 			continue;
771 
772 		orig_ret_address = (unsigned long)ri->ret_addr;
773 		if (ri->rp && ri->rp->handler) {
774 			__this_cpu_write(current_kprobe, &ri->rp->kp);
775 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
776 			ri->ret_addr = correct_ret_addr;
777 			ri->rp->handler(ri, regs);
778 			__this_cpu_write(current_kprobe, NULL);
779 		}
780 
781 		recycle_rp_inst(ri, &empty_rp);
782 
783 		if (orig_ret_address != trampoline_address)
784 			/*
785 			 * This is the real return address. Any other
786 			 * instances associated with this task are for
787 			 * other calls deeper on the call stack
788 			 */
789 			break;
790 	}
791 
792 	kretprobe_hash_unlock(current, &flags);
793 
794 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
795 		hlist_del(&ri->hlist);
796 		kfree(ri);
797 	}
798 	return (void *)orig_ret_address;
799 }
800 NOKPROBE_SYMBOL(trampoline_handler);
801 
802 /*
803  * Called after single-stepping.  p->addr is the address of the
804  * instruction whose first byte has been replaced by the "int 3"
805  * instruction.  To avoid the SMP problems that can occur when we
806  * temporarily put back the original opcode to single-step, we
807  * single-stepped a copy of the instruction.  The address of this
808  * copy is p->ainsn.insn.
809  *
810  * This function prepares to return from the post-single-step
811  * interrupt.  We have to fix up the stack as follows:
812  *
813  * 0) Except in the case of absolute or indirect jump or call instructions,
814  * the new ip is relative to the copied instruction.  We need to make
815  * it relative to the original instruction.
816  *
817  * 1) If the single-stepped instruction was pushfl, then the TF and IF
818  * flags are set in the just-pushed flags, and may need to be cleared.
819  *
820  * 2) If the single-stepped instruction was a call, the return address
821  * that is atop the stack is the address following the copied instruction.
822  * We need to make it the address following the original instruction.
823  *
824  * If this is the first time we've single-stepped the instruction at
825  * this probepoint, and the instruction is boostable, boost it: add a
826  * jump instruction after the copied instruction, that jumps to the next
827  * instruction after the probepoint.
828  */
829 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
830 			     struct kprobe_ctlblk *kcb)
831 {
832 	unsigned long *tos = stack_addr(regs);
833 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
834 	unsigned long orig_ip = (unsigned long)p->addr;
835 	kprobe_opcode_t *insn = p->ainsn.insn;
836 
837 	/* Skip prefixes */
838 	insn = skip_prefixes(insn);
839 
840 	regs->flags &= ~X86_EFLAGS_TF;
841 	switch (*insn) {
842 	case 0x9c:	/* pushfl */
843 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
844 		*tos |= kcb->kprobe_old_flags;
845 		break;
846 	case 0xc2:	/* iret/ret/lret */
847 	case 0xc3:
848 	case 0xca:
849 	case 0xcb:
850 	case 0xcf:
851 	case 0xea:	/* jmp absolute -- ip is correct */
852 		/* ip is already adjusted, no more changes required */
853 		p->ainsn.boostable = 1;
854 		goto no_change;
855 	case 0xe8:	/* call relative - Fix return addr */
856 		*tos = orig_ip + (*tos - copy_ip);
857 		break;
858 #ifdef CONFIG_X86_32
859 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
860 		*tos = orig_ip + (*tos - copy_ip);
861 		goto no_change;
862 #endif
863 	case 0xff:
864 		if ((insn[1] & 0x30) == 0x10) {
865 			/*
866 			 * call absolute, indirect
867 			 * Fix return addr; ip is correct.
868 			 * But this is not boostable
869 			 */
870 			*tos = orig_ip + (*tos - copy_ip);
871 			goto no_change;
872 		} else if (((insn[1] & 0x31) == 0x20) ||
873 			   ((insn[1] & 0x31) == 0x21)) {
874 			/*
875 			 * jmp near and far, absolute indirect
876 			 * ip is correct. And this is boostable
877 			 */
878 			p->ainsn.boostable = 1;
879 			goto no_change;
880 		}
881 	default:
882 		break;
883 	}
884 
885 	if (p->ainsn.boostable == 0) {
886 		if ((regs->ip > copy_ip) &&
887 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
888 			/*
889 			 * These instructions can be executed directly if it
890 			 * jumps back to correct address.
891 			 */
892 			synthesize_reljump((void *)regs->ip,
893 				(void *)orig_ip + (regs->ip - copy_ip));
894 			p->ainsn.boostable = 1;
895 		} else {
896 			p->ainsn.boostable = -1;
897 		}
898 	}
899 
900 	regs->ip += orig_ip - copy_ip;
901 
902 no_change:
903 	restore_btf();
904 }
905 NOKPROBE_SYMBOL(resume_execution);
906 
907 /*
908  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
909  * remain disabled throughout this function.
910  */
911 int kprobe_debug_handler(struct pt_regs *regs)
912 {
913 	struct kprobe *cur = kprobe_running();
914 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
915 
916 	if (!cur)
917 		return 0;
918 
919 	resume_execution(cur, regs, kcb);
920 	regs->flags |= kcb->kprobe_saved_flags;
921 
922 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
923 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
924 		cur->post_handler(cur, regs, 0);
925 	}
926 
927 	/* Restore back the original saved kprobes variables and continue. */
928 	if (kcb->kprobe_status == KPROBE_REENTER) {
929 		restore_previous_kprobe(kcb);
930 		goto out;
931 	}
932 	reset_current_kprobe();
933 out:
934 	preempt_enable_no_resched();
935 
936 	/*
937 	 * if somebody else is singlestepping across a probe point, flags
938 	 * will have TF set, in which case, continue the remaining processing
939 	 * of do_debug, as if this is not a probe hit.
940 	 */
941 	if (regs->flags & X86_EFLAGS_TF)
942 		return 0;
943 
944 	return 1;
945 }
946 NOKPROBE_SYMBOL(kprobe_debug_handler);
947 
948 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
949 {
950 	struct kprobe *cur = kprobe_running();
951 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
952 
953 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
954 		/* This must happen on single-stepping */
955 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
956 			kcb->kprobe_status != KPROBE_REENTER);
957 		/*
958 		 * We are here because the instruction being single
959 		 * stepped caused a page fault. We reset the current
960 		 * kprobe and the ip points back to the probe address
961 		 * and allow the page fault handler to continue as a
962 		 * normal page fault.
963 		 */
964 		regs->ip = (unsigned long)cur->addr;
965 		/*
966 		 * Trap flag (TF) has been set here because this fault
967 		 * happened where the single stepping will be done.
968 		 * So clear it by resetting the current kprobe:
969 		 */
970 		regs->flags &= ~X86_EFLAGS_TF;
971 
972 		/*
973 		 * If the TF flag was set before the kprobe hit,
974 		 * don't touch it:
975 		 */
976 		regs->flags |= kcb->kprobe_old_flags;
977 
978 		if (kcb->kprobe_status == KPROBE_REENTER)
979 			restore_previous_kprobe(kcb);
980 		else
981 			reset_current_kprobe();
982 		preempt_enable_no_resched();
983 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
984 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
985 		/*
986 		 * We increment the nmissed count for accounting,
987 		 * we can also use npre/npostfault count for accounting
988 		 * these specific fault cases.
989 		 */
990 		kprobes_inc_nmissed_count(cur);
991 
992 		/*
993 		 * We come here because instructions in the pre/post
994 		 * handler caused the page_fault, this could happen
995 		 * if handler tries to access user space by
996 		 * copy_from_user(), get_user() etc. Let the
997 		 * user-specified handler try to fix it first.
998 		 */
999 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1000 			return 1;
1001 
1002 		/*
1003 		 * In case the user-specified fault handler returned
1004 		 * zero, try to fix up.
1005 		 */
1006 		if (fixup_exception(regs, trapnr))
1007 			return 1;
1008 
1009 		/*
1010 		 * fixup routine could not handle it,
1011 		 * Let do_page_fault() fix it.
1012 		 */
1013 	}
1014 
1015 	return 0;
1016 }
1017 NOKPROBE_SYMBOL(kprobe_fault_handler);
1018 
1019 /*
1020  * Wrapper routine for handling exceptions.
1021  */
1022 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1023 			     void *data)
1024 {
1025 	struct die_args *args = data;
1026 	int ret = NOTIFY_DONE;
1027 
1028 	if (args->regs && user_mode(args->regs))
1029 		return ret;
1030 
1031 	if (val == DIE_GPF) {
1032 		/*
1033 		 * To be potentially processing a kprobe fault and to
1034 		 * trust the result from kprobe_running(), we have
1035 		 * be non-preemptible.
1036 		 */
1037 		if (!preemptible() && kprobe_running() &&
1038 		    kprobe_fault_handler(args->regs, args->trapnr))
1039 			ret = NOTIFY_STOP;
1040 	}
1041 	return ret;
1042 }
1043 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1044 
1045 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1046 {
1047 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1048 	unsigned long addr;
1049 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1050 
1051 	kcb->jprobe_saved_regs = *regs;
1052 	kcb->jprobe_saved_sp = stack_addr(regs);
1053 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1054 
1055 	/*
1056 	 * As Linus pointed out, gcc assumes that the callee
1057 	 * owns the argument space and could overwrite it, e.g.
1058 	 * tailcall optimization. So, to be absolutely safe
1059 	 * we also save and restore enough stack bytes to cover
1060 	 * the argument area.
1061 	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1062 	 * raw stack chunk with redzones:
1063 	 */
1064 	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1065 	regs->flags &= ~X86_EFLAGS_IF;
1066 	trace_hardirqs_off();
1067 	regs->ip = (unsigned long)(jp->entry);
1068 
1069 	/*
1070 	 * jprobes use jprobe_return() which skips the normal return
1071 	 * path of the function, and this messes up the accounting of the
1072 	 * function graph tracer to get messed up.
1073 	 *
1074 	 * Pause function graph tracing while performing the jprobe function.
1075 	 */
1076 	pause_graph_tracing();
1077 	return 1;
1078 }
1079 NOKPROBE_SYMBOL(setjmp_pre_handler);
1080 
1081 void jprobe_return(void)
1082 {
1083 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084 
1085 	/* Unpoison stack redzones in the frames we are going to jump over. */
1086 	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1087 
1088 	asm volatile (
1089 #ifdef CONFIG_X86_64
1090 			"       xchg   %%rbx,%%rsp	\n"
1091 #else
1092 			"       xchgl   %%ebx,%%esp	\n"
1093 #endif
1094 			"       int3			\n"
1095 			"       .globl jprobe_return_end\n"
1096 			"       jprobe_return_end:	\n"
1097 			"       nop			\n"::"b"
1098 			(kcb->jprobe_saved_sp):"memory");
1099 }
1100 NOKPROBE_SYMBOL(jprobe_return);
1101 NOKPROBE_SYMBOL(jprobe_return_end);
1102 
1103 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1104 {
1105 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1106 	u8 *addr = (u8 *) (regs->ip - 1);
1107 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1108 	void *saved_sp = kcb->jprobe_saved_sp;
1109 
1110 	if ((addr > (u8 *) jprobe_return) &&
1111 	    (addr < (u8 *) jprobe_return_end)) {
1112 		if (stack_addr(regs) != saved_sp) {
1113 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1114 			printk(KERN_ERR
1115 			       "current sp %p does not match saved sp %p\n",
1116 			       stack_addr(regs), saved_sp);
1117 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1118 			show_regs(saved_regs);
1119 			printk(KERN_ERR "Current registers\n");
1120 			show_regs(regs);
1121 			BUG();
1122 		}
1123 		/* It's OK to start function graph tracing again */
1124 		unpause_graph_tracing();
1125 		*regs = kcb->jprobe_saved_regs;
1126 		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1127 		preempt_enable_no_resched();
1128 		return 1;
1129 	}
1130 	return 0;
1131 }
1132 NOKPROBE_SYMBOL(longjmp_break_handler);
1133 
1134 bool arch_within_kprobe_blacklist(unsigned long addr)
1135 {
1136 	return  (addr >= (unsigned long)__kprobes_text_start &&
1137 		 addr < (unsigned long)__kprobes_text_end) ||
1138 		(addr >= (unsigned long)__entry_text_start &&
1139 		 addr < (unsigned long)__entry_text_end);
1140 }
1141 
1142 int __init arch_init_kprobes(void)
1143 {
1144 	return 0;
1145 }
1146 
1147 int arch_trampoline_kprobe(struct kprobe *p)
1148 {
1149 	return 0;
1150 }
1151