1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/extable.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 #include <linux/frame.h> 53 #include <linux/kasan.h> 54 55 #include <asm/text-patching.h> 56 #include <asm/cacheflush.h> 57 #include <asm/desc.h> 58 #include <asm/pgtable.h> 59 #include <linux/uaccess.h> 60 #include <asm/alternative.h> 61 #include <asm/insn.h> 62 #include <asm/debugreg.h> 63 64 #include "common.h" 65 66 void jprobe_return_end(void); 67 68 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 69 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 70 71 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 72 73 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 74 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 75 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 76 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 77 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 78 << (row % 32)) 79 /* 80 * Undefined/reserved opcodes, conditional jump, Opcode Extension 81 * Groups, and some special opcodes can not boost. 82 * This is non-const and volatile to keep gcc from statically 83 * optimizing it out, as variable_test_bit makes gcc think only 84 * *(unsigned long*) is used. 85 */ 86 static volatile u32 twobyte_is_boostable[256 / 32] = { 87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 88 /* ---------------------------------------------- */ 89 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 90 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 91 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 92 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 94 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 96 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 97 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 99 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 101 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 102 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 103 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 104 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 105 /* ----------------------------------------------- */ 106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 107 }; 108 #undef W 109 110 struct kretprobe_blackpoint kretprobe_blacklist[] = { 111 {"__switch_to", }, /* This function switches only current task, but 112 doesn't switch kernel stack.*/ 113 {NULL, NULL} /* Terminator */ 114 }; 115 116 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 117 118 static nokprobe_inline void 119 __synthesize_relative_insn(void *from, void *to, u8 op) 120 { 121 struct __arch_relative_insn { 122 u8 op; 123 s32 raddr; 124 } __packed *insn; 125 126 insn = (struct __arch_relative_insn *)from; 127 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 128 insn->op = op; 129 } 130 131 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 132 void synthesize_reljump(void *from, void *to) 133 { 134 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 135 } 136 NOKPROBE_SYMBOL(synthesize_reljump); 137 138 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 139 void synthesize_relcall(void *from, void *to) 140 { 141 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 142 } 143 NOKPROBE_SYMBOL(synthesize_relcall); 144 145 /* 146 * Skip the prefixes of the instruction. 147 */ 148 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 149 { 150 insn_attr_t attr; 151 152 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 153 while (inat_is_legacy_prefix(attr)) { 154 insn++; 155 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 156 } 157 #ifdef CONFIG_X86_64 158 if (inat_is_rex_prefix(attr)) 159 insn++; 160 #endif 161 return insn; 162 } 163 NOKPROBE_SYMBOL(skip_prefixes); 164 165 /* 166 * Returns non-zero if opcode is boostable. 167 * RIP relative instructions are adjusted at copying time in 64 bits mode 168 */ 169 int can_boost(kprobe_opcode_t *opcodes) 170 { 171 kprobe_opcode_t opcode; 172 kprobe_opcode_t *orig_opcodes = opcodes; 173 174 if (search_exception_tables((unsigned long)opcodes)) 175 return 0; /* Page fault may occur on this address. */ 176 177 retry: 178 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 179 return 0; 180 opcode = *(opcodes++); 181 182 /* 2nd-byte opcode */ 183 if (opcode == 0x0f) { 184 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 185 return 0; 186 return test_bit(*opcodes, 187 (unsigned long *)twobyte_is_boostable); 188 } 189 190 switch (opcode & 0xf0) { 191 #ifdef CONFIG_X86_64 192 case 0x40: 193 goto retry; /* REX prefix is boostable */ 194 #endif 195 case 0x60: 196 if (0x63 < opcode && opcode < 0x67) 197 goto retry; /* prefixes */ 198 /* can't boost Address-size override and bound */ 199 return (opcode != 0x62 && opcode != 0x67); 200 case 0x70: 201 return 0; /* can't boost conditional jump */ 202 case 0xc0: 203 /* can't boost software-interruptions */ 204 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 205 case 0xd0: 206 /* can boost AA* and XLAT */ 207 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 208 case 0xe0: 209 /* can boost in/out and absolute jmps */ 210 return ((opcode & 0x04) || opcode == 0xea); 211 case 0xf0: 212 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 213 goto retry; /* lock/rep(ne) prefix */ 214 /* clear and set flags are boostable */ 215 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 216 default: 217 /* segment override prefixes are boostable */ 218 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 219 goto retry; /* prefixes */ 220 /* CS override prefix and call are not boostable */ 221 return (opcode != 0x2e && opcode != 0x9a); 222 } 223 } 224 225 static unsigned long 226 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 227 { 228 struct kprobe *kp; 229 unsigned long faddr; 230 231 kp = get_kprobe((void *)addr); 232 faddr = ftrace_location(addr); 233 /* 234 * Addresses inside the ftrace location are refused by 235 * arch_check_ftrace_location(). Something went terribly wrong 236 * if such an address is checked here. 237 */ 238 if (WARN_ON(faddr && faddr != addr)) 239 return 0UL; 240 /* 241 * Use the current code if it is not modified by Kprobe 242 * and it cannot be modified by ftrace. 243 */ 244 if (!kp && !faddr) 245 return addr; 246 247 /* 248 * Basically, kp->ainsn.insn has an original instruction. 249 * However, RIP-relative instruction can not do single-stepping 250 * at different place, __copy_instruction() tweaks the displacement of 251 * that instruction. In that case, we can't recover the instruction 252 * from the kp->ainsn.insn. 253 * 254 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 255 * of the first byte of the probed instruction, which is overwritten 256 * by int3. And the instruction at kp->addr is not modified by kprobes 257 * except for the first byte, we can recover the original instruction 258 * from it and kp->opcode. 259 * 260 * In case of Kprobes using ftrace, we do not have a copy of 261 * the original instruction. In fact, the ftrace location might 262 * be modified at anytime and even could be in an inconsistent state. 263 * Fortunately, we know that the original code is the ideal 5-byte 264 * long NOP. 265 */ 266 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 267 if (faddr) 268 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 269 else 270 buf[0] = kp->opcode; 271 return (unsigned long)buf; 272 } 273 274 /* 275 * Recover the probed instruction at addr for further analysis. 276 * Caller must lock kprobes by kprobe_mutex, or disable preemption 277 * for preventing to release referencing kprobes. 278 * Returns zero if the instruction can not get recovered. 279 */ 280 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 281 { 282 unsigned long __addr; 283 284 __addr = __recover_optprobed_insn(buf, addr); 285 if (__addr != addr) 286 return __addr; 287 288 return __recover_probed_insn(buf, addr); 289 } 290 291 /* Check if paddr is at an instruction boundary */ 292 static int can_probe(unsigned long paddr) 293 { 294 unsigned long addr, __addr, offset = 0; 295 struct insn insn; 296 kprobe_opcode_t buf[MAX_INSN_SIZE]; 297 298 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 299 return 0; 300 301 /* Decode instructions */ 302 addr = paddr - offset; 303 while (addr < paddr) { 304 /* 305 * Check if the instruction has been modified by another 306 * kprobe, in which case we replace the breakpoint by the 307 * original instruction in our buffer. 308 * Also, jump optimization will change the breakpoint to 309 * relative-jump. Since the relative-jump itself is 310 * normally used, we just go through if there is no kprobe. 311 */ 312 __addr = recover_probed_instruction(buf, addr); 313 if (!__addr) 314 return 0; 315 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 316 insn_get_length(&insn); 317 318 /* 319 * Another debugging subsystem might insert this breakpoint. 320 * In that case, we can't recover it. 321 */ 322 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 323 return 0; 324 addr += insn.length; 325 } 326 327 return (addr == paddr); 328 } 329 330 /* 331 * Returns non-zero if opcode modifies the interrupt flag. 332 */ 333 static int is_IF_modifier(kprobe_opcode_t *insn) 334 { 335 /* Skip prefixes */ 336 insn = skip_prefixes(insn); 337 338 switch (*insn) { 339 case 0xfa: /* cli */ 340 case 0xfb: /* sti */ 341 case 0xcf: /* iret/iretd */ 342 case 0x9d: /* popf/popfd */ 343 return 1; 344 } 345 346 return 0; 347 } 348 349 /* 350 * Copy an instruction and adjust the displacement if the instruction 351 * uses the %rip-relative addressing mode. 352 * If it does, Return the address of the 32-bit displacement word. 353 * If not, return null. 354 * Only applicable to 64-bit x86. 355 */ 356 int __copy_instruction(u8 *dest, u8 *src) 357 { 358 struct insn insn; 359 kprobe_opcode_t buf[MAX_INSN_SIZE]; 360 int length; 361 unsigned long recovered_insn = 362 recover_probed_instruction(buf, (unsigned long)src); 363 364 if (!recovered_insn) 365 return 0; 366 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); 367 insn_get_length(&insn); 368 length = insn.length; 369 370 /* Another subsystem puts a breakpoint, failed to recover */ 371 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 372 return 0; 373 memcpy(dest, insn.kaddr, length); 374 375 #ifdef CONFIG_X86_64 376 if (insn_rip_relative(&insn)) { 377 s64 newdisp; 378 u8 *disp; 379 kernel_insn_init(&insn, dest, length); 380 insn_get_displacement(&insn); 381 /* 382 * The copied instruction uses the %rip-relative addressing 383 * mode. Adjust the displacement for the difference between 384 * the original location of this instruction and the location 385 * of the copy that will actually be run. The tricky bit here 386 * is making sure that the sign extension happens correctly in 387 * this calculation, since we need a signed 32-bit result to 388 * be sign-extended to 64 bits when it's added to the %rip 389 * value and yield the same 64-bit result that the sign- 390 * extension of the original signed 32-bit displacement would 391 * have given. 392 */ 393 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 394 if ((s64) (s32) newdisp != newdisp) { 395 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 396 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 397 return 0; 398 } 399 disp = (u8 *) dest + insn_offset_displacement(&insn); 400 *(s32 *) disp = (s32) newdisp; 401 } 402 #endif 403 return length; 404 } 405 406 static int arch_copy_kprobe(struct kprobe *p) 407 { 408 int ret; 409 410 /* Copy an instruction with recovering if other optprobe modifies it.*/ 411 ret = __copy_instruction(p->ainsn.insn, p->addr); 412 if (!ret) 413 return -EINVAL; 414 415 /* 416 * __copy_instruction can modify the displacement of the instruction, 417 * but it doesn't affect boostable check. 418 */ 419 if (can_boost(p->ainsn.insn)) 420 p->ainsn.boostable = 0; 421 else 422 p->ainsn.boostable = -1; 423 424 /* Check whether the instruction modifies Interrupt Flag or not */ 425 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 426 427 /* Also, displacement change doesn't affect the first byte */ 428 p->opcode = p->ainsn.insn[0]; 429 430 return 0; 431 } 432 433 int arch_prepare_kprobe(struct kprobe *p) 434 { 435 if (alternatives_text_reserved(p->addr, p->addr)) 436 return -EINVAL; 437 438 if (!can_probe((unsigned long)p->addr)) 439 return -EILSEQ; 440 /* insn: must be on special executable page on x86. */ 441 p->ainsn.insn = get_insn_slot(); 442 if (!p->ainsn.insn) 443 return -ENOMEM; 444 445 return arch_copy_kprobe(p); 446 } 447 448 void arch_arm_kprobe(struct kprobe *p) 449 { 450 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 451 } 452 453 void arch_disarm_kprobe(struct kprobe *p) 454 { 455 text_poke(p->addr, &p->opcode, 1); 456 } 457 458 void arch_remove_kprobe(struct kprobe *p) 459 { 460 if (p->ainsn.insn) { 461 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 462 p->ainsn.insn = NULL; 463 } 464 } 465 466 static nokprobe_inline void 467 save_previous_kprobe(struct kprobe_ctlblk *kcb) 468 { 469 kcb->prev_kprobe.kp = kprobe_running(); 470 kcb->prev_kprobe.status = kcb->kprobe_status; 471 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 472 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 473 } 474 475 static nokprobe_inline void 476 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 477 { 478 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 479 kcb->kprobe_status = kcb->prev_kprobe.status; 480 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 481 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 482 } 483 484 static nokprobe_inline void 485 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 486 struct kprobe_ctlblk *kcb) 487 { 488 __this_cpu_write(current_kprobe, p); 489 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 490 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 491 if (p->ainsn.if_modifier) 492 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 493 } 494 495 static nokprobe_inline void clear_btf(void) 496 { 497 if (test_thread_flag(TIF_BLOCKSTEP)) { 498 unsigned long debugctl = get_debugctlmsr(); 499 500 debugctl &= ~DEBUGCTLMSR_BTF; 501 update_debugctlmsr(debugctl); 502 } 503 } 504 505 static nokprobe_inline void restore_btf(void) 506 { 507 if (test_thread_flag(TIF_BLOCKSTEP)) { 508 unsigned long debugctl = get_debugctlmsr(); 509 510 debugctl |= DEBUGCTLMSR_BTF; 511 update_debugctlmsr(debugctl); 512 } 513 } 514 515 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 516 { 517 unsigned long *sara = stack_addr(regs); 518 519 ri->ret_addr = (kprobe_opcode_t *) *sara; 520 521 /* Replace the return addr with trampoline addr */ 522 *sara = (unsigned long) &kretprobe_trampoline; 523 } 524 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 525 526 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 527 struct kprobe_ctlblk *kcb, int reenter) 528 { 529 if (setup_detour_execution(p, regs, reenter)) 530 return; 531 532 #if !defined(CONFIG_PREEMPT) 533 if (p->ainsn.boostable == 1 && !p->post_handler) { 534 /* Boost up -- we can execute copied instructions directly */ 535 if (!reenter) 536 reset_current_kprobe(); 537 /* 538 * Reentering boosted probe doesn't reset current_kprobe, 539 * nor set current_kprobe, because it doesn't use single 540 * stepping. 541 */ 542 regs->ip = (unsigned long)p->ainsn.insn; 543 preempt_enable_no_resched(); 544 return; 545 } 546 #endif 547 if (reenter) { 548 save_previous_kprobe(kcb); 549 set_current_kprobe(p, regs, kcb); 550 kcb->kprobe_status = KPROBE_REENTER; 551 } else 552 kcb->kprobe_status = KPROBE_HIT_SS; 553 /* Prepare real single stepping */ 554 clear_btf(); 555 regs->flags |= X86_EFLAGS_TF; 556 regs->flags &= ~X86_EFLAGS_IF; 557 /* single step inline if the instruction is an int3 */ 558 if (p->opcode == BREAKPOINT_INSTRUCTION) 559 regs->ip = (unsigned long)p->addr; 560 else 561 regs->ip = (unsigned long)p->ainsn.insn; 562 } 563 NOKPROBE_SYMBOL(setup_singlestep); 564 565 /* 566 * We have reentered the kprobe_handler(), since another probe was hit while 567 * within the handler. We save the original kprobes variables and just single 568 * step on the instruction of the new probe without calling any user handlers. 569 */ 570 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 571 struct kprobe_ctlblk *kcb) 572 { 573 switch (kcb->kprobe_status) { 574 case KPROBE_HIT_SSDONE: 575 case KPROBE_HIT_ACTIVE: 576 case KPROBE_HIT_SS: 577 kprobes_inc_nmissed_count(p); 578 setup_singlestep(p, regs, kcb, 1); 579 break; 580 case KPROBE_REENTER: 581 /* A probe has been hit in the codepath leading up to, or just 582 * after, single-stepping of a probed instruction. This entire 583 * codepath should strictly reside in .kprobes.text section. 584 * Raise a BUG or we'll continue in an endless reentering loop 585 * and eventually a stack overflow. 586 */ 587 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 588 p->addr); 589 dump_kprobe(p); 590 BUG(); 591 default: 592 /* impossible cases */ 593 WARN_ON(1); 594 return 0; 595 } 596 597 return 1; 598 } 599 NOKPROBE_SYMBOL(reenter_kprobe); 600 601 /* 602 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 603 * remain disabled throughout this function. 604 */ 605 int kprobe_int3_handler(struct pt_regs *regs) 606 { 607 kprobe_opcode_t *addr; 608 struct kprobe *p; 609 struct kprobe_ctlblk *kcb; 610 611 if (user_mode(regs)) 612 return 0; 613 614 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 615 /* 616 * We don't want to be preempted for the entire 617 * duration of kprobe processing. We conditionally 618 * re-enable preemption at the end of this function, 619 * and also in reenter_kprobe() and setup_singlestep(). 620 */ 621 preempt_disable(); 622 623 kcb = get_kprobe_ctlblk(); 624 p = get_kprobe(addr); 625 626 if (p) { 627 if (kprobe_running()) { 628 if (reenter_kprobe(p, regs, kcb)) 629 return 1; 630 } else { 631 set_current_kprobe(p, regs, kcb); 632 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 633 634 /* 635 * If we have no pre-handler or it returned 0, we 636 * continue with normal processing. If we have a 637 * pre-handler and it returned non-zero, it prepped 638 * for calling the break_handler below on re-entry 639 * for jprobe processing, so get out doing nothing 640 * more here. 641 */ 642 if (!p->pre_handler || !p->pre_handler(p, regs)) 643 setup_singlestep(p, regs, kcb, 0); 644 return 1; 645 } 646 } else if (*addr != BREAKPOINT_INSTRUCTION) { 647 /* 648 * The breakpoint instruction was removed right 649 * after we hit it. Another cpu has removed 650 * either a probepoint or a debugger breakpoint 651 * at this address. In either case, no further 652 * handling of this interrupt is appropriate. 653 * Back up over the (now missing) int3 and run 654 * the original instruction. 655 */ 656 regs->ip = (unsigned long)addr; 657 preempt_enable_no_resched(); 658 return 1; 659 } else if (kprobe_running()) { 660 p = __this_cpu_read(current_kprobe); 661 if (p->break_handler && p->break_handler(p, regs)) { 662 if (!skip_singlestep(p, regs, kcb)) 663 setup_singlestep(p, regs, kcb, 0); 664 return 1; 665 } 666 } /* else: not a kprobe fault; let the kernel handle it */ 667 668 preempt_enable_no_resched(); 669 return 0; 670 } 671 NOKPROBE_SYMBOL(kprobe_int3_handler); 672 673 /* 674 * When a retprobed function returns, this code saves registers and 675 * calls trampoline_handler() runs, which calls the kretprobe's handler. 676 */ 677 asm( 678 ".global kretprobe_trampoline\n" 679 ".type kretprobe_trampoline, @function\n" 680 "kretprobe_trampoline:\n" 681 #ifdef CONFIG_X86_64 682 /* We don't bother saving the ss register */ 683 " pushq %rsp\n" 684 " pushfq\n" 685 SAVE_REGS_STRING 686 " movq %rsp, %rdi\n" 687 " call trampoline_handler\n" 688 /* Replace saved sp with true return address. */ 689 " movq %rax, 152(%rsp)\n" 690 RESTORE_REGS_STRING 691 " popfq\n" 692 #else 693 " pushf\n" 694 SAVE_REGS_STRING 695 " movl %esp, %eax\n" 696 " call trampoline_handler\n" 697 /* Move flags to cs */ 698 " movl 56(%esp), %edx\n" 699 " movl %edx, 52(%esp)\n" 700 /* Replace saved flags with true return address. */ 701 " movl %eax, 56(%esp)\n" 702 RESTORE_REGS_STRING 703 " popf\n" 704 #endif 705 " ret\n" 706 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 707 ); 708 NOKPROBE_SYMBOL(kretprobe_trampoline); 709 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 710 711 /* 712 * Called from kretprobe_trampoline 713 */ 714 __visible __used void *trampoline_handler(struct pt_regs *regs) 715 { 716 struct kretprobe_instance *ri = NULL; 717 struct hlist_head *head, empty_rp; 718 struct hlist_node *tmp; 719 unsigned long flags, orig_ret_address = 0; 720 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 721 kprobe_opcode_t *correct_ret_addr = NULL; 722 723 INIT_HLIST_HEAD(&empty_rp); 724 kretprobe_hash_lock(current, &head, &flags); 725 /* fixup registers */ 726 #ifdef CONFIG_X86_64 727 regs->cs = __KERNEL_CS; 728 #else 729 regs->cs = __KERNEL_CS | get_kernel_rpl(); 730 regs->gs = 0; 731 #endif 732 regs->ip = trampoline_address; 733 regs->orig_ax = ~0UL; 734 735 /* 736 * It is possible to have multiple instances associated with a given 737 * task either because multiple functions in the call path have 738 * return probes installed on them, and/or more than one 739 * return probe was registered for a target function. 740 * 741 * We can handle this because: 742 * - instances are always pushed into the head of the list 743 * - when multiple return probes are registered for the same 744 * function, the (chronologically) first instance's ret_addr 745 * will be the real return address, and all the rest will 746 * point to kretprobe_trampoline. 747 */ 748 hlist_for_each_entry(ri, head, hlist) { 749 if (ri->task != current) 750 /* another task is sharing our hash bucket */ 751 continue; 752 753 orig_ret_address = (unsigned long)ri->ret_addr; 754 755 if (orig_ret_address != trampoline_address) 756 /* 757 * This is the real return address. Any other 758 * instances associated with this task are for 759 * other calls deeper on the call stack 760 */ 761 break; 762 } 763 764 kretprobe_assert(ri, orig_ret_address, trampoline_address); 765 766 correct_ret_addr = ri->ret_addr; 767 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 768 if (ri->task != current) 769 /* another task is sharing our hash bucket */ 770 continue; 771 772 orig_ret_address = (unsigned long)ri->ret_addr; 773 if (ri->rp && ri->rp->handler) { 774 __this_cpu_write(current_kprobe, &ri->rp->kp); 775 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 776 ri->ret_addr = correct_ret_addr; 777 ri->rp->handler(ri, regs); 778 __this_cpu_write(current_kprobe, NULL); 779 } 780 781 recycle_rp_inst(ri, &empty_rp); 782 783 if (orig_ret_address != trampoline_address) 784 /* 785 * This is the real return address. Any other 786 * instances associated with this task are for 787 * other calls deeper on the call stack 788 */ 789 break; 790 } 791 792 kretprobe_hash_unlock(current, &flags); 793 794 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 795 hlist_del(&ri->hlist); 796 kfree(ri); 797 } 798 return (void *)orig_ret_address; 799 } 800 NOKPROBE_SYMBOL(trampoline_handler); 801 802 /* 803 * Called after single-stepping. p->addr is the address of the 804 * instruction whose first byte has been replaced by the "int 3" 805 * instruction. To avoid the SMP problems that can occur when we 806 * temporarily put back the original opcode to single-step, we 807 * single-stepped a copy of the instruction. The address of this 808 * copy is p->ainsn.insn. 809 * 810 * This function prepares to return from the post-single-step 811 * interrupt. We have to fix up the stack as follows: 812 * 813 * 0) Except in the case of absolute or indirect jump or call instructions, 814 * the new ip is relative to the copied instruction. We need to make 815 * it relative to the original instruction. 816 * 817 * 1) If the single-stepped instruction was pushfl, then the TF and IF 818 * flags are set in the just-pushed flags, and may need to be cleared. 819 * 820 * 2) If the single-stepped instruction was a call, the return address 821 * that is atop the stack is the address following the copied instruction. 822 * We need to make it the address following the original instruction. 823 * 824 * If this is the first time we've single-stepped the instruction at 825 * this probepoint, and the instruction is boostable, boost it: add a 826 * jump instruction after the copied instruction, that jumps to the next 827 * instruction after the probepoint. 828 */ 829 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 830 struct kprobe_ctlblk *kcb) 831 { 832 unsigned long *tos = stack_addr(regs); 833 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 834 unsigned long orig_ip = (unsigned long)p->addr; 835 kprobe_opcode_t *insn = p->ainsn.insn; 836 837 /* Skip prefixes */ 838 insn = skip_prefixes(insn); 839 840 regs->flags &= ~X86_EFLAGS_TF; 841 switch (*insn) { 842 case 0x9c: /* pushfl */ 843 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 844 *tos |= kcb->kprobe_old_flags; 845 break; 846 case 0xc2: /* iret/ret/lret */ 847 case 0xc3: 848 case 0xca: 849 case 0xcb: 850 case 0xcf: 851 case 0xea: /* jmp absolute -- ip is correct */ 852 /* ip is already adjusted, no more changes required */ 853 p->ainsn.boostable = 1; 854 goto no_change; 855 case 0xe8: /* call relative - Fix return addr */ 856 *tos = orig_ip + (*tos - copy_ip); 857 break; 858 #ifdef CONFIG_X86_32 859 case 0x9a: /* call absolute -- same as call absolute, indirect */ 860 *tos = orig_ip + (*tos - copy_ip); 861 goto no_change; 862 #endif 863 case 0xff: 864 if ((insn[1] & 0x30) == 0x10) { 865 /* 866 * call absolute, indirect 867 * Fix return addr; ip is correct. 868 * But this is not boostable 869 */ 870 *tos = orig_ip + (*tos - copy_ip); 871 goto no_change; 872 } else if (((insn[1] & 0x31) == 0x20) || 873 ((insn[1] & 0x31) == 0x21)) { 874 /* 875 * jmp near and far, absolute indirect 876 * ip is correct. And this is boostable 877 */ 878 p->ainsn.boostable = 1; 879 goto no_change; 880 } 881 default: 882 break; 883 } 884 885 if (p->ainsn.boostable == 0) { 886 if ((regs->ip > copy_ip) && 887 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 888 /* 889 * These instructions can be executed directly if it 890 * jumps back to correct address. 891 */ 892 synthesize_reljump((void *)regs->ip, 893 (void *)orig_ip + (regs->ip - copy_ip)); 894 p->ainsn.boostable = 1; 895 } else { 896 p->ainsn.boostable = -1; 897 } 898 } 899 900 regs->ip += orig_ip - copy_ip; 901 902 no_change: 903 restore_btf(); 904 } 905 NOKPROBE_SYMBOL(resume_execution); 906 907 /* 908 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 909 * remain disabled throughout this function. 910 */ 911 int kprobe_debug_handler(struct pt_regs *regs) 912 { 913 struct kprobe *cur = kprobe_running(); 914 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 915 916 if (!cur) 917 return 0; 918 919 resume_execution(cur, regs, kcb); 920 regs->flags |= kcb->kprobe_saved_flags; 921 922 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 923 kcb->kprobe_status = KPROBE_HIT_SSDONE; 924 cur->post_handler(cur, regs, 0); 925 } 926 927 /* Restore back the original saved kprobes variables and continue. */ 928 if (kcb->kprobe_status == KPROBE_REENTER) { 929 restore_previous_kprobe(kcb); 930 goto out; 931 } 932 reset_current_kprobe(); 933 out: 934 preempt_enable_no_resched(); 935 936 /* 937 * if somebody else is singlestepping across a probe point, flags 938 * will have TF set, in which case, continue the remaining processing 939 * of do_debug, as if this is not a probe hit. 940 */ 941 if (regs->flags & X86_EFLAGS_TF) 942 return 0; 943 944 return 1; 945 } 946 NOKPROBE_SYMBOL(kprobe_debug_handler); 947 948 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 949 { 950 struct kprobe *cur = kprobe_running(); 951 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 952 953 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 954 /* This must happen on single-stepping */ 955 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 956 kcb->kprobe_status != KPROBE_REENTER); 957 /* 958 * We are here because the instruction being single 959 * stepped caused a page fault. We reset the current 960 * kprobe and the ip points back to the probe address 961 * and allow the page fault handler to continue as a 962 * normal page fault. 963 */ 964 regs->ip = (unsigned long)cur->addr; 965 /* 966 * Trap flag (TF) has been set here because this fault 967 * happened where the single stepping will be done. 968 * So clear it by resetting the current kprobe: 969 */ 970 regs->flags &= ~X86_EFLAGS_TF; 971 972 /* 973 * If the TF flag was set before the kprobe hit, 974 * don't touch it: 975 */ 976 regs->flags |= kcb->kprobe_old_flags; 977 978 if (kcb->kprobe_status == KPROBE_REENTER) 979 restore_previous_kprobe(kcb); 980 else 981 reset_current_kprobe(); 982 preempt_enable_no_resched(); 983 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 984 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 985 /* 986 * We increment the nmissed count for accounting, 987 * we can also use npre/npostfault count for accounting 988 * these specific fault cases. 989 */ 990 kprobes_inc_nmissed_count(cur); 991 992 /* 993 * We come here because instructions in the pre/post 994 * handler caused the page_fault, this could happen 995 * if handler tries to access user space by 996 * copy_from_user(), get_user() etc. Let the 997 * user-specified handler try to fix it first. 998 */ 999 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1000 return 1; 1001 1002 /* 1003 * In case the user-specified fault handler returned 1004 * zero, try to fix up. 1005 */ 1006 if (fixup_exception(regs, trapnr)) 1007 return 1; 1008 1009 /* 1010 * fixup routine could not handle it, 1011 * Let do_page_fault() fix it. 1012 */ 1013 } 1014 1015 return 0; 1016 } 1017 NOKPROBE_SYMBOL(kprobe_fault_handler); 1018 1019 /* 1020 * Wrapper routine for handling exceptions. 1021 */ 1022 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1023 void *data) 1024 { 1025 struct die_args *args = data; 1026 int ret = NOTIFY_DONE; 1027 1028 if (args->regs && user_mode(args->regs)) 1029 return ret; 1030 1031 if (val == DIE_GPF) { 1032 /* 1033 * To be potentially processing a kprobe fault and to 1034 * trust the result from kprobe_running(), we have 1035 * be non-preemptible. 1036 */ 1037 if (!preemptible() && kprobe_running() && 1038 kprobe_fault_handler(args->regs, args->trapnr)) 1039 ret = NOTIFY_STOP; 1040 } 1041 return ret; 1042 } 1043 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1044 1045 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1046 { 1047 struct jprobe *jp = container_of(p, struct jprobe, kp); 1048 unsigned long addr; 1049 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1050 1051 kcb->jprobe_saved_regs = *regs; 1052 kcb->jprobe_saved_sp = stack_addr(regs); 1053 addr = (unsigned long)(kcb->jprobe_saved_sp); 1054 1055 /* 1056 * As Linus pointed out, gcc assumes that the callee 1057 * owns the argument space and could overwrite it, e.g. 1058 * tailcall optimization. So, to be absolutely safe 1059 * we also save and restore enough stack bytes to cover 1060 * the argument area. 1061 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1062 * raw stack chunk with redzones: 1063 */ 1064 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1065 regs->flags &= ~X86_EFLAGS_IF; 1066 trace_hardirqs_off(); 1067 regs->ip = (unsigned long)(jp->entry); 1068 1069 /* 1070 * jprobes use jprobe_return() which skips the normal return 1071 * path of the function, and this messes up the accounting of the 1072 * function graph tracer to get messed up. 1073 * 1074 * Pause function graph tracing while performing the jprobe function. 1075 */ 1076 pause_graph_tracing(); 1077 return 1; 1078 } 1079 NOKPROBE_SYMBOL(setjmp_pre_handler); 1080 1081 void jprobe_return(void) 1082 { 1083 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1084 1085 /* Unpoison stack redzones in the frames we are going to jump over. */ 1086 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1087 1088 asm volatile ( 1089 #ifdef CONFIG_X86_64 1090 " xchg %%rbx,%%rsp \n" 1091 #else 1092 " xchgl %%ebx,%%esp \n" 1093 #endif 1094 " int3 \n" 1095 " .globl jprobe_return_end\n" 1096 " jprobe_return_end: \n" 1097 " nop \n"::"b" 1098 (kcb->jprobe_saved_sp):"memory"); 1099 } 1100 NOKPROBE_SYMBOL(jprobe_return); 1101 NOKPROBE_SYMBOL(jprobe_return_end); 1102 1103 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1104 { 1105 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1106 u8 *addr = (u8 *) (regs->ip - 1); 1107 struct jprobe *jp = container_of(p, struct jprobe, kp); 1108 void *saved_sp = kcb->jprobe_saved_sp; 1109 1110 if ((addr > (u8 *) jprobe_return) && 1111 (addr < (u8 *) jprobe_return_end)) { 1112 if (stack_addr(regs) != saved_sp) { 1113 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1114 printk(KERN_ERR 1115 "current sp %p does not match saved sp %p\n", 1116 stack_addr(regs), saved_sp); 1117 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1118 show_regs(saved_regs); 1119 printk(KERN_ERR "Current registers\n"); 1120 show_regs(regs); 1121 BUG(); 1122 } 1123 /* It's OK to start function graph tracing again */ 1124 unpause_graph_tracing(); 1125 *regs = kcb->jprobe_saved_regs; 1126 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1127 preempt_enable_no_resched(); 1128 return 1; 1129 } 1130 return 0; 1131 } 1132 NOKPROBE_SYMBOL(longjmp_break_handler); 1133 1134 bool arch_within_kprobe_blacklist(unsigned long addr) 1135 { 1136 return (addr >= (unsigned long)__kprobes_text_start && 1137 addr < (unsigned long)__kprobes_text_end) || 1138 (addr >= (unsigned long)__entry_text_start && 1139 addr < (unsigned long)__entry_text_end); 1140 } 1141 1142 int __init arch_init_kprobes(void) 1143 { 1144 return 0; 1145 } 1146 1147 int arch_trampoline_kprobe(struct kprobe *p) 1148 { 1149 return 0; 1150 } 1151