1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 #include <linux/moduleloader.h> 56 57 #include <asm/text-patching.h> 58 #include <asm/cacheflush.h> 59 #include <asm/desc.h> 60 #include <asm/pgtable.h> 61 #include <linux/uaccess.h> 62 #include <asm/alternative.h> 63 #include <asm/insn.h> 64 #include <asm/debugreg.h> 65 #include <asm/set_memory.h> 66 67 #include "common.h" 68 69 void jprobe_return_end(void); 70 71 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 72 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 73 74 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 75 76 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 81 << (row % 32)) 82 /* 83 * Undefined/reserved opcodes, conditional jump, Opcode Extension 84 * Groups, and some special opcodes can not boost. 85 * This is non-const and volatile to keep gcc from statically 86 * optimizing it out, as variable_test_bit makes gcc think only 87 * *(unsigned long*) is used. 88 */ 89 static volatile u32 twobyte_is_boostable[256 / 32] = { 90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 91 /* ---------------------------------------------- */ 92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 108 /* ----------------------------------------------- */ 109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 110 }; 111 #undef W 112 113 struct kretprobe_blackpoint kretprobe_blacklist[] = { 114 {"__switch_to", }, /* This function switches only current task, but 115 doesn't switch kernel stack.*/ 116 {NULL, NULL} /* Terminator */ 117 }; 118 119 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 120 121 static nokprobe_inline void 122 __synthesize_relative_insn(void *from, void *to, u8 op) 123 { 124 struct __arch_relative_insn { 125 u8 op; 126 s32 raddr; 127 } __packed *insn; 128 129 insn = (struct __arch_relative_insn *)from; 130 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 131 insn->op = op; 132 } 133 134 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 135 void synthesize_reljump(void *from, void *to) 136 { 137 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 138 } 139 NOKPROBE_SYMBOL(synthesize_reljump); 140 141 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 142 void synthesize_relcall(void *from, void *to) 143 { 144 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 145 } 146 NOKPROBE_SYMBOL(synthesize_relcall); 147 148 /* 149 * Skip the prefixes of the instruction. 150 */ 151 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 152 { 153 insn_attr_t attr; 154 155 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 156 while (inat_is_legacy_prefix(attr)) { 157 insn++; 158 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 159 } 160 #ifdef CONFIG_X86_64 161 if (inat_is_rex_prefix(attr)) 162 insn++; 163 #endif 164 return insn; 165 } 166 NOKPROBE_SYMBOL(skip_prefixes); 167 168 /* 169 * Returns non-zero if INSN is boostable. 170 * RIP relative instructions are adjusted at copying time in 64 bits mode 171 */ 172 int can_boost(struct insn *insn, void *addr) 173 { 174 kprobe_opcode_t opcode; 175 176 if (search_exception_tables((unsigned long)addr)) 177 return 0; /* Page fault may occur on this address. */ 178 179 /* 2nd-byte opcode */ 180 if (insn->opcode.nbytes == 2) 181 return test_bit(insn->opcode.bytes[1], 182 (unsigned long *)twobyte_is_boostable); 183 184 if (insn->opcode.nbytes != 1) 185 return 0; 186 187 /* Can't boost Address-size override prefix */ 188 if (unlikely(inat_is_address_size_prefix(insn->attr))) 189 return 0; 190 191 opcode = insn->opcode.bytes[0]; 192 193 switch (opcode & 0xf0) { 194 case 0x60: 195 /* can't boost "bound" */ 196 return (opcode != 0x62); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0x90: 200 return opcode != 0x9a; /* can't boost call far */ 201 case 0xc0: 202 /* can't boost software-interruptions */ 203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 204 case 0xd0: 205 /* can boost AA* and XLAT */ 206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 207 case 0xe0: 208 /* can boost in/out and absolute jmps */ 209 return ((opcode & 0x04) || opcode == 0xea); 210 case 0xf0: 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* CS override prefix and call are not boostable */ 215 return (opcode != 0x2e && opcode != 0x9a); 216 } 217 } 218 219 static unsigned long 220 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 221 { 222 struct kprobe *kp; 223 unsigned long faddr; 224 225 kp = get_kprobe((void *)addr); 226 faddr = ftrace_location(addr); 227 /* 228 * Addresses inside the ftrace location are refused by 229 * arch_check_ftrace_location(). Something went terribly wrong 230 * if such an address is checked here. 231 */ 232 if (WARN_ON(faddr && faddr != addr)) 233 return 0UL; 234 /* 235 * Use the current code if it is not modified by Kprobe 236 * and it cannot be modified by ftrace. 237 */ 238 if (!kp && !faddr) 239 return addr; 240 241 /* 242 * Basically, kp->ainsn.insn has an original instruction. 243 * However, RIP-relative instruction can not do single-stepping 244 * at different place, __copy_instruction() tweaks the displacement of 245 * that instruction. In that case, we can't recover the instruction 246 * from the kp->ainsn.insn. 247 * 248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 249 * of the first byte of the probed instruction, which is overwritten 250 * by int3. And the instruction at kp->addr is not modified by kprobes 251 * except for the first byte, we can recover the original instruction 252 * from it and kp->opcode. 253 * 254 * In case of Kprobes using ftrace, we do not have a copy of 255 * the original instruction. In fact, the ftrace location might 256 * be modified at anytime and even could be in an inconsistent state. 257 * Fortunately, we know that the original code is the ideal 5-byte 258 * long NOP. 259 */ 260 if (probe_kernel_read(buf, (void *)addr, 261 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 262 return 0UL; 263 264 if (faddr) 265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 266 else 267 buf[0] = kp->opcode; 268 return (unsigned long)buf; 269 } 270 271 /* 272 * Recover the probed instruction at addr for further analysis. 273 * Caller must lock kprobes by kprobe_mutex, or disable preemption 274 * for preventing to release referencing kprobes. 275 * Returns zero if the instruction can not get recovered (or access failed). 276 */ 277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 278 { 279 unsigned long __addr; 280 281 __addr = __recover_optprobed_insn(buf, addr); 282 if (__addr != addr) 283 return __addr; 284 285 return __recover_probed_insn(buf, addr); 286 } 287 288 /* Check if paddr is at an instruction boundary */ 289 static int can_probe(unsigned long paddr) 290 { 291 unsigned long addr, __addr, offset = 0; 292 struct insn insn; 293 kprobe_opcode_t buf[MAX_INSN_SIZE]; 294 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 296 return 0; 297 298 /* Decode instructions */ 299 addr = paddr - offset; 300 while (addr < paddr) { 301 /* 302 * Check if the instruction has been modified by another 303 * kprobe, in which case we replace the breakpoint by the 304 * original instruction in our buffer. 305 * Also, jump optimization will change the breakpoint to 306 * relative-jump. Since the relative-jump itself is 307 * normally used, we just go through if there is no kprobe. 308 */ 309 __addr = recover_probed_instruction(buf, addr); 310 if (!__addr) 311 return 0; 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 313 insn_get_length(&insn); 314 315 /* 316 * Another debugging subsystem might insert this breakpoint. 317 * In that case, we can't recover it. 318 */ 319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 320 return 0; 321 addr += insn.length; 322 } 323 324 return (addr == paddr); 325 } 326 327 /* 328 * Returns non-zero if opcode modifies the interrupt flag. 329 */ 330 static int is_IF_modifier(kprobe_opcode_t *insn) 331 { 332 /* Skip prefixes */ 333 insn = skip_prefixes(insn); 334 335 switch (*insn) { 336 case 0xfa: /* cli */ 337 case 0xfb: /* sti */ 338 case 0xcf: /* iret/iretd */ 339 case 0x9d: /* popf/popfd */ 340 return 1; 341 } 342 343 return 0; 344 } 345 346 /* 347 * Copy an instruction with recovering modified instruction by kprobes 348 * and adjust the displacement if the instruction uses the %rip-relative 349 * addressing mode. 350 * This returns the length of copied instruction, or 0 if it has an error. 351 */ 352 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn) 353 { 354 kprobe_opcode_t buf[MAX_INSN_SIZE]; 355 unsigned long recovered_insn = 356 recover_probed_instruction(buf, (unsigned long)src); 357 358 if (!recovered_insn || !insn) 359 return 0; 360 361 /* This can access kernel text if given address is not recovered */ 362 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 363 return 0; 364 365 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 366 insn_get_length(insn); 367 368 /* Another subsystem puts a breakpoint, failed to recover */ 369 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 370 return 0; 371 372 #ifdef CONFIG_X86_64 373 /* Only x86_64 has RIP relative instructions */ 374 if (insn_rip_relative(insn)) { 375 s64 newdisp; 376 u8 *disp; 377 /* 378 * The copied instruction uses the %rip-relative addressing 379 * mode. Adjust the displacement for the difference between 380 * the original location of this instruction and the location 381 * of the copy that will actually be run. The tricky bit here 382 * is making sure that the sign extension happens correctly in 383 * this calculation, since we need a signed 32-bit result to 384 * be sign-extended to 64 bits when it's added to the %rip 385 * value and yield the same 64-bit result that the sign- 386 * extension of the original signed 32-bit displacement would 387 * have given. 388 */ 389 newdisp = (u8 *) src + (s64) insn->displacement.value 390 - (u8 *) dest; 391 if ((s64) (s32) newdisp != newdisp) { 392 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 393 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", 394 src, dest, insn->displacement.value); 395 return 0; 396 } 397 disp = (u8 *) dest + insn_offset_displacement(insn); 398 *(s32 *) disp = (s32) newdisp; 399 } 400 #endif 401 return insn->length; 402 } 403 404 /* Prepare reljump right after instruction to boost */ 405 static void prepare_boost(struct kprobe *p, struct insn *insn) 406 { 407 if (can_boost(insn, p->addr) && 408 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) { 409 /* 410 * These instructions can be executed directly if it 411 * jumps back to correct address. 412 */ 413 synthesize_reljump(p->ainsn.insn + insn->length, 414 p->addr + insn->length); 415 p->ainsn.boostable = true; 416 } else { 417 p->ainsn.boostable = false; 418 } 419 } 420 421 /* Recover page to RW mode before releasing it */ 422 void free_insn_page(void *page) 423 { 424 set_memory_nx((unsigned long)page & PAGE_MASK, 1); 425 set_memory_rw((unsigned long)page & PAGE_MASK, 1); 426 module_memfree(page); 427 } 428 429 static int arch_copy_kprobe(struct kprobe *p) 430 { 431 struct insn insn; 432 int len; 433 434 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 435 436 /* Copy an instruction with recovering if other optprobe modifies it.*/ 437 len = __copy_instruction(p->ainsn.insn, p->addr, &insn); 438 if (!len) 439 return -EINVAL; 440 441 /* 442 * __copy_instruction can modify the displacement of the instruction, 443 * but it doesn't affect boostable check. 444 */ 445 prepare_boost(p, &insn); 446 447 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 448 449 /* Check whether the instruction modifies Interrupt Flag or not */ 450 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 451 452 /* Also, displacement change doesn't affect the first byte */ 453 p->opcode = p->ainsn.insn[0]; 454 455 return 0; 456 } 457 458 int arch_prepare_kprobe(struct kprobe *p) 459 { 460 if (alternatives_text_reserved(p->addr, p->addr)) 461 return -EINVAL; 462 463 if (!can_probe((unsigned long)p->addr)) 464 return -EILSEQ; 465 /* insn: must be on special executable page on x86. */ 466 p->ainsn.insn = get_insn_slot(); 467 if (!p->ainsn.insn) 468 return -ENOMEM; 469 470 return arch_copy_kprobe(p); 471 } 472 473 void arch_arm_kprobe(struct kprobe *p) 474 { 475 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 476 } 477 478 void arch_disarm_kprobe(struct kprobe *p) 479 { 480 text_poke(p->addr, &p->opcode, 1); 481 } 482 483 void arch_remove_kprobe(struct kprobe *p) 484 { 485 if (p->ainsn.insn) { 486 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 487 p->ainsn.insn = NULL; 488 } 489 } 490 491 static nokprobe_inline void 492 save_previous_kprobe(struct kprobe_ctlblk *kcb) 493 { 494 kcb->prev_kprobe.kp = kprobe_running(); 495 kcb->prev_kprobe.status = kcb->kprobe_status; 496 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 497 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 498 } 499 500 static nokprobe_inline void 501 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 502 { 503 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 504 kcb->kprobe_status = kcb->prev_kprobe.status; 505 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 506 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 507 } 508 509 static nokprobe_inline void 510 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 511 struct kprobe_ctlblk *kcb) 512 { 513 __this_cpu_write(current_kprobe, p); 514 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 515 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 516 if (p->ainsn.if_modifier) 517 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 518 } 519 520 static nokprobe_inline void clear_btf(void) 521 { 522 if (test_thread_flag(TIF_BLOCKSTEP)) { 523 unsigned long debugctl = get_debugctlmsr(); 524 525 debugctl &= ~DEBUGCTLMSR_BTF; 526 update_debugctlmsr(debugctl); 527 } 528 } 529 530 static nokprobe_inline void restore_btf(void) 531 { 532 if (test_thread_flag(TIF_BLOCKSTEP)) { 533 unsigned long debugctl = get_debugctlmsr(); 534 535 debugctl |= DEBUGCTLMSR_BTF; 536 update_debugctlmsr(debugctl); 537 } 538 } 539 540 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 541 { 542 unsigned long *sara = stack_addr(regs); 543 544 ri->ret_addr = (kprobe_opcode_t *) *sara; 545 546 /* Replace the return addr with trampoline addr */ 547 *sara = (unsigned long) &kretprobe_trampoline; 548 } 549 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 550 551 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 552 struct kprobe_ctlblk *kcb, int reenter) 553 { 554 if (setup_detour_execution(p, regs, reenter)) 555 return; 556 557 #if !defined(CONFIG_PREEMPT) 558 if (p->ainsn.boostable && !p->post_handler) { 559 /* Boost up -- we can execute copied instructions directly */ 560 if (!reenter) 561 reset_current_kprobe(); 562 /* 563 * Reentering boosted probe doesn't reset current_kprobe, 564 * nor set current_kprobe, because it doesn't use single 565 * stepping. 566 */ 567 regs->ip = (unsigned long)p->ainsn.insn; 568 preempt_enable_no_resched(); 569 return; 570 } 571 #endif 572 if (reenter) { 573 save_previous_kprobe(kcb); 574 set_current_kprobe(p, regs, kcb); 575 kcb->kprobe_status = KPROBE_REENTER; 576 } else 577 kcb->kprobe_status = KPROBE_HIT_SS; 578 /* Prepare real single stepping */ 579 clear_btf(); 580 regs->flags |= X86_EFLAGS_TF; 581 regs->flags &= ~X86_EFLAGS_IF; 582 /* single step inline if the instruction is an int3 */ 583 if (p->opcode == BREAKPOINT_INSTRUCTION) 584 regs->ip = (unsigned long)p->addr; 585 else 586 regs->ip = (unsigned long)p->ainsn.insn; 587 } 588 NOKPROBE_SYMBOL(setup_singlestep); 589 590 /* 591 * We have reentered the kprobe_handler(), since another probe was hit while 592 * within the handler. We save the original kprobes variables and just single 593 * step on the instruction of the new probe without calling any user handlers. 594 */ 595 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 596 struct kprobe_ctlblk *kcb) 597 { 598 switch (kcb->kprobe_status) { 599 case KPROBE_HIT_SSDONE: 600 case KPROBE_HIT_ACTIVE: 601 case KPROBE_HIT_SS: 602 kprobes_inc_nmissed_count(p); 603 setup_singlestep(p, regs, kcb, 1); 604 break; 605 case KPROBE_REENTER: 606 /* A probe has been hit in the codepath leading up to, or just 607 * after, single-stepping of a probed instruction. This entire 608 * codepath should strictly reside in .kprobes.text section. 609 * Raise a BUG or we'll continue in an endless reentering loop 610 * and eventually a stack overflow. 611 */ 612 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 613 p->addr); 614 dump_kprobe(p); 615 BUG(); 616 default: 617 /* impossible cases */ 618 WARN_ON(1); 619 return 0; 620 } 621 622 return 1; 623 } 624 NOKPROBE_SYMBOL(reenter_kprobe); 625 626 /* 627 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 628 * remain disabled throughout this function. 629 */ 630 int kprobe_int3_handler(struct pt_regs *regs) 631 { 632 kprobe_opcode_t *addr; 633 struct kprobe *p; 634 struct kprobe_ctlblk *kcb; 635 636 if (user_mode(regs)) 637 return 0; 638 639 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 640 /* 641 * We don't want to be preempted for the entire 642 * duration of kprobe processing. We conditionally 643 * re-enable preemption at the end of this function, 644 * and also in reenter_kprobe() and setup_singlestep(). 645 */ 646 preempt_disable(); 647 648 kcb = get_kprobe_ctlblk(); 649 p = get_kprobe(addr); 650 651 if (p) { 652 if (kprobe_running()) { 653 if (reenter_kprobe(p, regs, kcb)) 654 return 1; 655 } else { 656 set_current_kprobe(p, regs, kcb); 657 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 658 659 /* 660 * If we have no pre-handler or it returned 0, we 661 * continue with normal processing. If we have a 662 * pre-handler and it returned non-zero, it prepped 663 * for calling the break_handler below on re-entry 664 * for jprobe processing, so get out doing nothing 665 * more here. 666 */ 667 if (!p->pre_handler || !p->pre_handler(p, regs)) 668 setup_singlestep(p, regs, kcb, 0); 669 return 1; 670 } 671 } else if (*addr != BREAKPOINT_INSTRUCTION) { 672 /* 673 * The breakpoint instruction was removed right 674 * after we hit it. Another cpu has removed 675 * either a probepoint or a debugger breakpoint 676 * at this address. In either case, no further 677 * handling of this interrupt is appropriate. 678 * Back up over the (now missing) int3 and run 679 * the original instruction. 680 */ 681 regs->ip = (unsigned long)addr; 682 preempt_enable_no_resched(); 683 return 1; 684 } else if (kprobe_running()) { 685 p = __this_cpu_read(current_kprobe); 686 if (p->break_handler && p->break_handler(p, regs)) { 687 if (!skip_singlestep(p, regs, kcb)) 688 setup_singlestep(p, regs, kcb, 0); 689 return 1; 690 } 691 } /* else: not a kprobe fault; let the kernel handle it */ 692 693 preempt_enable_no_resched(); 694 return 0; 695 } 696 NOKPROBE_SYMBOL(kprobe_int3_handler); 697 698 /* 699 * When a retprobed function returns, this code saves registers and 700 * calls trampoline_handler() runs, which calls the kretprobe's handler. 701 */ 702 asm( 703 ".global kretprobe_trampoline\n" 704 ".type kretprobe_trampoline, @function\n" 705 "kretprobe_trampoline:\n" 706 #ifdef CONFIG_X86_64 707 /* We don't bother saving the ss register */ 708 " pushq %rsp\n" 709 " pushfq\n" 710 SAVE_REGS_STRING 711 " movq %rsp, %rdi\n" 712 " call trampoline_handler\n" 713 /* Replace saved sp with true return address. */ 714 " movq %rax, 152(%rsp)\n" 715 RESTORE_REGS_STRING 716 " popfq\n" 717 #else 718 " pushf\n" 719 SAVE_REGS_STRING 720 " movl %esp, %eax\n" 721 " call trampoline_handler\n" 722 /* Move flags to cs */ 723 " movl 56(%esp), %edx\n" 724 " movl %edx, 52(%esp)\n" 725 /* Replace saved flags with true return address. */ 726 " movl %eax, 56(%esp)\n" 727 RESTORE_REGS_STRING 728 " popf\n" 729 #endif 730 " ret\n" 731 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 732 ); 733 NOKPROBE_SYMBOL(kretprobe_trampoline); 734 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 735 736 /* 737 * Called from kretprobe_trampoline 738 */ 739 __visible __used void *trampoline_handler(struct pt_regs *regs) 740 { 741 struct kretprobe_instance *ri = NULL; 742 struct hlist_head *head, empty_rp; 743 struct hlist_node *tmp; 744 unsigned long flags, orig_ret_address = 0; 745 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 746 kprobe_opcode_t *correct_ret_addr = NULL; 747 748 INIT_HLIST_HEAD(&empty_rp); 749 kretprobe_hash_lock(current, &head, &flags); 750 /* fixup registers */ 751 #ifdef CONFIG_X86_64 752 regs->cs = __KERNEL_CS; 753 #else 754 regs->cs = __KERNEL_CS | get_kernel_rpl(); 755 regs->gs = 0; 756 #endif 757 regs->ip = trampoline_address; 758 regs->orig_ax = ~0UL; 759 760 /* 761 * It is possible to have multiple instances associated with a given 762 * task either because multiple functions in the call path have 763 * return probes installed on them, and/or more than one 764 * return probe was registered for a target function. 765 * 766 * We can handle this because: 767 * - instances are always pushed into the head of the list 768 * - when multiple return probes are registered for the same 769 * function, the (chronologically) first instance's ret_addr 770 * will be the real return address, and all the rest will 771 * point to kretprobe_trampoline. 772 */ 773 hlist_for_each_entry(ri, head, hlist) { 774 if (ri->task != current) 775 /* another task is sharing our hash bucket */ 776 continue; 777 778 orig_ret_address = (unsigned long)ri->ret_addr; 779 780 if (orig_ret_address != trampoline_address) 781 /* 782 * This is the real return address. Any other 783 * instances associated with this task are for 784 * other calls deeper on the call stack 785 */ 786 break; 787 } 788 789 kretprobe_assert(ri, orig_ret_address, trampoline_address); 790 791 correct_ret_addr = ri->ret_addr; 792 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 793 if (ri->task != current) 794 /* another task is sharing our hash bucket */ 795 continue; 796 797 orig_ret_address = (unsigned long)ri->ret_addr; 798 if (ri->rp && ri->rp->handler) { 799 __this_cpu_write(current_kprobe, &ri->rp->kp); 800 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 801 ri->ret_addr = correct_ret_addr; 802 ri->rp->handler(ri, regs); 803 __this_cpu_write(current_kprobe, NULL); 804 } 805 806 recycle_rp_inst(ri, &empty_rp); 807 808 if (orig_ret_address != trampoline_address) 809 /* 810 * This is the real return address. Any other 811 * instances associated with this task are for 812 * other calls deeper on the call stack 813 */ 814 break; 815 } 816 817 kretprobe_hash_unlock(current, &flags); 818 819 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 820 hlist_del(&ri->hlist); 821 kfree(ri); 822 } 823 return (void *)orig_ret_address; 824 } 825 NOKPROBE_SYMBOL(trampoline_handler); 826 827 /* 828 * Called after single-stepping. p->addr is the address of the 829 * instruction whose first byte has been replaced by the "int 3" 830 * instruction. To avoid the SMP problems that can occur when we 831 * temporarily put back the original opcode to single-step, we 832 * single-stepped a copy of the instruction. The address of this 833 * copy is p->ainsn.insn. 834 * 835 * This function prepares to return from the post-single-step 836 * interrupt. We have to fix up the stack as follows: 837 * 838 * 0) Except in the case of absolute or indirect jump or call instructions, 839 * the new ip is relative to the copied instruction. We need to make 840 * it relative to the original instruction. 841 * 842 * 1) If the single-stepped instruction was pushfl, then the TF and IF 843 * flags are set in the just-pushed flags, and may need to be cleared. 844 * 845 * 2) If the single-stepped instruction was a call, the return address 846 * that is atop the stack is the address following the copied instruction. 847 * We need to make it the address following the original instruction. 848 * 849 * If this is the first time we've single-stepped the instruction at 850 * this probepoint, and the instruction is boostable, boost it: add a 851 * jump instruction after the copied instruction, that jumps to the next 852 * instruction after the probepoint. 853 */ 854 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 855 struct kprobe_ctlblk *kcb) 856 { 857 unsigned long *tos = stack_addr(regs); 858 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 859 unsigned long orig_ip = (unsigned long)p->addr; 860 kprobe_opcode_t *insn = p->ainsn.insn; 861 862 /* Skip prefixes */ 863 insn = skip_prefixes(insn); 864 865 regs->flags &= ~X86_EFLAGS_TF; 866 switch (*insn) { 867 case 0x9c: /* pushfl */ 868 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 869 *tos |= kcb->kprobe_old_flags; 870 break; 871 case 0xc2: /* iret/ret/lret */ 872 case 0xc3: 873 case 0xca: 874 case 0xcb: 875 case 0xcf: 876 case 0xea: /* jmp absolute -- ip is correct */ 877 /* ip is already adjusted, no more changes required */ 878 p->ainsn.boostable = true; 879 goto no_change; 880 case 0xe8: /* call relative - Fix return addr */ 881 *tos = orig_ip + (*tos - copy_ip); 882 break; 883 #ifdef CONFIG_X86_32 884 case 0x9a: /* call absolute -- same as call absolute, indirect */ 885 *tos = orig_ip + (*tos - copy_ip); 886 goto no_change; 887 #endif 888 case 0xff: 889 if ((insn[1] & 0x30) == 0x10) { 890 /* 891 * call absolute, indirect 892 * Fix return addr; ip is correct. 893 * But this is not boostable 894 */ 895 *tos = orig_ip + (*tos - copy_ip); 896 goto no_change; 897 } else if (((insn[1] & 0x31) == 0x20) || 898 ((insn[1] & 0x31) == 0x21)) { 899 /* 900 * jmp near and far, absolute indirect 901 * ip is correct. And this is boostable 902 */ 903 p->ainsn.boostable = true; 904 goto no_change; 905 } 906 default: 907 break; 908 } 909 910 regs->ip += orig_ip - copy_ip; 911 912 no_change: 913 restore_btf(); 914 } 915 NOKPROBE_SYMBOL(resume_execution); 916 917 /* 918 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 919 * remain disabled throughout this function. 920 */ 921 int kprobe_debug_handler(struct pt_regs *regs) 922 { 923 struct kprobe *cur = kprobe_running(); 924 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 925 926 if (!cur) 927 return 0; 928 929 resume_execution(cur, regs, kcb); 930 regs->flags |= kcb->kprobe_saved_flags; 931 932 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 933 kcb->kprobe_status = KPROBE_HIT_SSDONE; 934 cur->post_handler(cur, regs, 0); 935 } 936 937 /* Restore back the original saved kprobes variables and continue. */ 938 if (kcb->kprobe_status == KPROBE_REENTER) { 939 restore_previous_kprobe(kcb); 940 goto out; 941 } 942 reset_current_kprobe(); 943 out: 944 preempt_enable_no_resched(); 945 946 /* 947 * if somebody else is singlestepping across a probe point, flags 948 * will have TF set, in which case, continue the remaining processing 949 * of do_debug, as if this is not a probe hit. 950 */ 951 if (regs->flags & X86_EFLAGS_TF) 952 return 0; 953 954 return 1; 955 } 956 NOKPROBE_SYMBOL(kprobe_debug_handler); 957 958 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 959 { 960 struct kprobe *cur = kprobe_running(); 961 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 962 963 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 964 /* This must happen on single-stepping */ 965 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 966 kcb->kprobe_status != KPROBE_REENTER); 967 /* 968 * We are here because the instruction being single 969 * stepped caused a page fault. We reset the current 970 * kprobe and the ip points back to the probe address 971 * and allow the page fault handler to continue as a 972 * normal page fault. 973 */ 974 regs->ip = (unsigned long)cur->addr; 975 /* 976 * Trap flag (TF) has been set here because this fault 977 * happened where the single stepping will be done. 978 * So clear it by resetting the current kprobe: 979 */ 980 regs->flags &= ~X86_EFLAGS_TF; 981 982 /* 983 * If the TF flag was set before the kprobe hit, 984 * don't touch it: 985 */ 986 regs->flags |= kcb->kprobe_old_flags; 987 988 if (kcb->kprobe_status == KPROBE_REENTER) 989 restore_previous_kprobe(kcb); 990 else 991 reset_current_kprobe(); 992 preempt_enable_no_resched(); 993 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 994 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 995 /* 996 * We increment the nmissed count for accounting, 997 * we can also use npre/npostfault count for accounting 998 * these specific fault cases. 999 */ 1000 kprobes_inc_nmissed_count(cur); 1001 1002 /* 1003 * We come here because instructions in the pre/post 1004 * handler caused the page_fault, this could happen 1005 * if handler tries to access user space by 1006 * copy_from_user(), get_user() etc. Let the 1007 * user-specified handler try to fix it first. 1008 */ 1009 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1010 return 1; 1011 1012 /* 1013 * In case the user-specified fault handler returned 1014 * zero, try to fix up. 1015 */ 1016 if (fixup_exception(regs, trapnr)) 1017 return 1; 1018 1019 /* 1020 * fixup routine could not handle it, 1021 * Let do_page_fault() fix it. 1022 */ 1023 } 1024 1025 return 0; 1026 } 1027 NOKPROBE_SYMBOL(kprobe_fault_handler); 1028 1029 /* 1030 * Wrapper routine for handling exceptions. 1031 */ 1032 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1033 void *data) 1034 { 1035 struct die_args *args = data; 1036 int ret = NOTIFY_DONE; 1037 1038 if (args->regs && user_mode(args->regs)) 1039 return ret; 1040 1041 if (val == DIE_GPF) { 1042 /* 1043 * To be potentially processing a kprobe fault and to 1044 * trust the result from kprobe_running(), we have 1045 * be non-preemptible. 1046 */ 1047 if (!preemptible() && kprobe_running() && 1048 kprobe_fault_handler(args->regs, args->trapnr)) 1049 ret = NOTIFY_STOP; 1050 } 1051 return ret; 1052 } 1053 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1054 1055 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1056 { 1057 struct jprobe *jp = container_of(p, struct jprobe, kp); 1058 unsigned long addr; 1059 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1060 1061 kcb->jprobe_saved_regs = *regs; 1062 kcb->jprobe_saved_sp = stack_addr(regs); 1063 addr = (unsigned long)(kcb->jprobe_saved_sp); 1064 1065 /* 1066 * As Linus pointed out, gcc assumes that the callee 1067 * owns the argument space and could overwrite it, e.g. 1068 * tailcall optimization. So, to be absolutely safe 1069 * we also save and restore enough stack bytes to cover 1070 * the argument area. 1071 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1072 * raw stack chunk with redzones: 1073 */ 1074 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1075 regs->flags &= ~X86_EFLAGS_IF; 1076 trace_hardirqs_off(); 1077 regs->ip = (unsigned long)(jp->entry); 1078 1079 /* 1080 * jprobes use jprobe_return() which skips the normal return 1081 * path of the function, and this messes up the accounting of the 1082 * function graph tracer to get messed up. 1083 * 1084 * Pause function graph tracing while performing the jprobe function. 1085 */ 1086 pause_graph_tracing(); 1087 return 1; 1088 } 1089 NOKPROBE_SYMBOL(setjmp_pre_handler); 1090 1091 void jprobe_return(void) 1092 { 1093 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1094 1095 /* Unpoison stack redzones in the frames we are going to jump over. */ 1096 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1097 1098 asm volatile ( 1099 #ifdef CONFIG_X86_64 1100 " xchg %%rbx,%%rsp \n" 1101 #else 1102 " xchgl %%ebx,%%esp \n" 1103 #endif 1104 " int3 \n" 1105 " .globl jprobe_return_end\n" 1106 " jprobe_return_end: \n" 1107 " nop \n"::"b" 1108 (kcb->jprobe_saved_sp):"memory"); 1109 } 1110 NOKPROBE_SYMBOL(jprobe_return); 1111 NOKPROBE_SYMBOL(jprobe_return_end); 1112 1113 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1114 { 1115 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1116 u8 *addr = (u8 *) (regs->ip - 1); 1117 struct jprobe *jp = container_of(p, struct jprobe, kp); 1118 void *saved_sp = kcb->jprobe_saved_sp; 1119 1120 if ((addr > (u8 *) jprobe_return) && 1121 (addr < (u8 *) jprobe_return_end)) { 1122 if (stack_addr(regs) != saved_sp) { 1123 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1124 printk(KERN_ERR 1125 "current sp %p does not match saved sp %p\n", 1126 stack_addr(regs), saved_sp); 1127 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1128 show_regs(saved_regs); 1129 printk(KERN_ERR "Current registers\n"); 1130 show_regs(regs); 1131 BUG(); 1132 } 1133 /* It's OK to start function graph tracing again */ 1134 unpause_graph_tracing(); 1135 *regs = kcb->jprobe_saved_regs; 1136 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1137 preempt_enable_no_resched(); 1138 return 1; 1139 } 1140 return 0; 1141 } 1142 NOKPROBE_SYMBOL(longjmp_break_handler); 1143 1144 bool arch_within_kprobe_blacklist(unsigned long addr) 1145 { 1146 return (addr >= (unsigned long)__kprobes_text_start && 1147 addr < (unsigned long)__kprobes_text_end) || 1148 (addr >= (unsigned long)__entry_text_start && 1149 addr < (unsigned long)__entry_text_end); 1150 } 1151 1152 int __init arch_init_kprobes(void) 1153 { 1154 return 0; 1155 } 1156 1157 int arch_trampoline_kprobe(struct kprobe *p) 1158 { 1159 return 0; 1160 } 1161