1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 53 #include <asm/cacheflush.h> 54 #include <asm/desc.h> 55 #include <asm/pgtable.h> 56 #include <asm/uaccess.h> 57 #include <asm/alternative.h> 58 #include <asm/insn.h> 59 #include <asm/debugreg.h> 60 61 #include "common.h" 62 63 void jprobe_return_end(void); 64 65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 67 68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 69 70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 75 << (row % 32)) 76 /* 77 * Undefined/reserved opcodes, conditional jump, Opcode Extension 78 * Groups, and some special opcodes can not boost. 79 * This is non-const and volatile to keep gcc from statically 80 * optimizing it out, as variable_test_bit makes gcc think only 81 * *(unsigned long*) is used. 82 */ 83 static volatile u32 twobyte_is_boostable[256 / 32] = { 84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 85 /* ---------------------------------------------- */ 86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */ 88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 102 /* ----------------------------------------------- */ 103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 104 }; 105 #undef W 106 107 struct kretprobe_blackpoint kretprobe_blacklist[] = { 108 {"__switch_to", }, /* This function switches only current task, but 109 doesn't switch kernel stack.*/ 110 {NULL, NULL} /* Terminator */ 111 }; 112 113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 114 115 static nokprobe_inline void 116 __synthesize_relative_insn(void *from, void *to, u8 op) 117 { 118 struct __arch_relative_insn { 119 u8 op; 120 s32 raddr; 121 } __packed *insn; 122 123 insn = (struct __arch_relative_insn *)from; 124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 125 insn->op = op; 126 } 127 128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 129 void synthesize_reljump(void *from, void *to) 130 { 131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 132 } 133 NOKPROBE_SYMBOL(synthesize_reljump); 134 135 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 136 void synthesize_relcall(void *from, void *to) 137 { 138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 139 } 140 NOKPROBE_SYMBOL(synthesize_relcall); 141 142 /* 143 * Skip the prefixes of the instruction. 144 */ 145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 146 { 147 insn_attr_t attr; 148 149 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 150 while (inat_is_legacy_prefix(attr)) { 151 insn++; 152 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 153 } 154 #ifdef CONFIG_X86_64 155 if (inat_is_rex_prefix(attr)) 156 insn++; 157 #endif 158 return insn; 159 } 160 NOKPROBE_SYMBOL(skip_prefixes); 161 162 /* 163 * Returns non-zero if opcode is boostable. 164 * RIP relative instructions are adjusted at copying time in 64 bits mode 165 */ 166 int can_boost(kprobe_opcode_t *opcodes) 167 { 168 kprobe_opcode_t opcode; 169 kprobe_opcode_t *orig_opcodes = opcodes; 170 171 if (search_exception_tables((unsigned long)opcodes)) 172 return 0; /* Page fault may occur on this address. */ 173 174 retry: 175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 176 return 0; 177 opcode = *(opcodes++); 178 179 /* 2nd-byte opcode */ 180 if (opcode == 0x0f) { 181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 182 return 0; 183 return test_bit(*opcodes, 184 (unsigned long *)twobyte_is_boostable); 185 } 186 187 switch (opcode & 0xf0) { 188 #ifdef CONFIG_X86_64 189 case 0x40: 190 goto retry; /* REX prefix is boostable */ 191 #endif 192 case 0x60: 193 if (0x63 < opcode && opcode < 0x67) 194 goto retry; /* prefixes */ 195 /* can't boost Address-size override and bound */ 196 return (opcode != 0x62 && opcode != 0x67); 197 case 0x70: 198 return 0; /* can't boost conditional jump */ 199 case 0xc0: 200 /* can't boost software-interruptions */ 201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 202 case 0xd0: 203 /* can boost AA* and XLAT */ 204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 205 case 0xe0: 206 /* can boost in/out and absolute jmps */ 207 return ((opcode & 0x04) || opcode == 0xea); 208 case 0xf0: 209 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 210 goto retry; /* lock/rep(ne) prefix */ 211 /* clear and set flags are boostable */ 212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 213 default: 214 /* segment override prefixes are boostable */ 215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 216 goto retry; /* prefixes */ 217 /* CS override prefix and call are not boostable */ 218 return (opcode != 0x2e && opcode != 0x9a); 219 } 220 } 221 222 static unsigned long 223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 224 { 225 struct kprobe *kp; 226 227 kp = get_kprobe((void *)addr); 228 /* There is no probe, return original address */ 229 if (!kp) 230 return addr; 231 232 /* 233 * Basically, kp->ainsn.insn has an original instruction. 234 * However, RIP-relative instruction can not do single-stepping 235 * at different place, __copy_instruction() tweaks the displacement of 236 * that instruction. In that case, we can't recover the instruction 237 * from the kp->ainsn.insn. 238 * 239 * On the other hand, kp->opcode has a copy of the first byte of 240 * the probed instruction, which is overwritten by int3. And 241 * the instruction at kp->addr is not modified by kprobes except 242 * for the first byte, we can recover the original instruction 243 * from it and kp->opcode. 244 */ 245 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 246 buf[0] = kp->opcode; 247 return (unsigned long)buf; 248 } 249 250 /* 251 * Recover the probed instruction at addr for further analysis. 252 * Caller must lock kprobes by kprobe_mutex, or disable preemption 253 * for preventing to release referencing kprobes. 254 */ 255 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 256 { 257 unsigned long __addr; 258 259 __addr = __recover_optprobed_insn(buf, addr); 260 if (__addr != addr) 261 return __addr; 262 263 return __recover_probed_insn(buf, addr); 264 } 265 266 /* Check if paddr is at an instruction boundary */ 267 static int can_probe(unsigned long paddr) 268 { 269 unsigned long addr, __addr, offset = 0; 270 struct insn insn; 271 kprobe_opcode_t buf[MAX_INSN_SIZE]; 272 273 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 274 return 0; 275 276 /* Decode instructions */ 277 addr = paddr - offset; 278 while (addr < paddr) { 279 /* 280 * Check if the instruction has been modified by another 281 * kprobe, in which case we replace the breakpoint by the 282 * original instruction in our buffer. 283 * Also, jump optimization will change the breakpoint to 284 * relative-jump. Since the relative-jump itself is 285 * normally used, we just go through if there is no kprobe. 286 */ 287 __addr = recover_probed_instruction(buf, addr); 288 kernel_insn_init(&insn, (void *)__addr); 289 insn_get_length(&insn); 290 291 /* 292 * Another debugging subsystem might insert this breakpoint. 293 * In that case, we can't recover it. 294 */ 295 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 296 return 0; 297 addr += insn.length; 298 } 299 300 return (addr == paddr); 301 } 302 303 /* 304 * Returns non-zero if opcode modifies the interrupt flag. 305 */ 306 static int is_IF_modifier(kprobe_opcode_t *insn) 307 { 308 /* Skip prefixes */ 309 insn = skip_prefixes(insn); 310 311 switch (*insn) { 312 case 0xfa: /* cli */ 313 case 0xfb: /* sti */ 314 case 0xcf: /* iret/iretd */ 315 case 0x9d: /* popf/popfd */ 316 return 1; 317 } 318 319 return 0; 320 } 321 322 /* 323 * Copy an instruction and adjust the displacement if the instruction 324 * uses the %rip-relative addressing mode. 325 * If it does, Return the address of the 32-bit displacement word. 326 * If not, return null. 327 * Only applicable to 64-bit x86. 328 */ 329 int __copy_instruction(u8 *dest, u8 *src) 330 { 331 struct insn insn; 332 kprobe_opcode_t buf[MAX_INSN_SIZE]; 333 334 kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src)); 335 insn_get_length(&insn); 336 /* Another subsystem puts a breakpoint, failed to recover */ 337 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 338 return 0; 339 memcpy(dest, insn.kaddr, insn.length); 340 341 #ifdef CONFIG_X86_64 342 if (insn_rip_relative(&insn)) { 343 s64 newdisp; 344 u8 *disp; 345 kernel_insn_init(&insn, dest); 346 insn_get_displacement(&insn); 347 /* 348 * The copied instruction uses the %rip-relative addressing 349 * mode. Adjust the displacement for the difference between 350 * the original location of this instruction and the location 351 * of the copy that will actually be run. The tricky bit here 352 * is making sure that the sign extension happens correctly in 353 * this calculation, since we need a signed 32-bit result to 354 * be sign-extended to 64 bits when it's added to the %rip 355 * value and yield the same 64-bit result that the sign- 356 * extension of the original signed 32-bit displacement would 357 * have given. 358 */ 359 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 360 if ((s64) (s32) newdisp != newdisp) { 361 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 362 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 363 return 0; 364 } 365 disp = (u8 *) dest + insn_offset_displacement(&insn); 366 *(s32 *) disp = (s32) newdisp; 367 } 368 #endif 369 return insn.length; 370 } 371 372 static int arch_copy_kprobe(struct kprobe *p) 373 { 374 int ret; 375 376 /* Copy an instruction with recovering if other optprobe modifies it.*/ 377 ret = __copy_instruction(p->ainsn.insn, p->addr); 378 if (!ret) 379 return -EINVAL; 380 381 /* 382 * __copy_instruction can modify the displacement of the instruction, 383 * but it doesn't affect boostable check. 384 */ 385 if (can_boost(p->ainsn.insn)) 386 p->ainsn.boostable = 0; 387 else 388 p->ainsn.boostable = -1; 389 390 /* Check whether the instruction modifies Interrupt Flag or not */ 391 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 392 393 /* Also, displacement change doesn't affect the first byte */ 394 p->opcode = p->ainsn.insn[0]; 395 396 return 0; 397 } 398 399 int arch_prepare_kprobe(struct kprobe *p) 400 { 401 if (alternatives_text_reserved(p->addr, p->addr)) 402 return -EINVAL; 403 404 if (!can_probe((unsigned long)p->addr)) 405 return -EILSEQ; 406 /* insn: must be on special executable page on x86. */ 407 p->ainsn.insn = get_insn_slot(); 408 if (!p->ainsn.insn) 409 return -ENOMEM; 410 411 return arch_copy_kprobe(p); 412 } 413 414 void arch_arm_kprobe(struct kprobe *p) 415 { 416 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 417 } 418 419 void arch_disarm_kprobe(struct kprobe *p) 420 { 421 text_poke(p->addr, &p->opcode, 1); 422 } 423 424 void arch_remove_kprobe(struct kprobe *p) 425 { 426 if (p->ainsn.insn) { 427 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 428 p->ainsn.insn = NULL; 429 } 430 } 431 432 static nokprobe_inline void 433 save_previous_kprobe(struct kprobe_ctlblk *kcb) 434 { 435 kcb->prev_kprobe.kp = kprobe_running(); 436 kcb->prev_kprobe.status = kcb->kprobe_status; 437 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 438 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 439 } 440 441 static nokprobe_inline void 442 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 443 { 444 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 445 kcb->kprobe_status = kcb->prev_kprobe.status; 446 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 447 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 448 } 449 450 static nokprobe_inline void 451 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 452 struct kprobe_ctlblk *kcb) 453 { 454 __this_cpu_write(current_kprobe, p); 455 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 456 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 457 if (p->ainsn.if_modifier) 458 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 459 } 460 461 static nokprobe_inline void clear_btf(void) 462 { 463 if (test_thread_flag(TIF_BLOCKSTEP)) { 464 unsigned long debugctl = get_debugctlmsr(); 465 466 debugctl &= ~DEBUGCTLMSR_BTF; 467 update_debugctlmsr(debugctl); 468 } 469 } 470 471 static nokprobe_inline void restore_btf(void) 472 { 473 if (test_thread_flag(TIF_BLOCKSTEP)) { 474 unsigned long debugctl = get_debugctlmsr(); 475 476 debugctl |= DEBUGCTLMSR_BTF; 477 update_debugctlmsr(debugctl); 478 } 479 } 480 481 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 482 { 483 unsigned long *sara = stack_addr(regs); 484 485 ri->ret_addr = (kprobe_opcode_t *) *sara; 486 487 /* Replace the return addr with trampoline addr */ 488 *sara = (unsigned long) &kretprobe_trampoline; 489 } 490 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 491 492 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 493 struct kprobe_ctlblk *kcb, int reenter) 494 { 495 if (setup_detour_execution(p, regs, reenter)) 496 return; 497 498 #if !defined(CONFIG_PREEMPT) 499 if (p->ainsn.boostable == 1 && !p->post_handler) { 500 /* Boost up -- we can execute copied instructions directly */ 501 if (!reenter) 502 reset_current_kprobe(); 503 /* 504 * Reentering boosted probe doesn't reset current_kprobe, 505 * nor set current_kprobe, because it doesn't use single 506 * stepping. 507 */ 508 regs->ip = (unsigned long)p->ainsn.insn; 509 preempt_enable_no_resched(); 510 return; 511 } 512 #endif 513 if (reenter) { 514 save_previous_kprobe(kcb); 515 set_current_kprobe(p, regs, kcb); 516 kcb->kprobe_status = KPROBE_REENTER; 517 } else 518 kcb->kprobe_status = KPROBE_HIT_SS; 519 /* Prepare real single stepping */ 520 clear_btf(); 521 regs->flags |= X86_EFLAGS_TF; 522 regs->flags &= ~X86_EFLAGS_IF; 523 /* single step inline if the instruction is an int3 */ 524 if (p->opcode == BREAKPOINT_INSTRUCTION) 525 regs->ip = (unsigned long)p->addr; 526 else 527 regs->ip = (unsigned long)p->ainsn.insn; 528 } 529 NOKPROBE_SYMBOL(setup_singlestep); 530 531 /* 532 * We have reentered the kprobe_handler(), since another probe was hit while 533 * within the handler. We save the original kprobes variables and just single 534 * step on the instruction of the new probe without calling any user handlers. 535 */ 536 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 537 struct kprobe_ctlblk *kcb) 538 { 539 switch (kcb->kprobe_status) { 540 case KPROBE_HIT_SSDONE: 541 case KPROBE_HIT_ACTIVE: 542 case KPROBE_HIT_SS: 543 kprobes_inc_nmissed_count(p); 544 setup_singlestep(p, regs, kcb, 1); 545 break; 546 case KPROBE_REENTER: 547 /* A probe has been hit in the codepath leading up to, or just 548 * after, single-stepping of a probed instruction. This entire 549 * codepath should strictly reside in .kprobes.text section. 550 * Raise a BUG or we'll continue in an endless reentering loop 551 * and eventually a stack overflow. 552 */ 553 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 554 p->addr); 555 dump_kprobe(p); 556 BUG(); 557 default: 558 /* impossible cases */ 559 WARN_ON(1); 560 return 0; 561 } 562 563 return 1; 564 } 565 NOKPROBE_SYMBOL(reenter_kprobe); 566 567 /* 568 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 569 * remain disabled throughout this function. 570 */ 571 int kprobe_int3_handler(struct pt_regs *regs) 572 { 573 kprobe_opcode_t *addr; 574 struct kprobe *p; 575 struct kprobe_ctlblk *kcb; 576 577 if (user_mode_vm(regs)) 578 return 0; 579 580 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 581 /* 582 * We don't want to be preempted for the entire 583 * duration of kprobe processing. We conditionally 584 * re-enable preemption at the end of this function, 585 * and also in reenter_kprobe() and setup_singlestep(). 586 */ 587 preempt_disable(); 588 589 kcb = get_kprobe_ctlblk(); 590 p = get_kprobe(addr); 591 592 if (p) { 593 if (kprobe_running()) { 594 if (reenter_kprobe(p, regs, kcb)) 595 return 1; 596 } else { 597 set_current_kprobe(p, regs, kcb); 598 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 599 600 /* 601 * If we have no pre-handler or it returned 0, we 602 * continue with normal processing. If we have a 603 * pre-handler and it returned non-zero, it prepped 604 * for calling the break_handler below on re-entry 605 * for jprobe processing, so get out doing nothing 606 * more here. 607 */ 608 if (!p->pre_handler || !p->pre_handler(p, regs)) 609 setup_singlestep(p, regs, kcb, 0); 610 return 1; 611 } 612 } else if (*addr != BREAKPOINT_INSTRUCTION) { 613 /* 614 * The breakpoint instruction was removed right 615 * after we hit it. Another cpu has removed 616 * either a probepoint or a debugger breakpoint 617 * at this address. In either case, no further 618 * handling of this interrupt is appropriate. 619 * Back up over the (now missing) int3 and run 620 * the original instruction. 621 */ 622 regs->ip = (unsigned long)addr; 623 preempt_enable_no_resched(); 624 return 1; 625 } else if (kprobe_running()) { 626 p = __this_cpu_read(current_kprobe); 627 if (p->break_handler && p->break_handler(p, regs)) { 628 if (!skip_singlestep(p, regs, kcb)) 629 setup_singlestep(p, regs, kcb, 0); 630 return 1; 631 } 632 } /* else: not a kprobe fault; let the kernel handle it */ 633 634 preempt_enable_no_resched(); 635 return 0; 636 } 637 NOKPROBE_SYMBOL(kprobe_int3_handler); 638 639 /* 640 * When a retprobed function returns, this code saves registers and 641 * calls trampoline_handler() runs, which calls the kretprobe's handler. 642 */ 643 static void __used kretprobe_trampoline_holder(void) 644 { 645 asm volatile ( 646 ".global kretprobe_trampoline\n" 647 "kretprobe_trampoline: \n" 648 #ifdef CONFIG_X86_64 649 /* We don't bother saving the ss register */ 650 " pushq %rsp\n" 651 " pushfq\n" 652 SAVE_REGS_STRING 653 " movq %rsp, %rdi\n" 654 " call trampoline_handler\n" 655 /* Replace saved sp with true return address. */ 656 " movq %rax, 152(%rsp)\n" 657 RESTORE_REGS_STRING 658 " popfq\n" 659 #else 660 " pushf\n" 661 SAVE_REGS_STRING 662 " movl %esp, %eax\n" 663 " call trampoline_handler\n" 664 /* Move flags to cs */ 665 " movl 56(%esp), %edx\n" 666 " movl %edx, 52(%esp)\n" 667 /* Replace saved flags with true return address. */ 668 " movl %eax, 56(%esp)\n" 669 RESTORE_REGS_STRING 670 " popf\n" 671 #endif 672 " ret\n"); 673 } 674 NOKPROBE_SYMBOL(kretprobe_trampoline_holder); 675 NOKPROBE_SYMBOL(kretprobe_trampoline); 676 677 /* 678 * Called from kretprobe_trampoline 679 */ 680 __visible __used void *trampoline_handler(struct pt_regs *regs) 681 { 682 struct kretprobe_instance *ri = NULL; 683 struct hlist_head *head, empty_rp; 684 struct hlist_node *tmp; 685 unsigned long flags, orig_ret_address = 0; 686 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 687 kprobe_opcode_t *correct_ret_addr = NULL; 688 689 INIT_HLIST_HEAD(&empty_rp); 690 kretprobe_hash_lock(current, &head, &flags); 691 /* fixup registers */ 692 #ifdef CONFIG_X86_64 693 regs->cs = __KERNEL_CS; 694 #else 695 regs->cs = __KERNEL_CS | get_kernel_rpl(); 696 regs->gs = 0; 697 #endif 698 regs->ip = trampoline_address; 699 regs->orig_ax = ~0UL; 700 701 /* 702 * It is possible to have multiple instances associated with a given 703 * task either because multiple functions in the call path have 704 * return probes installed on them, and/or more than one 705 * return probe was registered for a target function. 706 * 707 * We can handle this because: 708 * - instances are always pushed into the head of the list 709 * - when multiple return probes are registered for the same 710 * function, the (chronologically) first instance's ret_addr 711 * will be the real return address, and all the rest will 712 * point to kretprobe_trampoline. 713 */ 714 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 715 if (ri->task != current) 716 /* another task is sharing our hash bucket */ 717 continue; 718 719 orig_ret_address = (unsigned long)ri->ret_addr; 720 721 if (orig_ret_address != trampoline_address) 722 /* 723 * This is the real return address. Any other 724 * instances associated with this task are for 725 * other calls deeper on the call stack 726 */ 727 break; 728 } 729 730 kretprobe_assert(ri, orig_ret_address, trampoline_address); 731 732 correct_ret_addr = ri->ret_addr; 733 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 734 if (ri->task != current) 735 /* another task is sharing our hash bucket */ 736 continue; 737 738 orig_ret_address = (unsigned long)ri->ret_addr; 739 if (ri->rp && ri->rp->handler) { 740 __this_cpu_write(current_kprobe, &ri->rp->kp); 741 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 742 ri->ret_addr = correct_ret_addr; 743 ri->rp->handler(ri, regs); 744 __this_cpu_write(current_kprobe, NULL); 745 } 746 747 recycle_rp_inst(ri, &empty_rp); 748 749 if (orig_ret_address != trampoline_address) 750 /* 751 * This is the real return address. Any other 752 * instances associated with this task are for 753 * other calls deeper on the call stack 754 */ 755 break; 756 } 757 758 kretprobe_hash_unlock(current, &flags); 759 760 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 761 hlist_del(&ri->hlist); 762 kfree(ri); 763 } 764 return (void *)orig_ret_address; 765 } 766 NOKPROBE_SYMBOL(trampoline_handler); 767 768 /* 769 * Called after single-stepping. p->addr is the address of the 770 * instruction whose first byte has been replaced by the "int 3" 771 * instruction. To avoid the SMP problems that can occur when we 772 * temporarily put back the original opcode to single-step, we 773 * single-stepped a copy of the instruction. The address of this 774 * copy is p->ainsn.insn. 775 * 776 * This function prepares to return from the post-single-step 777 * interrupt. We have to fix up the stack as follows: 778 * 779 * 0) Except in the case of absolute or indirect jump or call instructions, 780 * the new ip is relative to the copied instruction. We need to make 781 * it relative to the original instruction. 782 * 783 * 1) If the single-stepped instruction was pushfl, then the TF and IF 784 * flags are set in the just-pushed flags, and may need to be cleared. 785 * 786 * 2) If the single-stepped instruction was a call, the return address 787 * that is atop the stack is the address following the copied instruction. 788 * We need to make it the address following the original instruction. 789 * 790 * If this is the first time we've single-stepped the instruction at 791 * this probepoint, and the instruction is boostable, boost it: add a 792 * jump instruction after the copied instruction, that jumps to the next 793 * instruction after the probepoint. 794 */ 795 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 796 struct kprobe_ctlblk *kcb) 797 { 798 unsigned long *tos = stack_addr(regs); 799 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 800 unsigned long orig_ip = (unsigned long)p->addr; 801 kprobe_opcode_t *insn = p->ainsn.insn; 802 803 /* Skip prefixes */ 804 insn = skip_prefixes(insn); 805 806 regs->flags &= ~X86_EFLAGS_TF; 807 switch (*insn) { 808 case 0x9c: /* pushfl */ 809 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 810 *tos |= kcb->kprobe_old_flags; 811 break; 812 case 0xc2: /* iret/ret/lret */ 813 case 0xc3: 814 case 0xca: 815 case 0xcb: 816 case 0xcf: 817 case 0xea: /* jmp absolute -- ip is correct */ 818 /* ip is already adjusted, no more changes required */ 819 p->ainsn.boostable = 1; 820 goto no_change; 821 case 0xe8: /* call relative - Fix return addr */ 822 *tos = orig_ip + (*tos - copy_ip); 823 break; 824 #ifdef CONFIG_X86_32 825 case 0x9a: /* call absolute -- same as call absolute, indirect */ 826 *tos = orig_ip + (*tos - copy_ip); 827 goto no_change; 828 #endif 829 case 0xff: 830 if ((insn[1] & 0x30) == 0x10) { 831 /* 832 * call absolute, indirect 833 * Fix return addr; ip is correct. 834 * But this is not boostable 835 */ 836 *tos = orig_ip + (*tos - copy_ip); 837 goto no_change; 838 } else if (((insn[1] & 0x31) == 0x20) || 839 ((insn[1] & 0x31) == 0x21)) { 840 /* 841 * jmp near and far, absolute indirect 842 * ip is correct. And this is boostable 843 */ 844 p->ainsn.boostable = 1; 845 goto no_change; 846 } 847 default: 848 break; 849 } 850 851 if (p->ainsn.boostable == 0) { 852 if ((regs->ip > copy_ip) && 853 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 854 /* 855 * These instructions can be executed directly if it 856 * jumps back to correct address. 857 */ 858 synthesize_reljump((void *)regs->ip, 859 (void *)orig_ip + (regs->ip - copy_ip)); 860 p->ainsn.boostable = 1; 861 } else { 862 p->ainsn.boostable = -1; 863 } 864 } 865 866 regs->ip += orig_ip - copy_ip; 867 868 no_change: 869 restore_btf(); 870 } 871 NOKPROBE_SYMBOL(resume_execution); 872 873 /* 874 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 875 * remain disabled throughout this function. 876 */ 877 int kprobe_debug_handler(struct pt_regs *regs) 878 { 879 struct kprobe *cur = kprobe_running(); 880 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 881 882 if (!cur) 883 return 0; 884 885 resume_execution(cur, regs, kcb); 886 regs->flags |= kcb->kprobe_saved_flags; 887 888 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 889 kcb->kprobe_status = KPROBE_HIT_SSDONE; 890 cur->post_handler(cur, regs, 0); 891 } 892 893 /* Restore back the original saved kprobes variables and continue. */ 894 if (kcb->kprobe_status == KPROBE_REENTER) { 895 restore_previous_kprobe(kcb); 896 goto out; 897 } 898 reset_current_kprobe(); 899 out: 900 preempt_enable_no_resched(); 901 902 /* 903 * if somebody else is singlestepping across a probe point, flags 904 * will have TF set, in which case, continue the remaining processing 905 * of do_debug, as if this is not a probe hit. 906 */ 907 if (regs->flags & X86_EFLAGS_TF) 908 return 0; 909 910 return 1; 911 } 912 NOKPROBE_SYMBOL(kprobe_debug_handler); 913 914 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 915 { 916 struct kprobe *cur = kprobe_running(); 917 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 918 919 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 920 /* This must happen on single-stepping */ 921 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 922 kcb->kprobe_status != KPROBE_REENTER); 923 /* 924 * We are here because the instruction being single 925 * stepped caused a page fault. We reset the current 926 * kprobe and the ip points back to the probe address 927 * and allow the page fault handler to continue as a 928 * normal page fault. 929 */ 930 regs->ip = (unsigned long)cur->addr; 931 regs->flags |= kcb->kprobe_old_flags; 932 if (kcb->kprobe_status == KPROBE_REENTER) 933 restore_previous_kprobe(kcb); 934 else 935 reset_current_kprobe(); 936 preempt_enable_no_resched(); 937 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 938 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 939 /* 940 * We increment the nmissed count for accounting, 941 * we can also use npre/npostfault count for accounting 942 * these specific fault cases. 943 */ 944 kprobes_inc_nmissed_count(cur); 945 946 /* 947 * We come here because instructions in the pre/post 948 * handler caused the page_fault, this could happen 949 * if handler tries to access user space by 950 * copy_from_user(), get_user() etc. Let the 951 * user-specified handler try to fix it first. 952 */ 953 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 954 return 1; 955 956 /* 957 * In case the user-specified fault handler returned 958 * zero, try to fix up. 959 */ 960 if (fixup_exception(regs)) 961 return 1; 962 963 /* 964 * fixup routine could not handle it, 965 * Let do_page_fault() fix it. 966 */ 967 } 968 969 return 0; 970 } 971 NOKPROBE_SYMBOL(kprobe_fault_handler); 972 973 /* 974 * Wrapper routine for handling exceptions. 975 */ 976 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 977 void *data) 978 { 979 struct die_args *args = data; 980 int ret = NOTIFY_DONE; 981 982 if (args->regs && user_mode_vm(args->regs)) 983 return ret; 984 985 if (val == DIE_GPF) { 986 /* 987 * To be potentially processing a kprobe fault and to 988 * trust the result from kprobe_running(), we have 989 * be non-preemptible. 990 */ 991 if (!preemptible() && kprobe_running() && 992 kprobe_fault_handler(args->regs, args->trapnr)) 993 ret = NOTIFY_STOP; 994 } 995 return ret; 996 } 997 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 998 999 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1000 { 1001 struct jprobe *jp = container_of(p, struct jprobe, kp); 1002 unsigned long addr; 1003 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1004 1005 kcb->jprobe_saved_regs = *regs; 1006 kcb->jprobe_saved_sp = stack_addr(regs); 1007 addr = (unsigned long)(kcb->jprobe_saved_sp); 1008 1009 /* 1010 * As Linus pointed out, gcc assumes that the callee 1011 * owns the argument space and could overwrite it, e.g. 1012 * tailcall optimization. So, to be absolutely safe 1013 * we also save and restore enough stack bytes to cover 1014 * the argument area. 1015 */ 1016 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1017 MIN_STACK_SIZE(addr)); 1018 regs->flags &= ~X86_EFLAGS_IF; 1019 trace_hardirqs_off(); 1020 regs->ip = (unsigned long)(jp->entry); 1021 return 1; 1022 } 1023 NOKPROBE_SYMBOL(setjmp_pre_handler); 1024 1025 void jprobe_return(void) 1026 { 1027 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1028 1029 asm volatile ( 1030 #ifdef CONFIG_X86_64 1031 " xchg %%rbx,%%rsp \n" 1032 #else 1033 " xchgl %%ebx,%%esp \n" 1034 #endif 1035 " int3 \n" 1036 " .globl jprobe_return_end\n" 1037 " jprobe_return_end: \n" 1038 " nop \n"::"b" 1039 (kcb->jprobe_saved_sp):"memory"); 1040 } 1041 NOKPROBE_SYMBOL(jprobe_return); 1042 NOKPROBE_SYMBOL(jprobe_return_end); 1043 1044 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1045 { 1046 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1047 u8 *addr = (u8 *) (regs->ip - 1); 1048 struct jprobe *jp = container_of(p, struct jprobe, kp); 1049 1050 if ((addr > (u8 *) jprobe_return) && 1051 (addr < (u8 *) jprobe_return_end)) { 1052 if (stack_addr(regs) != kcb->jprobe_saved_sp) { 1053 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1054 printk(KERN_ERR 1055 "current sp %p does not match saved sp %p\n", 1056 stack_addr(regs), kcb->jprobe_saved_sp); 1057 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1058 show_regs(saved_regs); 1059 printk(KERN_ERR "Current registers\n"); 1060 show_regs(regs); 1061 BUG(); 1062 } 1063 *regs = kcb->jprobe_saved_regs; 1064 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp), 1065 kcb->jprobes_stack, 1066 MIN_STACK_SIZE(kcb->jprobe_saved_sp)); 1067 preempt_enable_no_resched(); 1068 return 1; 1069 } 1070 return 0; 1071 } 1072 NOKPROBE_SYMBOL(longjmp_break_handler); 1073 1074 bool arch_within_kprobe_blacklist(unsigned long addr) 1075 { 1076 return (addr >= (unsigned long)__kprobes_text_start && 1077 addr < (unsigned long)__kprobes_text_end) || 1078 (addr >= (unsigned long)__entry_text_start && 1079 addr < (unsigned long)__entry_text_end); 1080 } 1081 1082 int __init arch_init_kprobes(void) 1083 { 1084 return 0; 1085 } 1086 1087 int arch_trampoline_kprobe(struct kprobe *p) 1088 { 1089 return 0; 1090 } 1091