1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/kgdb.h> 41 #include <linux/ftrace.h> 42 #include <linux/kasan.h> 43 #include <linux/moduleloader.h> 44 #include <linux/objtool.h> 45 #include <linux/vmalloc.h> 46 #include <linux/pgtable.h> 47 #include <linux/set_memory.h> 48 #include <linux/cfi.h> 49 50 #include <asm/text-patching.h> 51 #include <asm/cacheflush.h> 52 #include <asm/desc.h> 53 #include <linux/uaccess.h> 54 #include <asm/alternative.h> 55 #include <asm/insn.h> 56 #include <asm/debugreg.h> 57 #include <asm/ibt.h> 58 59 #include "common.h" 60 61 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 62 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 63 64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 65 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 66 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 67 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 68 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 69 << (row % 32)) 70 /* 71 * Undefined/reserved opcodes, conditional jump, Opcode Extension 72 * Groups, and some special opcodes can not boost. 73 * This is non-const and volatile to keep gcc from statically 74 * optimizing it out, as variable_test_bit makes gcc think only 75 * *(unsigned long*) is used. 76 */ 77 static volatile u32 twobyte_is_boostable[256 / 32] = { 78 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 79 /* ---------------------------------------------- */ 80 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 81 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 82 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 83 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 84 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 85 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 86 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 87 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 88 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 89 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 90 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 91 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 92 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 93 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 94 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 95 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 96 /* ----------------------------------------------- */ 97 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 98 }; 99 #undef W 100 101 struct kretprobe_blackpoint kretprobe_blacklist[] = { 102 {"__switch_to", }, /* This function switches only current task, but 103 doesn't switch kernel stack.*/ 104 {NULL, NULL} /* Terminator */ 105 }; 106 107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 108 109 static nokprobe_inline void 110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 111 { 112 struct __arch_relative_insn { 113 u8 op; 114 s32 raddr; 115 } __packed *insn; 116 117 insn = (struct __arch_relative_insn *)dest; 118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 119 insn->op = op; 120 } 121 122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 123 void synthesize_reljump(void *dest, void *from, void *to) 124 { 125 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 126 } 127 NOKPROBE_SYMBOL(synthesize_reljump); 128 129 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 130 void synthesize_relcall(void *dest, void *from, void *to) 131 { 132 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 133 } 134 NOKPROBE_SYMBOL(synthesize_relcall); 135 136 /* 137 * Returns non-zero if INSN is boostable. 138 * RIP relative instructions are adjusted at copying time in 64 bits mode 139 */ 140 int can_boost(struct insn *insn, void *addr) 141 { 142 kprobe_opcode_t opcode; 143 insn_byte_t prefix; 144 int i; 145 146 if (search_exception_tables((unsigned long)addr)) 147 return 0; /* Page fault may occur on this address. */ 148 149 /* 2nd-byte opcode */ 150 if (insn->opcode.nbytes == 2) 151 return test_bit(insn->opcode.bytes[1], 152 (unsigned long *)twobyte_is_boostable); 153 154 if (insn->opcode.nbytes != 1) 155 return 0; 156 157 for_each_insn_prefix(insn, i, prefix) { 158 insn_attr_t attr; 159 160 attr = inat_get_opcode_attribute(prefix); 161 /* Can't boost Address-size override prefix and CS override prefix */ 162 if (prefix == 0x2e || inat_is_address_size_prefix(attr)) 163 return 0; 164 } 165 166 opcode = insn->opcode.bytes[0]; 167 168 switch (opcode) { 169 case 0x62: /* bound */ 170 case 0x70 ... 0x7f: /* Conditional jumps */ 171 case 0x9a: /* Call far */ 172 case 0xc0 ... 0xc1: /* Grp2 */ 173 case 0xcc ... 0xce: /* software exceptions */ 174 case 0xd0 ... 0xd3: /* Grp2 */ 175 case 0xd6: /* (UD) */ 176 case 0xd8 ... 0xdf: /* ESC */ 177 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ 178 case 0xe8 ... 0xe9: /* near Call, JMP */ 179 case 0xeb: /* Short JMP */ 180 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ 181 case 0xf6 ... 0xf7: /* Grp3 */ 182 case 0xfe: /* Grp4 */ 183 /* ... are not boostable */ 184 return 0; 185 case 0xff: /* Grp5 */ 186 /* Only indirect jmp is boostable */ 187 return X86_MODRM_REG(insn->modrm.bytes[0]) == 4; 188 default: 189 return 1; 190 } 191 } 192 193 static unsigned long 194 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 195 { 196 struct kprobe *kp; 197 bool faddr; 198 199 kp = get_kprobe((void *)addr); 200 faddr = ftrace_location(addr) == addr; 201 /* 202 * Use the current code if it is not modified by Kprobe 203 * and it cannot be modified by ftrace. 204 */ 205 if (!kp && !faddr) 206 return addr; 207 208 /* 209 * Basically, kp->ainsn.insn has an original instruction. 210 * However, RIP-relative instruction can not do single-stepping 211 * at different place, __copy_instruction() tweaks the displacement of 212 * that instruction. In that case, we can't recover the instruction 213 * from the kp->ainsn.insn. 214 * 215 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 216 * of the first byte of the probed instruction, which is overwritten 217 * by int3. And the instruction at kp->addr is not modified by kprobes 218 * except for the first byte, we can recover the original instruction 219 * from it and kp->opcode. 220 * 221 * In case of Kprobes using ftrace, we do not have a copy of 222 * the original instruction. In fact, the ftrace location might 223 * be modified at anytime and even could be in an inconsistent state. 224 * Fortunately, we know that the original code is the ideal 5-byte 225 * long NOP. 226 */ 227 if (copy_from_kernel_nofault(buf, (void *)addr, 228 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 229 return 0UL; 230 231 if (faddr) 232 memcpy(buf, x86_nops[5], 5); 233 else 234 buf[0] = kp->opcode; 235 return (unsigned long)buf; 236 } 237 238 /* 239 * Recover the probed instruction at addr for further analysis. 240 * Caller must lock kprobes by kprobe_mutex, or disable preemption 241 * for preventing to release referencing kprobes. 242 * Returns zero if the instruction can not get recovered (or access failed). 243 */ 244 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 245 { 246 unsigned long __addr; 247 248 __addr = __recover_optprobed_insn(buf, addr); 249 if (__addr != addr) 250 return __addr; 251 252 return __recover_probed_insn(buf, addr); 253 } 254 255 /* Check if paddr is at an instruction boundary */ 256 static int can_probe(unsigned long paddr) 257 { 258 unsigned long addr, __addr, offset = 0; 259 struct insn insn; 260 kprobe_opcode_t buf[MAX_INSN_SIZE]; 261 262 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 263 return 0; 264 265 /* Decode instructions */ 266 addr = paddr - offset; 267 while (addr < paddr) { 268 int ret; 269 270 /* 271 * Check if the instruction has been modified by another 272 * kprobe, in which case we replace the breakpoint by the 273 * original instruction in our buffer. 274 * Also, jump optimization will change the breakpoint to 275 * relative-jump. Since the relative-jump itself is 276 * normally used, we just go through if there is no kprobe. 277 */ 278 __addr = recover_probed_instruction(buf, addr); 279 if (!__addr) 280 return 0; 281 282 ret = insn_decode_kernel(&insn, (void *)__addr); 283 if (ret < 0) 284 return 0; 285 286 #ifdef CONFIG_KGDB 287 /* 288 * If there is a dynamically installed kgdb sw breakpoint, 289 * this function should not be probed. 290 */ 291 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE && 292 kgdb_has_hit_break(addr)) 293 return 0; 294 #endif 295 addr += insn.length; 296 } 297 if (IS_ENABLED(CONFIG_CFI_CLANG)) { 298 /* 299 * The compiler generates the following instruction sequence 300 * for indirect call checks and cfi.c decodes this; 301 * 302 * movl -<id>, %r10d ; 6 bytes 303 * addl -4(%reg), %r10d ; 4 bytes 304 * je .Ltmp1 ; 2 bytes 305 * ud2 ; <- regs->ip 306 * .Ltmp1: 307 * 308 * Also, these movl and addl are used for showing expected 309 * type. So those must not be touched. 310 */ 311 __addr = recover_probed_instruction(buf, addr); 312 if (!__addr) 313 return 0; 314 315 if (insn_decode_kernel(&insn, (void *)__addr) < 0) 316 return 0; 317 318 if (insn.opcode.value == 0xBA) 319 offset = 12; 320 else if (insn.opcode.value == 0x3) 321 offset = 6; 322 else 323 goto out; 324 325 /* This movl/addl is used for decoding CFI. */ 326 if (is_cfi_trap(addr + offset)) 327 return 0; 328 } 329 330 out: 331 return (addr == paddr); 332 } 333 334 /* If x86 supports IBT (ENDBR) it must be skipped. */ 335 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset, 336 bool *on_func_entry) 337 { 338 if (is_endbr(*(u32 *)addr)) { 339 *on_func_entry = !offset || offset == 4; 340 if (*on_func_entry) 341 offset = 4; 342 343 } else { 344 *on_func_entry = !offset; 345 } 346 347 return (kprobe_opcode_t *)(addr + offset); 348 } 349 350 /* 351 * Copy an instruction with recovering modified instruction by kprobes 352 * and adjust the displacement if the instruction uses the %rip-relative 353 * addressing mode. Note that since @real will be the final place of copied 354 * instruction, displacement must be adjust by @real, not @dest. 355 * This returns the length of copied instruction, or 0 if it has an error. 356 */ 357 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 358 { 359 kprobe_opcode_t buf[MAX_INSN_SIZE]; 360 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); 361 int ret; 362 363 if (!recovered_insn || !insn) 364 return 0; 365 366 /* This can access kernel text if given address is not recovered */ 367 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 368 MAX_INSN_SIZE)) 369 return 0; 370 371 ret = insn_decode_kernel(insn, dest); 372 if (ret < 0) 373 return 0; 374 375 /* We can not probe force emulate prefixed instruction */ 376 if (insn_has_emulate_prefix(insn)) 377 return 0; 378 379 /* Another subsystem puts a breakpoint, failed to recover */ 380 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 381 return 0; 382 383 /* We should not singlestep on the exception masking instructions */ 384 if (insn_masking_exception(insn)) 385 return 0; 386 387 #ifdef CONFIG_X86_64 388 /* Only x86_64 has RIP relative instructions */ 389 if (insn_rip_relative(insn)) { 390 s64 newdisp; 391 u8 *disp; 392 /* 393 * The copied instruction uses the %rip-relative addressing 394 * mode. Adjust the displacement for the difference between 395 * the original location of this instruction and the location 396 * of the copy that will actually be run. The tricky bit here 397 * is making sure that the sign extension happens correctly in 398 * this calculation, since we need a signed 32-bit result to 399 * be sign-extended to 64 bits when it's added to the %rip 400 * value and yield the same 64-bit result that the sign- 401 * extension of the original signed 32-bit displacement would 402 * have given. 403 */ 404 newdisp = (u8 *) src + (s64) insn->displacement.value 405 - (u8 *) real; 406 if ((s64) (s32) newdisp != newdisp) { 407 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 408 return 0; 409 } 410 disp = (u8 *) dest + insn_offset_displacement(insn); 411 *(s32 *) disp = (s32) newdisp; 412 } 413 #endif 414 return insn->length; 415 } 416 417 /* Prepare reljump or int3 right after instruction */ 418 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, 419 struct insn *insn) 420 { 421 int len = insn->length; 422 423 if (!IS_ENABLED(CONFIG_PREEMPTION) && 424 !p->post_handler && can_boost(insn, p->addr) && 425 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 426 /* 427 * These instructions can be executed directly if it 428 * jumps back to correct address. 429 */ 430 synthesize_reljump(buf + len, p->ainsn.insn + len, 431 p->addr + insn->length); 432 len += JMP32_INSN_SIZE; 433 p->ainsn.boostable = 1; 434 } else { 435 /* Otherwise, put an int3 for trapping singlestep */ 436 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) 437 return -ENOSPC; 438 439 buf[len] = INT3_INSN_OPCODE; 440 len += INT3_INSN_SIZE; 441 } 442 443 return len; 444 } 445 446 /* Make page to RO mode when allocate it */ 447 void *alloc_insn_page(void) 448 { 449 void *page; 450 451 page = module_alloc(PAGE_SIZE); 452 if (!page) 453 return NULL; 454 455 /* 456 * TODO: Once additional kernel code protection mechanisms are set, ensure 457 * that the page was not maliciously altered and it is still zeroed. 458 */ 459 set_memory_rox((unsigned long)page, 1); 460 461 return page; 462 } 463 464 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ 465 466 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) 467 { 468 switch (p->ainsn.opcode) { 469 case 0xfa: /* cli */ 470 regs->flags &= ~(X86_EFLAGS_IF); 471 break; 472 case 0xfb: /* sti */ 473 regs->flags |= X86_EFLAGS_IF; 474 break; 475 case 0x9c: /* pushf */ 476 int3_emulate_push(regs, regs->flags); 477 break; 478 case 0x9d: /* popf */ 479 regs->flags = int3_emulate_pop(regs); 480 break; 481 } 482 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 483 } 484 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); 485 486 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) 487 { 488 int3_emulate_ret(regs); 489 } 490 NOKPROBE_SYMBOL(kprobe_emulate_ret); 491 492 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) 493 { 494 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 495 496 func += p->ainsn.rel32; 497 int3_emulate_call(regs, func); 498 } 499 NOKPROBE_SYMBOL(kprobe_emulate_call); 500 501 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) 502 { 503 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 504 505 ip += p->ainsn.rel32; 506 int3_emulate_jmp(regs, ip); 507 } 508 NOKPROBE_SYMBOL(kprobe_emulate_jmp); 509 510 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) 511 { 512 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 513 514 int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32); 515 } 516 NOKPROBE_SYMBOL(kprobe_emulate_jcc); 517 518 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) 519 { 520 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 521 bool match; 522 523 if (p->ainsn.loop.type != 3) { /* LOOP* */ 524 if (p->ainsn.loop.asize == 32) 525 match = ((*(u32 *)®s->cx)--) != 0; 526 #ifdef CONFIG_X86_64 527 else if (p->ainsn.loop.asize == 64) 528 match = ((*(u64 *)®s->cx)--) != 0; 529 #endif 530 else 531 match = ((*(u16 *)®s->cx)--) != 0; 532 } else { /* JCXZ */ 533 if (p->ainsn.loop.asize == 32) 534 match = *(u32 *)(®s->cx) == 0; 535 #ifdef CONFIG_X86_64 536 else if (p->ainsn.loop.asize == 64) 537 match = *(u64 *)(®s->cx) == 0; 538 #endif 539 else 540 match = *(u16 *)(®s->cx) == 0; 541 } 542 543 if (p->ainsn.loop.type == 0) /* LOOPNE */ 544 match = match && !(regs->flags & X86_EFLAGS_ZF); 545 else if (p->ainsn.loop.type == 1) /* LOOPE */ 546 match = match && (regs->flags & X86_EFLAGS_ZF); 547 548 if (match) 549 ip += p->ainsn.rel32; 550 int3_emulate_jmp(regs, ip); 551 } 552 NOKPROBE_SYMBOL(kprobe_emulate_loop); 553 554 static const int addrmode_regoffs[] = { 555 offsetof(struct pt_regs, ax), 556 offsetof(struct pt_regs, cx), 557 offsetof(struct pt_regs, dx), 558 offsetof(struct pt_regs, bx), 559 offsetof(struct pt_regs, sp), 560 offsetof(struct pt_regs, bp), 561 offsetof(struct pt_regs, si), 562 offsetof(struct pt_regs, di), 563 #ifdef CONFIG_X86_64 564 offsetof(struct pt_regs, r8), 565 offsetof(struct pt_regs, r9), 566 offsetof(struct pt_regs, r10), 567 offsetof(struct pt_regs, r11), 568 offsetof(struct pt_regs, r12), 569 offsetof(struct pt_regs, r13), 570 offsetof(struct pt_regs, r14), 571 offsetof(struct pt_regs, r15), 572 #endif 573 }; 574 575 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) 576 { 577 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 578 579 int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size); 580 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 581 } 582 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); 583 584 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) 585 { 586 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 587 588 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 589 } 590 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); 591 592 static int prepare_emulation(struct kprobe *p, struct insn *insn) 593 { 594 insn_byte_t opcode = insn->opcode.bytes[0]; 595 596 switch (opcode) { 597 case 0xfa: /* cli */ 598 case 0xfb: /* sti */ 599 case 0x9c: /* pushfl */ 600 case 0x9d: /* popf/popfd */ 601 /* 602 * IF modifiers must be emulated since it will enable interrupt while 603 * int3 single stepping. 604 */ 605 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; 606 p->ainsn.opcode = opcode; 607 break; 608 case 0xc2: /* ret/lret */ 609 case 0xc3: 610 case 0xca: 611 case 0xcb: 612 p->ainsn.emulate_op = kprobe_emulate_ret; 613 break; 614 case 0x9a: /* far call absolute -- segment is not supported */ 615 case 0xea: /* far jmp absolute -- segment is not supported */ 616 case 0xcc: /* int3 */ 617 case 0xcf: /* iret -- in-kernel IRET is not supported */ 618 return -EOPNOTSUPP; 619 break; 620 case 0xe8: /* near call relative */ 621 p->ainsn.emulate_op = kprobe_emulate_call; 622 if (insn->immediate.nbytes == 2) 623 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 624 else 625 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 626 break; 627 case 0xeb: /* short jump relative */ 628 case 0xe9: /* near jump relative */ 629 p->ainsn.emulate_op = kprobe_emulate_jmp; 630 if (insn->immediate.nbytes == 1) 631 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 632 else if (insn->immediate.nbytes == 2) 633 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 634 else 635 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 636 break; 637 case 0x70 ... 0x7f: 638 /* 1 byte conditional jump */ 639 p->ainsn.emulate_op = kprobe_emulate_jcc; 640 p->ainsn.jcc.type = opcode & 0xf; 641 p->ainsn.rel32 = insn->immediate.value; 642 break; 643 case 0x0f: 644 opcode = insn->opcode.bytes[1]; 645 if ((opcode & 0xf0) == 0x80) { 646 /* 2 bytes Conditional Jump */ 647 p->ainsn.emulate_op = kprobe_emulate_jcc; 648 p->ainsn.jcc.type = opcode & 0xf; 649 if (insn->immediate.nbytes == 2) 650 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 651 else 652 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 653 } else if (opcode == 0x01 && 654 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && 655 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { 656 /* VM extensions - not supported */ 657 return -EOPNOTSUPP; 658 } 659 break; 660 case 0xe0: /* Loop NZ */ 661 case 0xe1: /* Loop */ 662 case 0xe2: /* Loop */ 663 case 0xe3: /* J*CXZ */ 664 p->ainsn.emulate_op = kprobe_emulate_loop; 665 p->ainsn.loop.type = opcode & 0x3; 666 p->ainsn.loop.asize = insn->addr_bytes * 8; 667 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 668 break; 669 case 0xff: 670 /* 671 * Since the 0xff is an extended group opcode, the instruction 672 * is determined by the MOD/RM byte. 673 */ 674 opcode = insn->modrm.bytes[0]; 675 switch (X86_MODRM_REG(opcode)) { 676 case 0b010: /* FF /2, call near, absolute indirect */ 677 p->ainsn.emulate_op = kprobe_emulate_call_indirect; 678 break; 679 case 0b100: /* FF /4, jmp near, absolute indirect */ 680 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; 681 break; 682 case 0b011: /* FF /3, call far, absolute indirect */ 683 case 0b101: /* FF /5, jmp far, absolute indirect */ 684 return -EOPNOTSUPP; 685 } 686 687 if (!p->ainsn.emulate_op) 688 break; 689 690 if (insn->addr_bytes != sizeof(unsigned long)) 691 return -EOPNOTSUPP; /* Don't support different size */ 692 if (X86_MODRM_MOD(opcode) != 3) 693 return -EOPNOTSUPP; /* TODO: support memory addressing */ 694 695 p->ainsn.indirect.reg = X86_MODRM_RM(opcode); 696 #ifdef CONFIG_X86_64 697 if (X86_REX_B(insn->rex_prefix.value)) 698 p->ainsn.indirect.reg += 8; 699 #endif 700 break; 701 default: 702 break; 703 } 704 p->ainsn.size = insn->length; 705 706 return 0; 707 } 708 709 static int arch_copy_kprobe(struct kprobe *p) 710 { 711 struct insn insn; 712 kprobe_opcode_t buf[MAX_INSN_SIZE]; 713 int ret, len; 714 715 /* Copy an instruction with recovering if other optprobe modifies it.*/ 716 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 717 if (!len) 718 return -EINVAL; 719 720 /* Analyze the opcode and setup emulate functions */ 721 ret = prepare_emulation(p, &insn); 722 if (ret < 0) 723 return ret; 724 725 /* Add int3 for single-step or booster jmp */ 726 len = prepare_singlestep(buf, p, &insn); 727 if (len < 0) 728 return len; 729 730 /* Also, displacement change doesn't affect the first byte */ 731 p->opcode = buf[0]; 732 733 p->ainsn.tp_len = len; 734 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 735 736 /* OK, write back the instruction(s) into ROX insn buffer */ 737 text_poke(p->ainsn.insn, buf, len); 738 739 return 0; 740 } 741 742 int arch_prepare_kprobe(struct kprobe *p) 743 { 744 int ret; 745 746 if (alternatives_text_reserved(p->addr, p->addr)) 747 return -EINVAL; 748 749 if (!can_probe((unsigned long)p->addr)) 750 return -EILSEQ; 751 752 memset(&p->ainsn, 0, sizeof(p->ainsn)); 753 754 /* insn: must be on special executable page on x86. */ 755 p->ainsn.insn = get_insn_slot(); 756 if (!p->ainsn.insn) 757 return -ENOMEM; 758 759 ret = arch_copy_kprobe(p); 760 if (ret) { 761 free_insn_slot(p->ainsn.insn, 0); 762 p->ainsn.insn = NULL; 763 } 764 765 return ret; 766 } 767 768 void arch_arm_kprobe(struct kprobe *p) 769 { 770 u8 int3 = INT3_INSN_OPCODE; 771 772 text_poke(p->addr, &int3, 1); 773 text_poke_sync(); 774 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 775 } 776 777 void arch_disarm_kprobe(struct kprobe *p) 778 { 779 u8 int3 = INT3_INSN_OPCODE; 780 781 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 782 text_poke(p->addr, &p->opcode, 1); 783 text_poke_sync(); 784 } 785 786 void arch_remove_kprobe(struct kprobe *p) 787 { 788 if (p->ainsn.insn) { 789 /* Record the perf event before freeing the slot */ 790 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 791 p->ainsn.tp_len, NULL, 0); 792 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 793 p->ainsn.insn = NULL; 794 } 795 } 796 797 static nokprobe_inline void 798 save_previous_kprobe(struct kprobe_ctlblk *kcb) 799 { 800 kcb->prev_kprobe.kp = kprobe_running(); 801 kcb->prev_kprobe.status = kcb->kprobe_status; 802 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 803 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 804 } 805 806 static nokprobe_inline void 807 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 808 { 809 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 810 kcb->kprobe_status = kcb->prev_kprobe.status; 811 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 812 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 813 } 814 815 static nokprobe_inline void 816 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 817 struct kprobe_ctlblk *kcb) 818 { 819 __this_cpu_write(current_kprobe, p); 820 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 821 = (regs->flags & X86_EFLAGS_IF); 822 } 823 824 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, 825 struct kprobe_ctlblk *kcb) 826 { 827 /* Restore back the original saved kprobes variables and continue. */ 828 if (kcb->kprobe_status == KPROBE_REENTER) { 829 /* This will restore both kcb and current_kprobe */ 830 restore_previous_kprobe(kcb); 831 } else { 832 /* 833 * Always update the kcb status because 834 * reset_curent_kprobe() doesn't update kcb. 835 */ 836 kcb->kprobe_status = KPROBE_HIT_SSDONE; 837 if (cur->post_handler) 838 cur->post_handler(cur, regs, 0); 839 reset_current_kprobe(); 840 } 841 } 842 NOKPROBE_SYMBOL(kprobe_post_process); 843 844 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 845 struct kprobe_ctlblk *kcb, int reenter) 846 { 847 if (setup_detour_execution(p, regs, reenter)) 848 return; 849 850 #if !defined(CONFIG_PREEMPTION) 851 if (p->ainsn.boostable) { 852 /* Boost up -- we can execute copied instructions directly */ 853 if (!reenter) 854 reset_current_kprobe(); 855 /* 856 * Reentering boosted probe doesn't reset current_kprobe, 857 * nor set current_kprobe, because it doesn't use single 858 * stepping. 859 */ 860 regs->ip = (unsigned long)p->ainsn.insn; 861 return; 862 } 863 #endif 864 if (reenter) { 865 save_previous_kprobe(kcb); 866 set_current_kprobe(p, regs, kcb); 867 kcb->kprobe_status = KPROBE_REENTER; 868 } else 869 kcb->kprobe_status = KPROBE_HIT_SS; 870 871 if (p->ainsn.emulate_op) { 872 p->ainsn.emulate_op(p, regs); 873 kprobe_post_process(p, regs, kcb); 874 return; 875 } 876 877 /* Disable interrupt, and set ip register on trampoline */ 878 regs->flags &= ~X86_EFLAGS_IF; 879 regs->ip = (unsigned long)p->ainsn.insn; 880 } 881 NOKPROBE_SYMBOL(setup_singlestep); 882 883 /* 884 * Called after single-stepping. p->addr is the address of the 885 * instruction whose first byte has been replaced by the "int3" 886 * instruction. To avoid the SMP problems that can occur when we 887 * temporarily put back the original opcode to single-step, we 888 * single-stepped a copy of the instruction. The address of this 889 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again 890 * right after the copied instruction. 891 * Different from the trap single-step, "int3" single-step can not 892 * handle the instruction which changes the ip register, e.g. jmp, 893 * call, conditional jmp, and the instructions which changes the IF 894 * flags because interrupt must be disabled around the single-stepping. 895 * Such instructions are software emulated, but others are single-stepped 896 * using "int3". 897 * 898 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to 899 * be adjusted, so that we can resume execution on correct code. 900 */ 901 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, 902 struct kprobe_ctlblk *kcb) 903 { 904 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 905 unsigned long orig_ip = (unsigned long)p->addr; 906 907 /* Restore saved interrupt flag and ip register */ 908 regs->flags |= kcb->kprobe_saved_flags; 909 /* Note that regs->ip is executed int3 so must be a step back */ 910 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; 911 } 912 NOKPROBE_SYMBOL(resume_singlestep); 913 914 /* 915 * We have reentered the kprobe_handler(), since another probe was hit while 916 * within the handler. We save the original kprobes variables and just single 917 * step on the instruction of the new probe without calling any user handlers. 918 */ 919 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 920 struct kprobe_ctlblk *kcb) 921 { 922 switch (kcb->kprobe_status) { 923 case KPROBE_HIT_SSDONE: 924 case KPROBE_HIT_ACTIVE: 925 case KPROBE_HIT_SS: 926 kprobes_inc_nmissed_count(p); 927 setup_singlestep(p, regs, kcb, 1); 928 break; 929 case KPROBE_REENTER: 930 /* A probe has been hit in the codepath leading up to, or just 931 * after, single-stepping of a probed instruction. This entire 932 * codepath should strictly reside in .kprobes.text section. 933 * Raise a BUG or we'll continue in an endless reentering loop 934 * and eventually a stack overflow. 935 */ 936 pr_err("Unrecoverable kprobe detected.\n"); 937 dump_kprobe(p); 938 BUG(); 939 default: 940 /* impossible cases */ 941 WARN_ON(1); 942 return 0; 943 } 944 945 return 1; 946 } 947 NOKPROBE_SYMBOL(reenter_kprobe); 948 949 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) 950 { 951 return (kcb->kprobe_status == KPROBE_HIT_SS || 952 kcb->kprobe_status == KPROBE_REENTER); 953 } 954 955 /* 956 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 957 * remain disabled throughout this function. 958 */ 959 int kprobe_int3_handler(struct pt_regs *regs) 960 { 961 kprobe_opcode_t *addr; 962 struct kprobe *p; 963 struct kprobe_ctlblk *kcb; 964 965 if (user_mode(regs)) 966 return 0; 967 968 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 969 /* 970 * We don't want to be preempted for the entire duration of kprobe 971 * processing. Since int3 and debug trap disables irqs and we clear 972 * IF while singlestepping, it must be no preemptible. 973 */ 974 975 kcb = get_kprobe_ctlblk(); 976 p = get_kprobe(addr); 977 978 if (p) { 979 if (kprobe_running()) { 980 if (reenter_kprobe(p, regs, kcb)) 981 return 1; 982 } else { 983 set_current_kprobe(p, regs, kcb); 984 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 985 986 /* 987 * If we have no pre-handler or it returned 0, we 988 * continue with normal processing. If we have a 989 * pre-handler and it returned non-zero, that means 990 * user handler setup registers to exit to another 991 * instruction, we must skip the single stepping. 992 */ 993 if (!p->pre_handler || !p->pre_handler(p, regs)) 994 setup_singlestep(p, regs, kcb, 0); 995 else 996 reset_current_kprobe(); 997 return 1; 998 } 999 } else if (kprobe_is_ss(kcb)) { 1000 p = kprobe_running(); 1001 if ((unsigned long)p->ainsn.insn < regs->ip && 1002 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { 1003 /* Most provably this is the second int3 for singlestep */ 1004 resume_singlestep(p, regs, kcb); 1005 kprobe_post_process(p, regs, kcb); 1006 return 1; 1007 } 1008 } /* else: not a kprobe fault; let the kernel handle it */ 1009 1010 return 0; 1011 } 1012 NOKPROBE_SYMBOL(kprobe_int3_handler); 1013 1014 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1015 { 1016 struct kprobe *cur = kprobe_running(); 1017 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1018 1019 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1020 /* This must happen on single-stepping */ 1021 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1022 kcb->kprobe_status != KPROBE_REENTER); 1023 /* 1024 * We are here because the instruction being single 1025 * stepped caused a page fault. We reset the current 1026 * kprobe and the ip points back to the probe address 1027 * and allow the page fault handler to continue as a 1028 * normal page fault. 1029 */ 1030 regs->ip = (unsigned long)cur->addr; 1031 1032 /* 1033 * If the IF flag was set before the kprobe hit, 1034 * don't touch it: 1035 */ 1036 regs->flags |= kcb->kprobe_old_flags; 1037 1038 if (kcb->kprobe_status == KPROBE_REENTER) 1039 restore_previous_kprobe(kcb); 1040 else 1041 reset_current_kprobe(); 1042 } 1043 1044 return 0; 1045 } 1046 NOKPROBE_SYMBOL(kprobe_fault_handler); 1047 1048 int __init arch_populate_kprobe_blacklist(void) 1049 { 1050 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1051 (unsigned long)__entry_text_end); 1052 } 1053 1054 int __init arch_init_kprobes(void) 1055 { 1056 return 0; 1057 } 1058 1059 int arch_trampoline_kprobe(struct kprobe *p) 1060 { 1061 return 0; 1062 } 1063