1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/module.h> 49 #include <linux/kdebug.h> 50 #include <linux/kallsyms.h> 51 #include <linux/ftrace.h> 52 53 #include <asm/cacheflush.h> 54 #include <asm/desc.h> 55 #include <asm/pgtable.h> 56 #include <asm/uaccess.h> 57 #include <asm/alternative.h> 58 #include <asm/insn.h> 59 #include <asm/debugreg.h> 60 61 #include "common.h" 62 63 void jprobe_return_end(void); 64 65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 67 68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 69 70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 75 << (row % 32)) 76 /* 77 * Undefined/reserved opcodes, conditional jump, Opcode Extension 78 * Groups, and some special opcodes can not boost. 79 * This is non-const and volatile to keep gcc from statically 80 * optimizing it out, as variable_test_bit makes gcc think only 81 * *(unsigned long*) is used. 82 */ 83 static volatile u32 twobyte_is_boostable[256 / 32] = { 84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 85 /* ---------------------------------------------- */ 86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */ 88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 102 /* ----------------------------------------------- */ 103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 104 }; 105 #undef W 106 107 struct kretprobe_blackpoint kretprobe_blacklist[] = { 108 {"__switch_to", }, /* This function switches only current task, but 109 doesn't switch kernel stack.*/ 110 {NULL, NULL} /* Terminator */ 111 }; 112 113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 114 115 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op) 116 { 117 struct __arch_relative_insn { 118 u8 op; 119 s32 raddr; 120 } __packed *insn; 121 122 insn = (struct __arch_relative_insn *)from; 123 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 124 insn->op = op; 125 } 126 127 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 128 void __kprobes synthesize_reljump(void *from, void *to) 129 { 130 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 131 } 132 133 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 134 void __kprobes synthesize_relcall(void *from, void *to) 135 { 136 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 137 } 138 139 /* 140 * Skip the prefixes of the instruction. 141 */ 142 static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn) 143 { 144 insn_attr_t attr; 145 146 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 147 while (inat_is_legacy_prefix(attr)) { 148 insn++; 149 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 150 } 151 #ifdef CONFIG_X86_64 152 if (inat_is_rex_prefix(attr)) 153 insn++; 154 #endif 155 return insn; 156 } 157 158 /* 159 * Returns non-zero if opcode is boostable. 160 * RIP relative instructions are adjusted at copying time in 64 bits mode 161 */ 162 int __kprobes can_boost(kprobe_opcode_t *opcodes) 163 { 164 kprobe_opcode_t opcode; 165 kprobe_opcode_t *orig_opcodes = opcodes; 166 167 if (search_exception_tables((unsigned long)opcodes)) 168 return 0; /* Page fault may occur on this address. */ 169 170 retry: 171 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 172 return 0; 173 opcode = *(opcodes++); 174 175 /* 2nd-byte opcode */ 176 if (opcode == 0x0f) { 177 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) 178 return 0; 179 return test_bit(*opcodes, 180 (unsigned long *)twobyte_is_boostable); 181 } 182 183 switch (opcode & 0xf0) { 184 #ifdef CONFIG_X86_64 185 case 0x40: 186 goto retry; /* REX prefix is boostable */ 187 #endif 188 case 0x60: 189 if (0x63 < opcode && opcode < 0x67) 190 goto retry; /* prefixes */ 191 /* can't boost Address-size override and bound */ 192 return (opcode != 0x62 && opcode != 0x67); 193 case 0x70: 194 return 0; /* can't boost conditional jump */ 195 case 0xc0: 196 /* can't boost software-interruptions */ 197 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 198 case 0xd0: 199 /* can boost AA* and XLAT */ 200 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 201 case 0xe0: 202 /* can boost in/out and absolute jmps */ 203 return ((opcode & 0x04) || opcode == 0xea); 204 case 0xf0: 205 if ((opcode & 0x0c) == 0 && opcode != 0xf1) 206 goto retry; /* lock/rep(ne) prefix */ 207 /* clear and set flags are boostable */ 208 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 209 default: 210 /* segment override prefixes are boostable */ 211 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) 212 goto retry; /* prefixes */ 213 /* CS override prefix and call are not boostable */ 214 return (opcode != 0x2e && opcode != 0x9a); 215 } 216 } 217 218 static unsigned long 219 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 220 { 221 struct kprobe *kp; 222 223 kp = get_kprobe((void *)addr); 224 /* There is no probe, return original address */ 225 if (!kp) 226 return addr; 227 228 /* 229 * Basically, kp->ainsn.insn has an original instruction. 230 * However, RIP-relative instruction can not do single-stepping 231 * at different place, __copy_instruction() tweaks the displacement of 232 * that instruction. In that case, we can't recover the instruction 233 * from the kp->ainsn.insn. 234 * 235 * On the other hand, kp->opcode has a copy of the first byte of 236 * the probed instruction, which is overwritten by int3. And 237 * the instruction at kp->addr is not modified by kprobes except 238 * for the first byte, we can recover the original instruction 239 * from it and kp->opcode. 240 */ 241 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 242 buf[0] = kp->opcode; 243 return (unsigned long)buf; 244 } 245 246 /* 247 * Recover the probed instruction at addr for further analysis. 248 * Caller must lock kprobes by kprobe_mutex, or disable preemption 249 * for preventing to release referencing kprobes. 250 */ 251 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 252 { 253 unsigned long __addr; 254 255 __addr = __recover_optprobed_insn(buf, addr); 256 if (__addr != addr) 257 return __addr; 258 259 return __recover_probed_insn(buf, addr); 260 } 261 262 /* Check if paddr is at an instruction boundary */ 263 static int __kprobes can_probe(unsigned long paddr) 264 { 265 unsigned long addr, __addr, offset = 0; 266 struct insn insn; 267 kprobe_opcode_t buf[MAX_INSN_SIZE]; 268 269 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 270 return 0; 271 272 /* Decode instructions */ 273 addr = paddr - offset; 274 while (addr < paddr) { 275 /* 276 * Check if the instruction has been modified by another 277 * kprobe, in which case we replace the breakpoint by the 278 * original instruction in our buffer. 279 * Also, jump optimization will change the breakpoint to 280 * relative-jump. Since the relative-jump itself is 281 * normally used, we just go through if there is no kprobe. 282 */ 283 __addr = recover_probed_instruction(buf, addr); 284 kernel_insn_init(&insn, (void *)__addr); 285 insn_get_length(&insn); 286 287 /* 288 * Another debugging subsystem might insert this breakpoint. 289 * In that case, we can't recover it. 290 */ 291 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 292 return 0; 293 addr += insn.length; 294 } 295 296 return (addr == paddr); 297 } 298 299 /* 300 * Returns non-zero if opcode modifies the interrupt flag. 301 */ 302 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn) 303 { 304 /* Skip prefixes */ 305 insn = skip_prefixes(insn); 306 307 switch (*insn) { 308 case 0xfa: /* cli */ 309 case 0xfb: /* sti */ 310 case 0xcf: /* iret/iretd */ 311 case 0x9d: /* popf/popfd */ 312 return 1; 313 } 314 315 return 0; 316 } 317 318 /* 319 * Copy an instruction and adjust the displacement if the instruction 320 * uses the %rip-relative addressing mode. 321 * If it does, Return the address of the 32-bit displacement word. 322 * If not, return null. 323 * Only applicable to 64-bit x86. 324 */ 325 int __kprobes __copy_instruction(u8 *dest, u8 *src) 326 { 327 struct insn insn; 328 kprobe_opcode_t buf[MAX_INSN_SIZE]; 329 330 kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src)); 331 insn_get_length(&insn); 332 /* Another subsystem puts a breakpoint, failed to recover */ 333 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 334 return 0; 335 memcpy(dest, insn.kaddr, insn.length); 336 337 #ifdef CONFIG_X86_64 338 if (insn_rip_relative(&insn)) { 339 s64 newdisp; 340 u8 *disp; 341 kernel_insn_init(&insn, dest); 342 insn_get_displacement(&insn); 343 /* 344 * The copied instruction uses the %rip-relative addressing 345 * mode. Adjust the displacement for the difference between 346 * the original location of this instruction and the location 347 * of the copy that will actually be run. The tricky bit here 348 * is making sure that the sign extension happens correctly in 349 * this calculation, since we need a signed 32-bit result to 350 * be sign-extended to 64 bits when it's added to the %rip 351 * value and yield the same 64-bit result that the sign- 352 * extension of the original signed 32-bit displacement would 353 * have given. 354 */ 355 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; 356 if ((s64) (s32) newdisp != newdisp) { 357 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 358 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value); 359 return 0; 360 } 361 disp = (u8 *) dest + insn_offset_displacement(&insn); 362 *(s32 *) disp = (s32) newdisp; 363 } 364 #endif 365 return insn.length; 366 } 367 368 static void __kprobes arch_copy_kprobe(struct kprobe *p) 369 { 370 /* Copy an instruction with recovering if other optprobe modifies it.*/ 371 __copy_instruction(p->ainsn.insn, p->addr); 372 373 /* 374 * __copy_instruction can modify the displacement of the instruction, 375 * but it doesn't affect boostable check. 376 */ 377 if (can_boost(p->ainsn.insn)) 378 p->ainsn.boostable = 0; 379 else 380 p->ainsn.boostable = -1; 381 382 /* Check whether the instruction modifies Interrupt Flag or not */ 383 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 384 385 /* Also, displacement change doesn't affect the first byte */ 386 p->opcode = p->ainsn.insn[0]; 387 } 388 389 int __kprobes arch_prepare_kprobe(struct kprobe *p) 390 { 391 if (alternatives_text_reserved(p->addr, p->addr)) 392 return -EINVAL; 393 394 if (!can_probe((unsigned long)p->addr)) 395 return -EILSEQ; 396 /* insn: must be on special executable page on x86. */ 397 p->ainsn.insn = get_insn_slot(); 398 if (!p->ainsn.insn) 399 return -ENOMEM; 400 arch_copy_kprobe(p); 401 return 0; 402 } 403 404 void __kprobes arch_arm_kprobe(struct kprobe *p) 405 { 406 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 407 } 408 409 void __kprobes arch_disarm_kprobe(struct kprobe *p) 410 { 411 text_poke(p->addr, &p->opcode, 1); 412 } 413 414 void __kprobes arch_remove_kprobe(struct kprobe *p) 415 { 416 if (p->ainsn.insn) { 417 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); 418 p->ainsn.insn = NULL; 419 } 420 } 421 422 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 423 { 424 kcb->prev_kprobe.kp = kprobe_running(); 425 kcb->prev_kprobe.status = kcb->kprobe_status; 426 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 427 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 428 } 429 430 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 431 { 432 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 433 kcb->kprobe_status = kcb->prev_kprobe.status; 434 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 435 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 436 } 437 438 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 439 struct kprobe_ctlblk *kcb) 440 { 441 __this_cpu_write(current_kprobe, p); 442 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 443 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 444 if (p->ainsn.if_modifier) 445 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 446 } 447 448 static void __kprobes clear_btf(void) 449 { 450 if (test_thread_flag(TIF_BLOCKSTEP)) { 451 unsigned long debugctl = get_debugctlmsr(); 452 453 debugctl &= ~DEBUGCTLMSR_BTF; 454 update_debugctlmsr(debugctl); 455 } 456 } 457 458 static void __kprobes restore_btf(void) 459 { 460 if (test_thread_flag(TIF_BLOCKSTEP)) { 461 unsigned long debugctl = get_debugctlmsr(); 462 463 debugctl |= DEBUGCTLMSR_BTF; 464 update_debugctlmsr(debugctl); 465 } 466 } 467 468 void __kprobes 469 arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 470 { 471 unsigned long *sara = stack_addr(regs); 472 473 ri->ret_addr = (kprobe_opcode_t *) *sara; 474 475 /* Replace the return addr with trampoline addr */ 476 *sara = (unsigned long) &kretprobe_trampoline; 477 } 478 479 static void __kprobes 480 setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) 481 { 482 if (setup_detour_execution(p, regs, reenter)) 483 return; 484 485 #if !defined(CONFIG_PREEMPT) 486 if (p->ainsn.boostable == 1 && !p->post_handler) { 487 /* Boost up -- we can execute copied instructions directly */ 488 if (!reenter) 489 reset_current_kprobe(); 490 /* 491 * Reentering boosted probe doesn't reset current_kprobe, 492 * nor set current_kprobe, because it doesn't use single 493 * stepping. 494 */ 495 regs->ip = (unsigned long)p->ainsn.insn; 496 preempt_enable_no_resched(); 497 return; 498 } 499 #endif 500 if (reenter) { 501 save_previous_kprobe(kcb); 502 set_current_kprobe(p, regs, kcb); 503 kcb->kprobe_status = KPROBE_REENTER; 504 } else 505 kcb->kprobe_status = KPROBE_HIT_SS; 506 /* Prepare real single stepping */ 507 clear_btf(); 508 regs->flags |= X86_EFLAGS_TF; 509 regs->flags &= ~X86_EFLAGS_IF; 510 /* single step inline if the instruction is an int3 */ 511 if (p->opcode == BREAKPOINT_INSTRUCTION) 512 regs->ip = (unsigned long)p->addr; 513 else 514 regs->ip = (unsigned long)p->ainsn.insn; 515 } 516 517 /* 518 * We have reentered the kprobe_handler(), since another probe was hit while 519 * within the handler. We save the original kprobes variables and just single 520 * step on the instruction of the new probe without calling any user handlers. 521 */ 522 static int __kprobes 523 reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 524 { 525 switch (kcb->kprobe_status) { 526 case KPROBE_HIT_SSDONE: 527 case KPROBE_HIT_ACTIVE: 528 kprobes_inc_nmissed_count(p); 529 setup_singlestep(p, regs, kcb, 1); 530 break; 531 case KPROBE_HIT_SS: 532 /* A probe has been hit in the codepath leading up to, or just 533 * after, single-stepping of a probed instruction. This entire 534 * codepath should strictly reside in .kprobes.text section. 535 * Raise a BUG or we'll continue in an endless reentering loop 536 * and eventually a stack overflow. 537 */ 538 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 539 p->addr); 540 dump_kprobe(p); 541 BUG(); 542 default: 543 /* impossible cases */ 544 WARN_ON(1); 545 return 0; 546 } 547 548 return 1; 549 } 550 551 /* 552 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 553 * remain disabled throughout this function. 554 */ 555 static int __kprobes kprobe_handler(struct pt_regs *regs) 556 { 557 kprobe_opcode_t *addr; 558 struct kprobe *p; 559 struct kprobe_ctlblk *kcb; 560 561 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 562 /* 563 * We don't want to be preempted for the entire 564 * duration of kprobe processing. We conditionally 565 * re-enable preemption at the end of this function, 566 * and also in reenter_kprobe() and setup_singlestep(). 567 */ 568 preempt_disable(); 569 570 kcb = get_kprobe_ctlblk(); 571 p = get_kprobe(addr); 572 573 if (p) { 574 if (kprobe_running()) { 575 if (reenter_kprobe(p, regs, kcb)) 576 return 1; 577 } else { 578 set_current_kprobe(p, regs, kcb); 579 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 580 581 /* 582 * If we have no pre-handler or it returned 0, we 583 * continue with normal processing. If we have a 584 * pre-handler and it returned non-zero, it prepped 585 * for calling the break_handler below on re-entry 586 * for jprobe processing, so get out doing nothing 587 * more here. 588 */ 589 if (!p->pre_handler || !p->pre_handler(p, regs)) 590 setup_singlestep(p, regs, kcb, 0); 591 return 1; 592 } 593 } else if (*addr != BREAKPOINT_INSTRUCTION) { 594 /* 595 * The breakpoint instruction was removed right 596 * after we hit it. Another cpu has removed 597 * either a probepoint or a debugger breakpoint 598 * at this address. In either case, no further 599 * handling of this interrupt is appropriate. 600 * Back up over the (now missing) int3 and run 601 * the original instruction. 602 */ 603 regs->ip = (unsigned long)addr; 604 preempt_enable_no_resched(); 605 return 1; 606 } else if (kprobe_running()) { 607 p = __this_cpu_read(current_kprobe); 608 if (p->break_handler && p->break_handler(p, regs)) { 609 if (!skip_singlestep(p, regs, kcb)) 610 setup_singlestep(p, regs, kcb, 0); 611 return 1; 612 } 613 } /* else: not a kprobe fault; let the kernel handle it */ 614 615 preempt_enable_no_resched(); 616 return 0; 617 } 618 619 /* 620 * When a retprobed function returns, this code saves registers and 621 * calls trampoline_handler() runs, which calls the kretprobe's handler. 622 */ 623 static void __used __kprobes kretprobe_trampoline_holder(void) 624 { 625 asm volatile ( 626 ".global kretprobe_trampoline\n" 627 "kretprobe_trampoline: \n" 628 #ifdef CONFIG_X86_64 629 /* We don't bother saving the ss register */ 630 " pushq %rsp\n" 631 " pushfq\n" 632 SAVE_REGS_STRING 633 " movq %rsp, %rdi\n" 634 " call trampoline_handler\n" 635 /* Replace saved sp with true return address. */ 636 " movq %rax, 152(%rsp)\n" 637 RESTORE_REGS_STRING 638 " popfq\n" 639 #else 640 " pushf\n" 641 SAVE_REGS_STRING 642 " movl %esp, %eax\n" 643 " call trampoline_handler\n" 644 /* Move flags to cs */ 645 " movl 56(%esp), %edx\n" 646 " movl %edx, 52(%esp)\n" 647 /* Replace saved flags with true return address. */ 648 " movl %eax, 56(%esp)\n" 649 RESTORE_REGS_STRING 650 " popf\n" 651 #endif 652 " ret\n"); 653 } 654 655 /* 656 * Called from kretprobe_trampoline 657 */ 658 static __used __kprobes void *trampoline_handler(struct pt_regs *regs) 659 { 660 struct kretprobe_instance *ri = NULL; 661 struct hlist_head *head, empty_rp; 662 struct hlist_node *tmp; 663 unsigned long flags, orig_ret_address = 0; 664 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 665 kprobe_opcode_t *correct_ret_addr = NULL; 666 667 INIT_HLIST_HEAD(&empty_rp); 668 kretprobe_hash_lock(current, &head, &flags); 669 /* fixup registers */ 670 #ifdef CONFIG_X86_64 671 regs->cs = __KERNEL_CS; 672 #else 673 regs->cs = __KERNEL_CS | get_kernel_rpl(); 674 regs->gs = 0; 675 #endif 676 regs->ip = trampoline_address; 677 regs->orig_ax = ~0UL; 678 679 /* 680 * It is possible to have multiple instances associated with a given 681 * task either because multiple functions in the call path have 682 * return probes installed on them, and/or more than one 683 * return probe was registered for a target function. 684 * 685 * We can handle this because: 686 * - instances are always pushed into the head of the list 687 * - when multiple return probes are registered for the same 688 * function, the (chronologically) first instance's ret_addr 689 * will be the real return address, and all the rest will 690 * point to kretprobe_trampoline. 691 */ 692 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 693 if (ri->task != current) 694 /* another task is sharing our hash bucket */ 695 continue; 696 697 orig_ret_address = (unsigned long)ri->ret_addr; 698 699 if (orig_ret_address != trampoline_address) 700 /* 701 * This is the real return address. Any other 702 * instances associated with this task are for 703 * other calls deeper on the call stack 704 */ 705 break; 706 } 707 708 kretprobe_assert(ri, orig_ret_address, trampoline_address); 709 710 correct_ret_addr = ri->ret_addr; 711 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 712 if (ri->task != current) 713 /* another task is sharing our hash bucket */ 714 continue; 715 716 orig_ret_address = (unsigned long)ri->ret_addr; 717 if (ri->rp && ri->rp->handler) { 718 __this_cpu_write(current_kprobe, &ri->rp->kp); 719 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 720 ri->ret_addr = correct_ret_addr; 721 ri->rp->handler(ri, regs); 722 __this_cpu_write(current_kprobe, NULL); 723 } 724 725 recycle_rp_inst(ri, &empty_rp); 726 727 if (orig_ret_address != trampoline_address) 728 /* 729 * This is the real return address. Any other 730 * instances associated with this task are for 731 * other calls deeper on the call stack 732 */ 733 break; 734 } 735 736 kretprobe_hash_unlock(current, &flags); 737 738 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 739 hlist_del(&ri->hlist); 740 kfree(ri); 741 } 742 return (void *)orig_ret_address; 743 } 744 745 /* 746 * Called after single-stepping. p->addr is the address of the 747 * instruction whose first byte has been replaced by the "int 3" 748 * instruction. To avoid the SMP problems that can occur when we 749 * temporarily put back the original opcode to single-step, we 750 * single-stepped a copy of the instruction. The address of this 751 * copy is p->ainsn.insn. 752 * 753 * This function prepares to return from the post-single-step 754 * interrupt. We have to fix up the stack as follows: 755 * 756 * 0) Except in the case of absolute or indirect jump or call instructions, 757 * the new ip is relative to the copied instruction. We need to make 758 * it relative to the original instruction. 759 * 760 * 1) If the single-stepped instruction was pushfl, then the TF and IF 761 * flags are set in the just-pushed flags, and may need to be cleared. 762 * 763 * 2) If the single-stepped instruction was a call, the return address 764 * that is atop the stack is the address following the copied instruction. 765 * We need to make it the address following the original instruction. 766 * 767 * If this is the first time we've single-stepped the instruction at 768 * this probepoint, and the instruction is boostable, boost it: add a 769 * jump instruction after the copied instruction, that jumps to the next 770 * instruction after the probepoint. 771 */ 772 static void __kprobes 773 resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 774 { 775 unsigned long *tos = stack_addr(regs); 776 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 777 unsigned long orig_ip = (unsigned long)p->addr; 778 kprobe_opcode_t *insn = p->ainsn.insn; 779 780 /* Skip prefixes */ 781 insn = skip_prefixes(insn); 782 783 regs->flags &= ~X86_EFLAGS_TF; 784 switch (*insn) { 785 case 0x9c: /* pushfl */ 786 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 787 *tos |= kcb->kprobe_old_flags; 788 break; 789 case 0xc2: /* iret/ret/lret */ 790 case 0xc3: 791 case 0xca: 792 case 0xcb: 793 case 0xcf: 794 case 0xea: /* jmp absolute -- ip is correct */ 795 /* ip is already adjusted, no more changes required */ 796 p->ainsn.boostable = 1; 797 goto no_change; 798 case 0xe8: /* call relative - Fix return addr */ 799 *tos = orig_ip + (*tos - copy_ip); 800 break; 801 #ifdef CONFIG_X86_32 802 case 0x9a: /* call absolute -- same as call absolute, indirect */ 803 *tos = orig_ip + (*tos - copy_ip); 804 goto no_change; 805 #endif 806 case 0xff: 807 if ((insn[1] & 0x30) == 0x10) { 808 /* 809 * call absolute, indirect 810 * Fix return addr; ip is correct. 811 * But this is not boostable 812 */ 813 *tos = orig_ip + (*tos - copy_ip); 814 goto no_change; 815 } else if (((insn[1] & 0x31) == 0x20) || 816 ((insn[1] & 0x31) == 0x21)) { 817 /* 818 * jmp near and far, absolute indirect 819 * ip is correct. And this is boostable 820 */ 821 p->ainsn.boostable = 1; 822 goto no_change; 823 } 824 default: 825 break; 826 } 827 828 if (p->ainsn.boostable == 0) { 829 if ((regs->ip > copy_ip) && 830 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { 831 /* 832 * These instructions can be executed directly if it 833 * jumps back to correct address. 834 */ 835 synthesize_reljump((void *)regs->ip, 836 (void *)orig_ip + (regs->ip - copy_ip)); 837 p->ainsn.boostable = 1; 838 } else { 839 p->ainsn.boostable = -1; 840 } 841 } 842 843 regs->ip += orig_ip - copy_ip; 844 845 no_change: 846 restore_btf(); 847 } 848 849 /* 850 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 851 * remain disabled throughout this function. 852 */ 853 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 854 { 855 struct kprobe *cur = kprobe_running(); 856 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 857 858 if (!cur) 859 return 0; 860 861 resume_execution(cur, regs, kcb); 862 regs->flags |= kcb->kprobe_saved_flags; 863 864 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 865 kcb->kprobe_status = KPROBE_HIT_SSDONE; 866 cur->post_handler(cur, regs, 0); 867 } 868 869 /* Restore back the original saved kprobes variables and continue. */ 870 if (kcb->kprobe_status == KPROBE_REENTER) { 871 restore_previous_kprobe(kcb); 872 goto out; 873 } 874 reset_current_kprobe(); 875 out: 876 preempt_enable_no_resched(); 877 878 /* 879 * if somebody else is singlestepping across a probe point, flags 880 * will have TF set, in which case, continue the remaining processing 881 * of do_debug, as if this is not a probe hit. 882 */ 883 if (regs->flags & X86_EFLAGS_TF) 884 return 0; 885 886 return 1; 887 } 888 889 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 890 { 891 struct kprobe *cur = kprobe_running(); 892 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 893 894 switch (kcb->kprobe_status) { 895 case KPROBE_HIT_SS: 896 case KPROBE_REENTER: 897 /* 898 * We are here because the instruction being single 899 * stepped caused a page fault. We reset the current 900 * kprobe and the ip points back to the probe address 901 * and allow the page fault handler to continue as a 902 * normal page fault. 903 */ 904 regs->ip = (unsigned long)cur->addr; 905 regs->flags |= kcb->kprobe_old_flags; 906 if (kcb->kprobe_status == KPROBE_REENTER) 907 restore_previous_kprobe(kcb); 908 else 909 reset_current_kprobe(); 910 preempt_enable_no_resched(); 911 break; 912 case KPROBE_HIT_ACTIVE: 913 case KPROBE_HIT_SSDONE: 914 /* 915 * We increment the nmissed count for accounting, 916 * we can also use npre/npostfault count for accounting 917 * these specific fault cases. 918 */ 919 kprobes_inc_nmissed_count(cur); 920 921 /* 922 * We come here because instructions in the pre/post 923 * handler caused the page_fault, this could happen 924 * if handler tries to access user space by 925 * copy_from_user(), get_user() etc. Let the 926 * user-specified handler try to fix it first. 927 */ 928 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 929 return 1; 930 931 /* 932 * In case the user-specified fault handler returned 933 * zero, try to fix up. 934 */ 935 if (fixup_exception(regs)) 936 return 1; 937 938 /* 939 * fixup routine could not handle it, 940 * Let do_page_fault() fix it. 941 */ 942 break; 943 default: 944 break; 945 } 946 return 0; 947 } 948 949 /* 950 * Wrapper routine for handling exceptions. 951 */ 952 int __kprobes 953 kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) 954 { 955 struct die_args *args = data; 956 int ret = NOTIFY_DONE; 957 958 if (args->regs && user_mode_vm(args->regs)) 959 return ret; 960 961 switch (val) { 962 case DIE_INT3: 963 if (kprobe_handler(args->regs)) 964 ret = NOTIFY_STOP; 965 break; 966 case DIE_DEBUG: 967 if (post_kprobe_handler(args->regs)) { 968 /* 969 * Reset the BS bit in dr6 (pointed by args->err) to 970 * denote completion of processing 971 */ 972 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP; 973 ret = NOTIFY_STOP; 974 } 975 break; 976 case DIE_GPF: 977 /* 978 * To be potentially processing a kprobe fault and to 979 * trust the result from kprobe_running(), we have 980 * be non-preemptible. 981 */ 982 if (!preemptible() && kprobe_running() && 983 kprobe_fault_handler(args->regs, args->trapnr)) 984 ret = NOTIFY_STOP; 985 break; 986 default: 987 break; 988 } 989 return ret; 990 } 991 992 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 993 { 994 struct jprobe *jp = container_of(p, struct jprobe, kp); 995 unsigned long addr; 996 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 997 998 kcb->jprobe_saved_regs = *regs; 999 kcb->jprobe_saved_sp = stack_addr(regs); 1000 addr = (unsigned long)(kcb->jprobe_saved_sp); 1001 1002 /* 1003 * As Linus pointed out, gcc assumes that the callee 1004 * owns the argument space and could overwrite it, e.g. 1005 * tailcall optimization. So, to be absolutely safe 1006 * we also save and restore enough stack bytes to cover 1007 * the argument area. 1008 */ 1009 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, 1010 MIN_STACK_SIZE(addr)); 1011 regs->flags &= ~X86_EFLAGS_IF; 1012 trace_hardirqs_off(); 1013 regs->ip = (unsigned long)(jp->entry); 1014 return 1; 1015 } 1016 1017 void __kprobes jprobe_return(void) 1018 { 1019 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1020 1021 asm volatile ( 1022 #ifdef CONFIG_X86_64 1023 " xchg %%rbx,%%rsp \n" 1024 #else 1025 " xchgl %%ebx,%%esp \n" 1026 #endif 1027 " int3 \n" 1028 " .globl jprobe_return_end\n" 1029 " jprobe_return_end: \n" 1030 " nop \n"::"b" 1031 (kcb->jprobe_saved_sp):"memory"); 1032 } 1033 1034 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1035 { 1036 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1037 u8 *addr = (u8 *) (regs->ip - 1); 1038 struct jprobe *jp = container_of(p, struct jprobe, kp); 1039 1040 if ((addr > (u8 *) jprobe_return) && 1041 (addr < (u8 *) jprobe_return_end)) { 1042 if (stack_addr(regs) != kcb->jprobe_saved_sp) { 1043 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1044 printk(KERN_ERR 1045 "current sp %p does not match saved sp %p\n", 1046 stack_addr(regs), kcb->jprobe_saved_sp); 1047 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1048 show_regs(saved_regs); 1049 printk(KERN_ERR "Current registers\n"); 1050 show_regs(regs); 1051 BUG(); 1052 } 1053 *regs = kcb->jprobe_saved_regs; 1054 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp), 1055 kcb->jprobes_stack, 1056 MIN_STACK_SIZE(kcb->jprobe_saved_sp)); 1057 preempt_enable_no_resched(); 1058 return 1; 1059 } 1060 return 0; 1061 } 1062 1063 int __init arch_init_kprobes(void) 1064 { 1065 return arch_init_optprobes(); 1066 } 1067 1068 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 1069 { 1070 return 0; 1071 } 1072