1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/ftrace.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/objtool.h> 44 #include <linux/vmalloc.h> 45 #include <linux/pgtable.h> 46 47 #include <asm/text-patching.h> 48 #include <asm/cacheflush.h> 49 #include <asm/desc.h> 50 #include <linux/uaccess.h> 51 #include <asm/alternative.h> 52 #include <asm/insn.h> 53 #include <asm/debugreg.h> 54 #include <asm/set_memory.h> 55 56 #include "common.h" 57 58 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 59 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 60 61 #define stack_addr(regs) ((unsigned long *)regs->sp) 62 63 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 64 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 65 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 66 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 67 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 68 << (row % 32)) 69 /* 70 * Undefined/reserved opcodes, conditional jump, Opcode Extension 71 * Groups, and some special opcodes can not boost. 72 * This is non-const and volatile to keep gcc from statically 73 * optimizing it out, as variable_test_bit makes gcc think only 74 * *(unsigned long*) is used. 75 */ 76 static volatile u32 twobyte_is_boostable[256 / 32] = { 77 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 78 /* ---------------------------------------------- */ 79 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 80 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 81 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 82 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 83 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 84 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 85 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 86 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 87 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 88 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 89 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 90 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 91 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 92 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 93 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 94 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 95 /* ----------------------------------------------- */ 96 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 97 }; 98 #undef W 99 100 struct kretprobe_blackpoint kretprobe_blacklist[] = { 101 {"__switch_to", }, /* This function switches only current task, but 102 doesn't switch kernel stack.*/ 103 {NULL, NULL} /* Terminator */ 104 }; 105 106 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 107 108 static nokprobe_inline void 109 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 110 { 111 struct __arch_relative_insn { 112 u8 op; 113 s32 raddr; 114 } __packed *insn; 115 116 insn = (struct __arch_relative_insn *)dest; 117 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 118 insn->op = op; 119 } 120 121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 122 void synthesize_reljump(void *dest, void *from, void *to) 123 { 124 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 125 } 126 NOKPROBE_SYMBOL(synthesize_reljump); 127 128 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 129 void synthesize_relcall(void *dest, void *from, void *to) 130 { 131 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 132 } 133 NOKPROBE_SYMBOL(synthesize_relcall); 134 135 /* 136 * Skip the prefixes of the instruction. 137 */ 138 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 139 { 140 insn_attr_t attr; 141 142 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 143 while (inat_is_legacy_prefix(attr)) { 144 insn++; 145 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 146 } 147 #ifdef CONFIG_X86_64 148 if (inat_is_rex_prefix(attr)) 149 insn++; 150 #endif 151 return insn; 152 } 153 NOKPROBE_SYMBOL(skip_prefixes); 154 155 /* 156 * Returns non-zero if INSN is boostable. 157 * RIP relative instructions are adjusted at copying time in 64 bits mode 158 */ 159 int can_boost(struct insn *insn, void *addr) 160 { 161 kprobe_opcode_t opcode; 162 163 if (search_exception_tables((unsigned long)addr)) 164 return 0; /* Page fault may occur on this address. */ 165 166 /* 2nd-byte opcode */ 167 if (insn->opcode.nbytes == 2) 168 return test_bit(insn->opcode.bytes[1], 169 (unsigned long *)twobyte_is_boostable); 170 171 if (insn->opcode.nbytes != 1) 172 return 0; 173 174 /* Can't boost Address-size override prefix */ 175 if (unlikely(inat_is_address_size_prefix(insn->attr))) 176 return 0; 177 178 opcode = insn->opcode.bytes[0]; 179 180 switch (opcode & 0xf0) { 181 case 0x60: 182 /* can't boost "bound" */ 183 return (opcode != 0x62); 184 case 0x70: 185 return 0; /* can't boost conditional jump */ 186 case 0x90: 187 return opcode != 0x9a; /* can't boost call far */ 188 case 0xc0: 189 /* can't boost software-interruptions */ 190 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 191 case 0xd0: 192 /* can boost AA* and XLAT */ 193 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 194 case 0xe0: 195 /* can boost in/out and absolute jmps */ 196 return ((opcode & 0x04) || opcode == 0xea); 197 case 0xf0: 198 /* clear and set flags are boostable */ 199 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 200 default: 201 /* CS override prefix and call are not boostable */ 202 return (opcode != 0x2e && opcode != 0x9a); 203 } 204 } 205 206 static unsigned long 207 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 208 { 209 struct kprobe *kp; 210 unsigned long faddr; 211 212 kp = get_kprobe((void *)addr); 213 faddr = ftrace_location(addr); 214 /* 215 * Addresses inside the ftrace location are refused by 216 * arch_check_ftrace_location(). Something went terribly wrong 217 * if such an address is checked here. 218 */ 219 if (WARN_ON(faddr && faddr != addr)) 220 return 0UL; 221 /* 222 * Use the current code if it is not modified by Kprobe 223 * and it cannot be modified by ftrace. 224 */ 225 if (!kp && !faddr) 226 return addr; 227 228 /* 229 * Basically, kp->ainsn.insn has an original instruction. 230 * However, RIP-relative instruction can not do single-stepping 231 * at different place, __copy_instruction() tweaks the displacement of 232 * that instruction. In that case, we can't recover the instruction 233 * from the kp->ainsn.insn. 234 * 235 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 236 * of the first byte of the probed instruction, which is overwritten 237 * by int3. And the instruction at kp->addr is not modified by kprobes 238 * except for the first byte, we can recover the original instruction 239 * from it and kp->opcode. 240 * 241 * In case of Kprobes using ftrace, we do not have a copy of 242 * the original instruction. In fact, the ftrace location might 243 * be modified at anytime and even could be in an inconsistent state. 244 * Fortunately, we know that the original code is the ideal 5-byte 245 * long NOP. 246 */ 247 if (copy_from_kernel_nofault(buf, (void *)addr, 248 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 249 return 0UL; 250 251 if (faddr) 252 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 253 else 254 buf[0] = kp->opcode; 255 return (unsigned long)buf; 256 } 257 258 /* 259 * Recover the probed instruction at addr for further analysis. 260 * Caller must lock kprobes by kprobe_mutex, or disable preemption 261 * for preventing to release referencing kprobes. 262 * Returns zero if the instruction can not get recovered (or access failed). 263 */ 264 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 265 { 266 unsigned long __addr; 267 268 __addr = __recover_optprobed_insn(buf, addr); 269 if (__addr != addr) 270 return __addr; 271 272 return __recover_probed_insn(buf, addr); 273 } 274 275 /* Check if paddr is at an instruction boundary */ 276 static int can_probe(unsigned long paddr) 277 { 278 unsigned long addr, __addr, offset = 0; 279 struct insn insn; 280 kprobe_opcode_t buf[MAX_INSN_SIZE]; 281 282 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 283 return 0; 284 285 /* Decode instructions */ 286 addr = paddr - offset; 287 while (addr < paddr) { 288 /* 289 * Check if the instruction has been modified by another 290 * kprobe, in which case we replace the breakpoint by the 291 * original instruction in our buffer. 292 * Also, jump optimization will change the breakpoint to 293 * relative-jump. Since the relative-jump itself is 294 * normally used, we just go through if there is no kprobe. 295 */ 296 __addr = recover_probed_instruction(buf, addr); 297 if (!__addr) 298 return 0; 299 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 300 insn_get_length(&insn); 301 302 /* 303 * Another debugging subsystem might insert this breakpoint. 304 * In that case, we can't recover it. 305 */ 306 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 307 return 0; 308 addr += insn.length; 309 } 310 311 return (addr == paddr); 312 } 313 314 /* 315 * Returns non-zero if opcode modifies the interrupt flag. 316 */ 317 static int is_IF_modifier(kprobe_opcode_t *insn) 318 { 319 /* Skip prefixes */ 320 insn = skip_prefixes(insn); 321 322 switch (*insn) { 323 case 0xfa: /* cli */ 324 case 0xfb: /* sti */ 325 case 0xcf: /* iret/iretd */ 326 case 0x9d: /* popf/popfd */ 327 return 1; 328 } 329 330 return 0; 331 } 332 333 /* 334 * Copy an instruction with recovering modified instruction by kprobes 335 * and adjust the displacement if the instruction uses the %rip-relative 336 * addressing mode. Note that since @real will be the final place of copied 337 * instruction, displacement must be adjust by @real, not @dest. 338 * This returns the length of copied instruction, or 0 if it has an error. 339 */ 340 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 341 { 342 kprobe_opcode_t buf[MAX_INSN_SIZE]; 343 unsigned long recovered_insn = 344 recover_probed_instruction(buf, (unsigned long)src); 345 346 if (!recovered_insn || !insn) 347 return 0; 348 349 /* This can access kernel text if given address is not recovered */ 350 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 351 MAX_INSN_SIZE)) 352 return 0; 353 354 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 355 insn_get_length(insn); 356 357 /* We can not probe force emulate prefixed instruction */ 358 if (insn_has_emulate_prefix(insn)) 359 return 0; 360 361 /* Another subsystem puts a breakpoint, failed to recover */ 362 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 363 return 0; 364 365 /* We should not singlestep on the exception masking instructions */ 366 if (insn_masking_exception(insn)) 367 return 0; 368 369 #ifdef CONFIG_X86_64 370 /* Only x86_64 has RIP relative instructions */ 371 if (insn_rip_relative(insn)) { 372 s64 newdisp; 373 u8 *disp; 374 /* 375 * The copied instruction uses the %rip-relative addressing 376 * mode. Adjust the displacement for the difference between 377 * the original location of this instruction and the location 378 * of the copy that will actually be run. The tricky bit here 379 * is making sure that the sign extension happens correctly in 380 * this calculation, since we need a signed 32-bit result to 381 * be sign-extended to 64 bits when it's added to the %rip 382 * value and yield the same 64-bit result that the sign- 383 * extension of the original signed 32-bit displacement would 384 * have given. 385 */ 386 newdisp = (u8 *) src + (s64) insn->displacement.value 387 - (u8 *) real; 388 if ((s64) (s32) newdisp != newdisp) { 389 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 390 return 0; 391 } 392 disp = (u8 *) dest + insn_offset_displacement(insn); 393 *(s32 *) disp = (s32) newdisp; 394 } 395 #endif 396 return insn->length; 397 } 398 399 /* Prepare reljump right after instruction to boost */ 400 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 401 struct insn *insn) 402 { 403 int len = insn->length; 404 405 if (can_boost(insn, p->addr) && 406 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 407 /* 408 * These instructions can be executed directly if it 409 * jumps back to correct address. 410 */ 411 synthesize_reljump(buf + len, p->ainsn.insn + len, 412 p->addr + insn->length); 413 len += JMP32_INSN_SIZE; 414 p->ainsn.boostable = true; 415 } else { 416 p->ainsn.boostable = false; 417 } 418 419 return len; 420 } 421 422 /* Make page to RO mode when allocate it */ 423 void *alloc_insn_page(void) 424 { 425 void *page; 426 427 page = module_alloc(PAGE_SIZE); 428 if (!page) 429 return NULL; 430 431 set_vm_flush_reset_perms(page); 432 /* 433 * First make the page read-only, and only then make it executable to 434 * prevent it from being W+X in between. 435 */ 436 set_memory_ro((unsigned long)page, 1); 437 438 /* 439 * TODO: Once additional kernel code protection mechanisms are set, ensure 440 * that the page was not maliciously altered and it is still zeroed. 441 */ 442 set_memory_x((unsigned long)page, 1); 443 444 return page; 445 } 446 447 /* Recover page to RW mode before releasing it */ 448 void free_insn_page(void *page) 449 { 450 module_memfree(page); 451 } 452 453 static int arch_copy_kprobe(struct kprobe *p) 454 { 455 struct insn insn; 456 kprobe_opcode_t buf[MAX_INSN_SIZE]; 457 int len; 458 459 /* Copy an instruction with recovering if other optprobe modifies it.*/ 460 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 461 if (!len) 462 return -EINVAL; 463 464 /* 465 * __copy_instruction can modify the displacement of the instruction, 466 * but it doesn't affect boostable check. 467 */ 468 len = prepare_boost(buf, p, &insn); 469 470 /* Check whether the instruction modifies Interrupt Flag or not */ 471 p->ainsn.if_modifier = is_IF_modifier(buf); 472 473 /* Also, displacement change doesn't affect the first byte */ 474 p->opcode = buf[0]; 475 476 p->ainsn.tp_len = len; 477 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 478 479 /* OK, write back the instruction(s) into ROX insn buffer */ 480 text_poke(p->ainsn.insn, buf, len); 481 482 return 0; 483 } 484 485 int arch_prepare_kprobe(struct kprobe *p) 486 { 487 int ret; 488 489 if (alternatives_text_reserved(p->addr, p->addr)) 490 return -EINVAL; 491 492 if (!can_probe((unsigned long)p->addr)) 493 return -EILSEQ; 494 /* insn: must be on special executable page on x86. */ 495 p->ainsn.insn = get_insn_slot(); 496 if (!p->ainsn.insn) 497 return -ENOMEM; 498 499 ret = arch_copy_kprobe(p); 500 if (ret) { 501 free_insn_slot(p->ainsn.insn, 0); 502 p->ainsn.insn = NULL; 503 } 504 505 return ret; 506 } 507 508 void arch_arm_kprobe(struct kprobe *p) 509 { 510 u8 int3 = INT3_INSN_OPCODE; 511 512 text_poke(p->addr, &int3, 1); 513 text_poke_sync(); 514 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 515 } 516 517 void arch_disarm_kprobe(struct kprobe *p) 518 { 519 u8 int3 = INT3_INSN_OPCODE; 520 521 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 522 text_poke(p->addr, &p->opcode, 1); 523 text_poke_sync(); 524 } 525 526 void arch_remove_kprobe(struct kprobe *p) 527 { 528 if (p->ainsn.insn) { 529 /* Record the perf event before freeing the slot */ 530 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 531 p->ainsn.tp_len, NULL, 0); 532 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 533 p->ainsn.insn = NULL; 534 } 535 } 536 537 static nokprobe_inline void 538 save_previous_kprobe(struct kprobe_ctlblk *kcb) 539 { 540 kcb->prev_kprobe.kp = kprobe_running(); 541 kcb->prev_kprobe.status = kcb->kprobe_status; 542 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 543 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 544 } 545 546 static nokprobe_inline void 547 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 548 { 549 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 550 kcb->kprobe_status = kcb->prev_kprobe.status; 551 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 552 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 553 } 554 555 static nokprobe_inline void 556 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 557 struct kprobe_ctlblk *kcb) 558 { 559 __this_cpu_write(current_kprobe, p); 560 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 561 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 562 if (p->ainsn.if_modifier) 563 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 564 } 565 566 static nokprobe_inline void clear_btf(void) 567 { 568 if (test_thread_flag(TIF_BLOCKSTEP)) { 569 unsigned long debugctl = get_debugctlmsr(); 570 571 debugctl &= ~DEBUGCTLMSR_BTF; 572 update_debugctlmsr(debugctl); 573 } 574 } 575 576 static nokprobe_inline void restore_btf(void) 577 { 578 if (test_thread_flag(TIF_BLOCKSTEP)) { 579 unsigned long debugctl = get_debugctlmsr(); 580 581 debugctl |= DEBUGCTLMSR_BTF; 582 update_debugctlmsr(debugctl); 583 } 584 } 585 586 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 587 { 588 unsigned long *sara = stack_addr(regs); 589 590 ri->ret_addr = (kprobe_opcode_t *) *sara; 591 ri->fp = sara; 592 593 /* Replace the return addr with trampoline addr */ 594 *sara = (unsigned long) &kretprobe_trampoline; 595 } 596 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 597 598 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 599 struct kprobe_ctlblk *kcb, int reenter) 600 { 601 if (setup_detour_execution(p, regs, reenter)) 602 return; 603 604 #if !defined(CONFIG_PREEMPTION) 605 if (p->ainsn.boostable && !p->post_handler) { 606 /* Boost up -- we can execute copied instructions directly */ 607 if (!reenter) 608 reset_current_kprobe(); 609 /* 610 * Reentering boosted probe doesn't reset current_kprobe, 611 * nor set current_kprobe, because it doesn't use single 612 * stepping. 613 */ 614 regs->ip = (unsigned long)p->ainsn.insn; 615 return; 616 } 617 #endif 618 if (reenter) { 619 save_previous_kprobe(kcb); 620 set_current_kprobe(p, regs, kcb); 621 kcb->kprobe_status = KPROBE_REENTER; 622 } else 623 kcb->kprobe_status = KPROBE_HIT_SS; 624 /* Prepare real single stepping */ 625 clear_btf(); 626 regs->flags |= X86_EFLAGS_TF; 627 regs->flags &= ~X86_EFLAGS_IF; 628 /* single step inline if the instruction is an int3 */ 629 if (p->opcode == INT3_INSN_OPCODE) 630 regs->ip = (unsigned long)p->addr; 631 else 632 regs->ip = (unsigned long)p->ainsn.insn; 633 } 634 NOKPROBE_SYMBOL(setup_singlestep); 635 636 /* 637 * We have reentered the kprobe_handler(), since another probe was hit while 638 * within the handler. We save the original kprobes variables and just single 639 * step on the instruction of the new probe without calling any user handlers. 640 */ 641 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 642 struct kprobe_ctlblk *kcb) 643 { 644 switch (kcb->kprobe_status) { 645 case KPROBE_HIT_SSDONE: 646 case KPROBE_HIT_ACTIVE: 647 case KPROBE_HIT_SS: 648 kprobes_inc_nmissed_count(p); 649 setup_singlestep(p, regs, kcb, 1); 650 break; 651 case KPROBE_REENTER: 652 /* A probe has been hit in the codepath leading up to, or just 653 * after, single-stepping of a probed instruction. This entire 654 * codepath should strictly reside in .kprobes.text section. 655 * Raise a BUG or we'll continue in an endless reentering loop 656 * and eventually a stack overflow. 657 */ 658 pr_err("Unrecoverable kprobe detected.\n"); 659 dump_kprobe(p); 660 BUG(); 661 default: 662 /* impossible cases */ 663 WARN_ON(1); 664 return 0; 665 } 666 667 return 1; 668 } 669 NOKPROBE_SYMBOL(reenter_kprobe); 670 671 /* 672 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 673 * remain disabled throughout this function. 674 */ 675 int kprobe_int3_handler(struct pt_regs *regs) 676 { 677 kprobe_opcode_t *addr; 678 struct kprobe *p; 679 struct kprobe_ctlblk *kcb; 680 681 if (user_mode(regs)) 682 return 0; 683 684 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 685 /* 686 * We don't want to be preempted for the entire duration of kprobe 687 * processing. Since int3 and debug trap disables irqs and we clear 688 * IF while singlestepping, it must be no preemptible. 689 */ 690 691 kcb = get_kprobe_ctlblk(); 692 p = get_kprobe(addr); 693 694 if (p) { 695 if (kprobe_running()) { 696 if (reenter_kprobe(p, regs, kcb)) 697 return 1; 698 } else { 699 set_current_kprobe(p, regs, kcb); 700 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 701 702 /* 703 * If we have no pre-handler or it returned 0, we 704 * continue with normal processing. If we have a 705 * pre-handler and it returned non-zero, that means 706 * user handler setup registers to exit to another 707 * instruction, we must skip the single stepping. 708 */ 709 if (!p->pre_handler || !p->pre_handler(p, regs)) 710 setup_singlestep(p, regs, kcb, 0); 711 else 712 reset_current_kprobe(); 713 return 1; 714 } 715 } else if (*addr != INT3_INSN_OPCODE) { 716 /* 717 * The breakpoint instruction was removed right 718 * after we hit it. Another cpu has removed 719 * either a probepoint or a debugger breakpoint 720 * at this address. In either case, no further 721 * handling of this interrupt is appropriate. 722 * Back up over the (now missing) int3 and run 723 * the original instruction. 724 */ 725 regs->ip = (unsigned long)addr; 726 return 1; 727 } /* else: not a kprobe fault; let the kernel handle it */ 728 729 return 0; 730 } 731 NOKPROBE_SYMBOL(kprobe_int3_handler); 732 733 /* 734 * When a retprobed function returns, this code saves registers and 735 * calls trampoline_handler() runs, which calls the kretprobe's handler. 736 */ 737 asm( 738 ".text\n" 739 ".global kretprobe_trampoline\n" 740 ".type kretprobe_trampoline, @function\n" 741 "kretprobe_trampoline:\n" 742 /* We don't bother saving the ss register */ 743 #ifdef CONFIG_X86_64 744 " pushq %rsp\n" 745 " pushfq\n" 746 SAVE_REGS_STRING 747 " movq %rsp, %rdi\n" 748 " call trampoline_handler\n" 749 /* Replace saved sp with true return address. */ 750 " movq %rax, 19*8(%rsp)\n" 751 RESTORE_REGS_STRING 752 " popfq\n" 753 #else 754 " pushl %esp\n" 755 " pushfl\n" 756 SAVE_REGS_STRING 757 " movl %esp, %eax\n" 758 " call trampoline_handler\n" 759 /* Replace saved sp with true return address. */ 760 " movl %eax, 15*4(%esp)\n" 761 RESTORE_REGS_STRING 762 " popfl\n" 763 #endif 764 " ret\n" 765 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 766 ); 767 NOKPROBE_SYMBOL(kretprobe_trampoline); 768 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 769 770 771 /* 772 * Called from kretprobe_trampoline 773 */ 774 __used __visible void *trampoline_handler(struct pt_regs *regs) 775 { 776 /* fixup registers */ 777 regs->cs = __KERNEL_CS; 778 #ifdef CONFIG_X86_32 779 regs->gs = 0; 780 #endif 781 regs->ip = (unsigned long)&kretprobe_trampoline; 782 regs->orig_ax = ~0UL; 783 784 return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, ®s->sp); 785 } 786 NOKPROBE_SYMBOL(trampoline_handler); 787 788 /* 789 * Called after single-stepping. p->addr is the address of the 790 * instruction whose first byte has been replaced by the "int 3" 791 * instruction. To avoid the SMP problems that can occur when we 792 * temporarily put back the original opcode to single-step, we 793 * single-stepped a copy of the instruction. The address of this 794 * copy is p->ainsn.insn. 795 * 796 * This function prepares to return from the post-single-step 797 * interrupt. We have to fix up the stack as follows: 798 * 799 * 0) Except in the case of absolute or indirect jump or call instructions, 800 * the new ip is relative to the copied instruction. We need to make 801 * it relative to the original instruction. 802 * 803 * 1) If the single-stepped instruction was pushfl, then the TF and IF 804 * flags are set in the just-pushed flags, and may need to be cleared. 805 * 806 * 2) If the single-stepped instruction was a call, the return address 807 * that is atop the stack is the address following the copied instruction. 808 * We need to make it the address following the original instruction. 809 * 810 * If this is the first time we've single-stepped the instruction at 811 * this probepoint, and the instruction is boostable, boost it: add a 812 * jump instruction after the copied instruction, that jumps to the next 813 * instruction after the probepoint. 814 */ 815 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 816 struct kprobe_ctlblk *kcb) 817 { 818 unsigned long *tos = stack_addr(regs); 819 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 820 unsigned long orig_ip = (unsigned long)p->addr; 821 kprobe_opcode_t *insn = p->ainsn.insn; 822 823 /* Skip prefixes */ 824 insn = skip_prefixes(insn); 825 826 regs->flags &= ~X86_EFLAGS_TF; 827 switch (*insn) { 828 case 0x9c: /* pushfl */ 829 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 830 *tos |= kcb->kprobe_old_flags; 831 break; 832 case 0xc2: /* iret/ret/lret */ 833 case 0xc3: 834 case 0xca: 835 case 0xcb: 836 case 0xcf: 837 case 0xea: /* jmp absolute -- ip is correct */ 838 /* ip is already adjusted, no more changes required */ 839 p->ainsn.boostable = true; 840 goto no_change; 841 case 0xe8: /* call relative - Fix return addr */ 842 *tos = orig_ip + (*tos - copy_ip); 843 break; 844 #ifdef CONFIG_X86_32 845 case 0x9a: /* call absolute -- same as call absolute, indirect */ 846 *tos = orig_ip + (*tos - copy_ip); 847 goto no_change; 848 #endif 849 case 0xff: 850 if ((insn[1] & 0x30) == 0x10) { 851 /* 852 * call absolute, indirect 853 * Fix return addr; ip is correct. 854 * But this is not boostable 855 */ 856 *tos = orig_ip + (*tos - copy_ip); 857 goto no_change; 858 } else if (((insn[1] & 0x31) == 0x20) || 859 ((insn[1] & 0x31) == 0x21)) { 860 /* 861 * jmp near and far, absolute indirect 862 * ip is correct. And this is boostable 863 */ 864 p->ainsn.boostable = true; 865 goto no_change; 866 } 867 break; 868 default: 869 break; 870 } 871 872 regs->ip += orig_ip - copy_ip; 873 874 no_change: 875 restore_btf(); 876 } 877 NOKPROBE_SYMBOL(resume_execution); 878 879 /* 880 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 881 * remain disabled throughout this function. 882 */ 883 int kprobe_debug_handler(struct pt_regs *regs) 884 { 885 struct kprobe *cur = kprobe_running(); 886 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 887 888 if (!cur) 889 return 0; 890 891 resume_execution(cur, regs, kcb); 892 regs->flags |= kcb->kprobe_saved_flags; 893 894 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 895 kcb->kprobe_status = KPROBE_HIT_SSDONE; 896 cur->post_handler(cur, regs, 0); 897 } 898 899 /* Restore back the original saved kprobes variables and continue. */ 900 if (kcb->kprobe_status == KPROBE_REENTER) { 901 restore_previous_kprobe(kcb); 902 goto out; 903 } 904 reset_current_kprobe(); 905 out: 906 /* 907 * if somebody else is singlestepping across a probe point, flags 908 * will have TF set, in which case, continue the remaining processing 909 * of do_debug, as if this is not a probe hit. 910 */ 911 if (regs->flags & X86_EFLAGS_TF) 912 return 0; 913 914 return 1; 915 } 916 NOKPROBE_SYMBOL(kprobe_debug_handler); 917 918 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 919 { 920 struct kprobe *cur = kprobe_running(); 921 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 922 923 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 924 /* This must happen on single-stepping */ 925 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 926 kcb->kprobe_status != KPROBE_REENTER); 927 /* 928 * We are here because the instruction being single 929 * stepped caused a page fault. We reset the current 930 * kprobe and the ip points back to the probe address 931 * and allow the page fault handler to continue as a 932 * normal page fault. 933 */ 934 regs->ip = (unsigned long)cur->addr; 935 /* 936 * Trap flag (TF) has been set here because this fault 937 * happened where the single stepping will be done. 938 * So clear it by resetting the current kprobe: 939 */ 940 regs->flags &= ~X86_EFLAGS_TF; 941 /* 942 * Since the single step (trap) has been cancelled, 943 * we need to restore BTF here. 944 */ 945 restore_btf(); 946 947 /* 948 * If the TF flag was set before the kprobe hit, 949 * don't touch it: 950 */ 951 regs->flags |= kcb->kprobe_old_flags; 952 953 if (kcb->kprobe_status == KPROBE_REENTER) 954 restore_previous_kprobe(kcb); 955 else 956 reset_current_kprobe(); 957 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 958 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 959 /* 960 * We increment the nmissed count for accounting, 961 * we can also use npre/npostfault count for accounting 962 * these specific fault cases. 963 */ 964 kprobes_inc_nmissed_count(cur); 965 966 /* 967 * We come here because instructions in the pre/post 968 * handler caused the page_fault, this could happen 969 * if handler tries to access user space by 970 * copy_from_user(), get_user() etc. Let the 971 * user-specified handler try to fix it first. 972 */ 973 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 974 return 1; 975 } 976 977 return 0; 978 } 979 NOKPROBE_SYMBOL(kprobe_fault_handler); 980 981 int __init arch_populate_kprobe_blacklist(void) 982 { 983 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 984 (unsigned long)__entry_text_end); 985 } 986 987 int __init arch_init_kprobes(void) 988 { 989 return 0; 990 } 991 992 int arch_trampoline_kprobe(struct kprobe *p) 993 { 994 return 0; 995 } 996