1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/ftrace.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/objtool.h> 44 #include <linux/vmalloc.h> 45 #include <linux/pgtable.h> 46 47 #include <asm/text-patching.h> 48 #include <asm/cacheflush.h> 49 #include <asm/desc.h> 50 #include <linux/uaccess.h> 51 #include <asm/alternative.h> 52 #include <asm/insn.h> 53 #include <asm/debugreg.h> 54 #include <asm/set_memory.h> 55 56 #include "common.h" 57 58 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 59 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 60 61 #define stack_addr(regs) ((unsigned long *)regs->sp) 62 63 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 64 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 65 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 66 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 67 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 68 << (row % 32)) 69 /* 70 * Undefined/reserved opcodes, conditional jump, Opcode Extension 71 * Groups, and some special opcodes can not boost. 72 * This is non-const and volatile to keep gcc from statically 73 * optimizing it out, as variable_test_bit makes gcc think only 74 * *(unsigned long*) is used. 75 */ 76 static volatile u32 twobyte_is_boostable[256 / 32] = { 77 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 78 /* ---------------------------------------------- */ 79 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 80 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 81 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 82 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 83 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 84 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 85 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 86 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 87 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 88 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 89 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 90 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 91 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 92 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 93 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 94 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 95 /* ----------------------------------------------- */ 96 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 97 }; 98 #undef W 99 100 struct kretprobe_blackpoint kretprobe_blacklist[] = { 101 {"__switch_to", }, /* This function switches only current task, but 102 doesn't switch kernel stack.*/ 103 {NULL, NULL} /* Terminator */ 104 }; 105 106 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 107 108 static nokprobe_inline void 109 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 110 { 111 struct __arch_relative_insn { 112 u8 op; 113 s32 raddr; 114 } __packed *insn; 115 116 insn = (struct __arch_relative_insn *)dest; 117 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 118 insn->op = op; 119 } 120 121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 122 void synthesize_reljump(void *dest, void *from, void *to) 123 { 124 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 125 } 126 NOKPROBE_SYMBOL(synthesize_reljump); 127 128 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 129 void synthesize_relcall(void *dest, void *from, void *to) 130 { 131 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 132 } 133 NOKPROBE_SYMBOL(synthesize_relcall); 134 135 /* 136 * Returns non-zero if INSN is boostable. 137 * RIP relative instructions are adjusted at copying time in 64 bits mode 138 */ 139 int can_boost(struct insn *insn, void *addr) 140 { 141 kprobe_opcode_t opcode; 142 insn_byte_t prefix; 143 int i; 144 145 if (search_exception_tables((unsigned long)addr)) 146 return 0; /* Page fault may occur on this address. */ 147 148 /* 2nd-byte opcode */ 149 if (insn->opcode.nbytes == 2) 150 return test_bit(insn->opcode.bytes[1], 151 (unsigned long *)twobyte_is_boostable); 152 153 if (insn->opcode.nbytes != 1) 154 return 0; 155 156 for_each_insn_prefix(insn, i, prefix) { 157 insn_attr_t attr; 158 159 attr = inat_get_opcode_attribute(prefix); 160 /* Can't boost Address-size override prefix and CS override prefix */ 161 if (prefix == 0x2e || inat_is_address_size_prefix(attr)) 162 return 0; 163 } 164 165 opcode = insn->opcode.bytes[0]; 166 167 switch (opcode) { 168 case 0x62: /* bound */ 169 case 0x70 ... 0x7f: /* Conditional jumps */ 170 case 0x9a: /* Call far */ 171 case 0xc0 ... 0xc1: /* Grp2 */ 172 case 0xcc ... 0xce: /* software exceptions */ 173 case 0xd0 ... 0xd3: /* Grp2 */ 174 case 0xd6: /* (UD) */ 175 case 0xd8 ... 0xdf: /* ESC */ 176 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ 177 case 0xe8 ... 0xe9: /* near Call, JMP */ 178 case 0xeb: /* Short JMP */ 179 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ 180 case 0xf6 ... 0xf7: /* Grp3 */ 181 case 0xfe: /* Grp4 */ 182 /* ... are not boostable */ 183 return 0; 184 case 0xff: /* Grp5 */ 185 /* Only indirect jmp is boostable */ 186 return X86_MODRM_REG(insn->modrm.bytes[0]) == 4; 187 default: 188 return 1; 189 } 190 } 191 192 static unsigned long 193 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 194 { 195 struct kprobe *kp; 196 unsigned long faddr; 197 198 kp = get_kprobe((void *)addr); 199 faddr = ftrace_location(addr); 200 /* 201 * Addresses inside the ftrace location are refused by 202 * arch_check_ftrace_location(). Something went terribly wrong 203 * if such an address is checked here. 204 */ 205 if (WARN_ON(faddr && faddr != addr)) 206 return 0UL; 207 /* 208 * Use the current code if it is not modified by Kprobe 209 * and it cannot be modified by ftrace. 210 */ 211 if (!kp && !faddr) 212 return addr; 213 214 /* 215 * Basically, kp->ainsn.insn has an original instruction. 216 * However, RIP-relative instruction can not do single-stepping 217 * at different place, __copy_instruction() tweaks the displacement of 218 * that instruction. In that case, we can't recover the instruction 219 * from the kp->ainsn.insn. 220 * 221 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 222 * of the first byte of the probed instruction, which is overwritten 223 * by int3. And the instruction at kp->addr is not modified by kprobes 224 * except for the first byte, we can recover the original instruction 225 * from it and kp->opcode. 226 * 227 * In case of Kprobes using ftrace, we do not have a copy of 228 * the original instruction. In fact, the ftrace location might 229 * be modified at anytime and even could be in an inconsistent state. 230 * Fortunately, we know that the original code is the ideal 5-byte 231 * long NOP. 232 */ 233 if (copy_from_kernel_nofault(buf, (void *)addr, 234 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 235 return 0UL; 236 237 if (faddr) 238 memcpy(buf, x86_nops[5], 5); 239 else 240 buf[0] = kp->opcode; 241 return (unsigned long)buf; 242 } 243 244 /* 245 * Recover the probed instruction at addr for further analysis. 246 * Caller must lock kprobes by kprobe_mutex, or disable preemption 247 * for preventing to release referencing kprobes. 248 * Returns zero if the instruction can not get recovered (or access failed). 249 */ 250 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 251 { 252 unsigned long __addr; 253 254 __addr = __recover_optprobed_insn(buf, addr); 255 if (__addr != addr) 256 return __addr; 257 258 return __recover_probed_insn(buf, addr); 259 } 260 261 /* Check if paddr is at an instruction boundary */ 262 static int can_probe(unsigned long paddr) 263 { 264 unsigned long addr, __addr, offset = 0; 265 struct insn insn; 266 kprobe_opcode_t buf[MAX_INSN_SIZE]; 267 268 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 269 return 0; 270 271 /* Decode instructions */ 272 addr = paddr - offset; 273 while (addr < paddr) { 274 int ret; 275 276 /* 277 * Check if the instruction has been modified by another 278 * kprobe, in which case we replace the breakpoint by the 279 * original instruction in our buffer. 280 * Also, jump optimization will change the breakpoint to 281 * relative-jump. Since the relative-jump itself is 282 * normally used, we just go through if there is no kprobe. 283 */ 284 __addr = recover_probed_instruction(buf, addr); 285 if (!__addr) 286 return 0; 287 288 ret = insn_decode_kernel(&insn, (void *)__addr); 289 if (ret < 0) 290 return 0; 291 292 /* 293 * Another debugging subsystem might insert this breakpoint. 294 * In that case, we can't recover it. 295 */ 296 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 297 return 0; 298 addr += insn.length; 299 } 300 301 return (addr == paddr); 302 } 303 304 /* 305 * Copy an instruction with recovering modified instruction by kprobes 306 * and adjust the displacement if the instruction uses the %rip-relative 307 * addressing mode. Note that since @real will be the final place of copied 308 * instruction, displacement must be adjust by @real, not @dest. 309 * This returns the length of copied instruction, or 0 if it has an error. 310 */ 311 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 312 { 313 kprobe_opcode_t buf[MAX_INSN_SIZE]; 314 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); 315 int ret; 316 317 if (!recovered_insn || !insn) 318 return 0; 319 320 /* This can access kernel text if given address is not recovered */ 321 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 322 MAX_INSN_SIZE)) 323 return 0; 324 325 ret = insn_decode_kernel(insn, dest); 326 if (ret < 0) 327 return 0; 328 329 /* We can not probe force emulate prefixed instruction */ 330 if (insn_has_emulate_prefix(insn)) 331 return 0; 332 333 /* Another subsystem puts a breakpoint, failed to recover */ 334 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 335 return 0; 336 337 /* We should not singlestep on the exception masking instructions */ 338 if (insn_masking_exception(insn)) 339 return 0; 340 341 #ifdef CONFIG_X86_64 342 /* Only x86_64 has RIP relative instructions */ 343 if (insn_rip_relative(insn)) { 344 s64 newdisp; 345 u8 *disp; 346 /* 347 * The copied instruction uses the %rip-relative addressing 348 * mode. Adjust the displacement for the difference between 349 * the original location of this instruction and the location 350 * of the copy that will actually be run. The tricky bit here 351 * is making sure that the sign extension happens correctly in 352 * this calculation, since we need a signed 32-bit result to 353 * be sign-extended to 64 bits when it's added to the %rip 354 * value and yield the same 64-bit result that the sign- 355 * extension of the original signed 32-bit displacement would 356 * have given. 357 */ 358 newdisp = (u8 *) src + (s64) insn->displacement.value 359 - (u8 *) real; 360 if ((s64) (s32) newdisp != newdisp) { 361 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 362 return 0; 363 } 364 disp = (u8 *) dest + insn_offset_displacement(insn); 365 *(s32 *) disp = (s32) newdisp; 366 } 367 #endif 368 return insn->length; 369 } 370 371 /* Prepare reljump or int3 right after instruction */ 372 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, 373 struct insn *insn) 374 { 375 int len = insn->length; 376 377 if (!IS_ENABLED(CONFIG_PREEMPTION) && 378 !p->post_handler && can_boost(insn, p->addr) && 379 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 380 /* 381 * These instructions can be executed directly if it 382 * jumps back to correct address. 383 */ 384 synthesize_reljump(buf + len, p->ainsn.insn + len, 385 p->addr + insn->length); 386 len += JMP32_INSN_SIZE; 387 p->ainsn.boostable = 1; 388 } else { 389 /* Otherwise, put an int3 for trapping singlestep */ 390 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) 391 return -ENOSPC; 392 393 buf[len] = INT3_INSN_OPCODE; 394 len += INT3_INSN_SIZE; 395 } 396 397 return len; 398 } 399 400 /* Make page to RO mode when allocate it */ 401 void *alloc_insn_page(void) 402 { 403 void *page; 404 405 page = module_alloc(PAGE_SIZE); 406 if (!page) 407 return NULL; 408 409 set_vm_flush_reset_perms(page); 410 /* 411 * First make the page read-only, and only then make it executable to 412 * prevent it from being W+X in between. 413 */ 414 set_memory_ro((unsigned long)page, 1); 415 416 /* 417 * TODO: Once additional kernel code protection mechanisms are set, ensure 418 * that the page was not maliciously altered and it is still zeroed. 419 */ 420 set_memory_x((unsigned long)page, 1); 421 422 return page; 423 } 424 425 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ 426 427 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) 428 { 429 switch (p->ainsn.opcode) { 430 case 0xfa: /* cli */ 431 regs->flags &= ~(X86_EFLAGS_IF); 432 break; 433 case 0xfb: /* sti */ 434 regs->flags |= X86_EFLAGS_IF; 435 break; 436 case 0x9c: /* pushf */ 437 int3_emulate_push(regs, regs->flags); 438 break; 439 case 0x9d: /* popf */ 440 regs->flags = int3_emulate_pop(regs); 441 break; 442 } 443 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 444 } 445 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); 446 447 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) 448 { 449 int3_emulate_ret(regs); 450 } 451 NOKPROBE_SYMBOL(kprobe_emulate_ret); 452 453 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) 454 { 455 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 456 457 func += p->ainsn.rel32; 458 int3_emulate_call(regs, func); 459 } 460 NOKPROBE_SYMBOL(kprobe_emulate_call); 461 462 static nokprobe_inline 463 void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond) 464 { 465 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 466 467 if (cond) 468 ip += p->ainsn.rel32; 469 int3_emulate_jmp(regs, ip); 470 } 471 472 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) 473 { 474 __kprobe_emulate_jmp(p, regs, true); 475 } 476 NOKPROBE_SYMBOL(kprobe_emulate_jmp); 477 478 static const unsigned long jcc_mask[6] = { 479 [0] = X86_EFLAGS_OF, 480 [1] = X86_EFLAGS_CF, 481 [2] = X86_EFLAGS_ZF, 482 [3] = X86_EFLAGS_CF | X86_EFLAGS_ZF, 483 [4] = X86_EFLAGS_SF, 484 [5] = X86_EFLAGS_PF, 485 }; 486 487 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) 488 { 489 bool invert = p->ainsn.jcc.type & 1; 490 bool match; 491 492 if (p->ainsn.jcc.type < 0xc) { 493 match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1]; 494 } else { 495 match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^ 496 ((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT); 497 if (p->ainsn.jcc.type >= 0xe) 498 match = match && (regs->flags & X86_EFLAGS_ZF); 499 } 500 __kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert)); 501 } 502 NOKPROBE_SYMBOL(kprobe_emulate_jcc); 503 504 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) 505 { 506 bool match; 507 508 if (p->ainsn.loop.type != 3) { /* LOOP* */ 509 if (p->ainsn.loop.asize == 32) 510 match = ((*(u32 *)®s->cx)--) != 0; 511 #ifdef CONFIG_X86_64 512 else if (p->ainsn.loop.asize == 64) 513 match = ((*(u64 *)®s->cx)--) != 0; 514 #endif 515 else 516 match = ((*(u16 *)®s->cx)--) != 0; 517 } else { /* JCXZ */ 518 if (p->ainsn.loop.asize == 32) 519 match = *(u32 *)(®s->cx) == 0; 520 #ifdef CONFIG_X86_64 521 else if (p->ainsn.loop.asize == 64) 522 match = *(u64 *)(®s->cx) == 0; 523 #endif 524 else 525 match = *(u16 *)(®s->cx) == 0; 526 } 527 528 if (p->ainsn.loop.type == 0) /* LOOPNE */ 529 match = match && !(regs->flags & X86_EFLAGS_ZF); 530 else if (p->ainsn.loop.type == 1) /* LOOPE */ 531 match = match && (regs->flags & X86_EFLAGS_ZF); 532 533 __kprobe_emulate_jmp(p, regs, match); 534 } 535 NOKPROBE_SYMBOL(kprobe_emulate_loop); 536 537 static const int addrmode_regoffs[] = { 538 offsetof(struct pt_regs, ax), 539 offsetof(struct pt_regs, cx), 540 offsetof(struct pt_regs, dx), 541 offsetof(struct pt_regs, bx), 542 offsetof(struct pt_regs, sp), 543 offsetof(struct pt_regs, bp), 544 offsetof(struct pt_regs, si), 545 offsetof(struct pt_regs, di), 546 #ifdef CONFIG_X86_64 547 offsetof(struct pt_regs, r8), 548 offsetof(struct pt_regs, r9), 549 offsetof(struct pt_regs, r10), 550 offsetof(struct pt_regs, r11), 551 offsetof(struct pt_regs, r12), 552 offsetof(struct pt_regs, r13), 553 offsetof(struct pt_regs, r14), 554 offsetof(struct pt_regs, r15), 555 #endif 556 }; 557 558 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) 559 { 560 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 561 562 int3_emulate_call(regs, regs_get_register(regs, offs)); 563 } 564 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); 565 566 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) 567 { 568 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 569 570 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 571 } 572 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); 573 574 static int prepare_emulation(struct kprobe *p, struct insn *insn) 575 { 576 insn_byte_t opcode = insn->opcode.bytes[0]; 577 578 switch (opcode) { 579 case 0xfa: /* cli */ 580 case 0xfb: /* sti */ 581 case 0x9c: /* pushfl */ 582 case 0x9d: /* popf/popfd */ 583 /* 584 * IF modifiers must be emulated since it will enable interrupt while 585 * int3 single stepping. 586 */ 587 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; 588 p->ainsn.opcode = opcode; 589 break; 590 case 0xc2: /* ret/lret */ 591 case 0xc3: 592 case 0xca: 593 case 0xcb: 594 p->ainsn.emulate_op = kprobe_emulate_ret; 595 break; 596 case 0x9a: /* far call absolute -- segment is not supported */ 597 case 0xea: /* far jmp absolute -- segment is not supported */ 598 case 0xcc: /* int3 */ 599 case 0xcf: /* iret -- in-kernel IRET is not supported */ 600 return -EOPNOTSUPP; 601 break; 602 case 0xe8: /* near call relative */ 603 p->ainsn.emulate_op = kprobe_emulate_call; 604 if (insn->immediate.nbytes == 2) 605 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 606 else 607 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 608 break; 609 case 0xeb: /* short jump relative */ 610 case 0xe9: /* near jump relative */ 611 p->ainsn.emulate_op = kprobe_emulate_jmp; 612 if (insn->immediate.nbytes == 1) 613 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 614 else if (insn->immediate.nbytes == 2) 615 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 616 else 617 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 618 break; 619 case 0x70 ... 0x7f: 620 /* 1 byte conditional jump */ 621 p->ainsn.emulate_op = kprobe_emulate_jcc; 622 p->ainsn.jcc.type = opcode & 0xf; 623 p->ainsn.rel32 = *(char *)insn->immediate.bytes; 624 break; 625 case 0x0f: 626 opcode = insn->opcode.bytes[1]; 627 if ((opcode & 0xf0) == 0x80) { 628 /* 2 bytes Conditional Jump */ 629 p->ainsn.emulate_op = kprobe_emulate_jcc; 630 p->ainsn.jcc.type = opcode & 0xf; 631 if (insn->immediate.nbytes == 2) 632 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 633 else 634 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 635 } else if (opcode == 0x01 && 636 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && 637 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { 638 /* VM extensions - not supported */ 639 return -EOPNOTSUPP; 640 } 641 break; 642 case 0xe0: /* Loop NZ */ 643 case 0xe1: /* Loop */ 644 case 0xe2: /* Loop */ 645 case 0xe3: /* J*CXZ */ 646 p->ainsn.emulate_op = kprobe_emulate_loop; 647 p->ainsn.loop.type = opcode & 0x3; 648 p->ainsn.loop.asize = insn->addr_bytes * 8; 649 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 650 break; 651 case 0xff: 652 /* 653 * Since the 0xff is an extended group opcode, the instruction 654 * is determined by the MOD/RM byte. 655 */ 656 opcode = insn->modrm.bytes[0]; 657 if ((opcode & 0x30) == 0x10) { 658 if ((opcode & 0x8) == 0x8) 659 return -EOPNOTSUPP; /* far call */ 660 /* call absolute, indirect */ 661 p->ainsn.emulate_op = kprobe_emulate_call_indirect; 662 } else if ((opcode & 0x30) == 0x20) { 663 if ((opcode & 0x8) == 0x8) 664 return -EOPNOTSUPP; /* far jmp */ 665 /* jmp near absolute indirect */ 666 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; 667 } else 668 break; 669 670 if (insn->addr_bytes != sizeof(unsigned long)) 671 return -EOPNOTSUPP; /* Don't support different size */ 672 if (X86_MODRM_MOD(opcode) != 3) 673 return -EOPNOTSUPP; /* TODO: support memory addressing */ 674 675 p->ainsn.indirect.reg = X86_MODRM_RM(opcode); 676 #ifdef CONFIG_X86_64 677 if (X86_REX_B(insn->rex_prefix.value)) 678 p->ainsn.indirect.reg += 8; 679 #endif 680 break; 681 default: 682 break; 683 } 684 p->ainsn.size = insn->length; 685 686 return 0; 687 } 688 689 static int arch_copy_kprobe(struct kprobe *p) 690 { 691 struct insn insn; 692 kprobe_opcode_t buf[MAX_INSN_SIZE]; 693 int ret, len; 694 695 /* Copy an instruction with recovering if other optprobe modifies it.*/ 696 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 697 if (!len) 698 return -EINVAL; 699 700 /* Analyze the opcode and setup emulate functions */ 701 ret = prepare_emulation(p, &insn); 702 if (ret < 0) 703 return ret; 704 705 /* Add int3 for single-step or booster jmp */ 706 len = prepare_singlestep(buf, p, &insn); 707 if (len < 0) 708 return len; 709 710 /* Also, displacement change doesn't affect the first byte */ 711 p->opcode = buf[0]; 712 713 p->ainsn.tp_len = len; 714 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 715 716 /* OK, write back the instruction(s) into ROX insn buffer */ 717 text_poke(p->ainsn.insn, buf, len); 718 719 return 0; 720 } 721 722 int arch_prepare_kprobe(struct kprobe *p) 723 { 724 int ret; 725 726 if (alternatives_text_reserved(p->addr, p->addr)) 727 return -EINVAL; 728 729 if (!can_probe((unsigned long)p->addr)) 730 return -EILSEQ; 731 732 memset(&p->ainsn, 0, sizeof(p->ainsn)); 733 734 /* insn: must be on special executable page on x86. */ 735 p->ainsn.insn = get_insn_slot(); 736 if (!p->ainsn.insn) 737 return -ENOMEM; 738 739 ret = arch_copy_kprobe(p); 740 if (ret) { 741 free_insn_slot(p->ainsn.insn, 0); 742 p->ainsn.insn = NULL; 743 } 744 745 return ret; 746 } 747 748 void arch_arm_kprobe(struct kprobe *p) 749 { 750 u8 int3 = INT3_INSN_OPCODE; 751 752 text_poke(p->addr, &int3, 1); 753 text_poke_sync(); 754 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 755 } 756 757 void arch_disarm_kprobe(struct kprobe *p) 758 { 759 u8 int3 = INT3_INSN_OPCODE; 760 761 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 762 text_poke(p->addr, &p->opcode, 1); 763 text_poke_sync(); 764 } 765 766 void arch_remove_kprobe(struct kprobe *p) 767 { 768 if (p->ainsn.insn) { 769 /* Record the perf event before freeing the slot */ 770 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 771 p->ainsn.tp_len, NULL, 0); 772 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 773 p->ainsn.insn = NULL; 774 } 775 } 776 777 static nokprobe_inline void 778 save_previous_kprobe(struct kprobe_ctlblk *kcb) 779 { 780 kcb->prev_kprobe.kp = kprobe_running(); 781 kcb->prev_kprobe.status = kcb->kprobe_status; 782 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 783 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 784 } 785 786 static nokprobe_inline void 787 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 788 { 789 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 790 kcb->kprobe_status = kcb->prev_kprobe.status; 791 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 792 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 793 } 794 795 static nokprobe_inline void 796 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 797 struct kprobe_ctlblk *kcb) 798 { 799 __this_cpu_write(current_kprobe, p); 800 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 801 = (regs->flags & X86_EFLAGS_IF); 802 } 803 804 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 805 { 806 unsigned long *sara = stack_addr(regs); 807 808 ri->ret_addr = (kprobe_opcode_t *) *sara; 809 ri->fp = sara; 810 811 /* Replace the return addr with trampoline addr */ 812 *sara = (unsigned long) &kretprobe_trampoline; 813 } 814 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 815 816 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, 817 struct kprobe_ctlblk *kcb) 818 { 819 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 820 kcb->kprobe_status = KPROBE_HIT_SSDONE; 821 cur->post_handler(cur, regs, 0); 822 } 823 824 /* Restore back the original saved kprobes variables and continue. */ 825 if (kcb->kprobe_status == KPROBE_REENTER) 826 restore_previous_kprobe(kcb); 827 else 828 reset_current_kprobe(); 829 } 830 NOKPROBE_SYMBOL(kprobe_post_process); 831 832 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 833 struct kprobe_ctlblk *kcb, int reenter) 834 { 835 if (setup_detour_execution(p, regs, reenter)) 836 return; 837 838 #if !defined(CONFIG_PREEMPTION) 839 if (p->ainsn.boostable) { 840 /* Boost up -- we can execute copied instructions directly */ 841 if (!reenter) 842 reset_current_kprobe(); 843 /* 844 * Reentering boosted probe doesn't reset current_kprobe, 845 * nor set current_kprobe, because it doesn't use single 846 * stepping. 847 */ 848 regs->ip = (unsigned long)p->ainsn.insn; 849 return; 850 } 851 #endif 852 if (reenter) { 853 save_previous_kprobe(kcb); 854 set_current_kprobe(p, regs, kcb); 855 kcb->kprobe_status = KPROBE_REENTER; 856 } else 857 kcb->kprobe_status = KPROBE_HIT_SS; 858 859 if (p->ainsn.emulate_op) { 860 p->ainsn.emulate_op(p, regs); 861 kprobe_post_process(p, regs, kcb); 862 return; 863 } 864 865 /* Disable interrupt, and set ip register on trampoline */ 866 regs->flags &= ~X86_EFLAGS_IF; 867 regs->ip = (unsigned long)p->ainsn.insn; 868 } 869 NOKPROBE_SYMBOL(setup_singlestep); 870 871 /* 872 * Called after single-stepping. p->addr is the address of the 873 * instruction whose first byte has been replaced by the "int3" 874 * instruction. To avoid the SMP problems that can occur when we 875 * temporarily put back the original opcode to single-step, we 876 * single-stepped a copy of the instruction. The address of this 877 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again 878 * right after the copied instruction. 879 * Different from the trap single-step, "int3" single-step can not 880 * handle the instruction which changes the ip register, e.g. jmp, 881 * call, conditional jmp, and the instructions which changes the IF 882 * flags because interrupt must be disabled around the single-stepping. 883 * Such instructions are software emulated, but others are single-stepped 884 * using "int3". 885 * 886 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to 887 * be adjusted, so that we can resume execution on correct code. 888 */ 889 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, 890 struct kprobe_ctlblk *kcb) 891 { 892 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 893 unsigned long orig_ip = (unsigned long)p->addr; 894 895 /* Restore saved interrupt flag and ip register */ 896 regs->flags |= kcb->kprobe_saved_flags; 897 /* Note that regs->ip is executed int3 so must be a step back */ 898 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; 899 } 900 NOKPROBE_SYMBOL(resume_singlestep); 901 902 /* 903 * We have reentered the kprobe_handler(), since another probe was hit while 904 * within the handler. We save the original kprobes variables and just single 905 * step on the instruction of the new probe without calling any user handlers. 906 */ 907 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 908 struct kprobe_ctlblk *kcb) 909 { 910 switch (kcb->kprobe_status) { 911 case KPROBE_HIT_SSDONE: 912 case KPROBE_HIT_ACTIVE: 913 case KPROBE_HIT_SS: 914 kprobes_inc_nmissed_count(p); 915 setup_singlestep(p, regs, kcb, 1); 916 break; 917 case KPROBE_REENTER: 918 /* A probe has been hit in the codepath leading up to, or just 919 * after, single-stepping of a probed instruction. This entire 920 * codepath should strictly reside in .kprobes.text section. 921 * Raise a BUG or we'll continue in an endless reentering loop 922 * and eventually a stack overflow. 923 */ 924 pr_err("Unrecoverable kprobe detected.\n"); 925 dump_kprobe(p); 926 BUG(); 927 default: 928 /* impossible cases */ 929 WARN_ON(1); 930 return 0; 931 } 932 933 return 1; 934 } 935 NOKPROBE_SYMBOL(reenter_kprobe); 936 937 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) 938 { 939 return (kcb->kprobe_status == KPROBE_HIT_SS || 940 kcb->kprobe_status == KPROBE_REENTER); 941 } 942 943 /* 944 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 945 * remain disabled throughout this function. 946 */ 947 int kprobe_int3_handler(struct pt_regs *regs) 948 { 949 kprobe_opcode_t *addr; 950 struct kprobe *p; 951 struct kprobe_ctlblk *kcb; 952 953 if (user_mode(regs)) 954 return 0; 955 956 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 957 /* 958 * We don't want to be preempted for the entire duration of kprobe 959 * processing. Since int3 and debug trap disables irqs and we clear 960 * IF while singlestepping, it must be no preemptible. 961 */ 962 963 kcb = get_kprobe_ctlblk(); 964 p = get_kprobe(addr); 965 966 if (p) { 967 if (kprobe_running()) { 968 if (reenter_kprobe(p, regs, kcb)) 969 return 1; 970 } else { 971 set_current_kprobe(p, regs, kcb); 972 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 973 974 /* 975 * If we have no pre-handler or it returned 0, we 976 * continue with normal processing. If we have a 977 * pre-handler and it returned non-zero, that means 978 * user handler setup registers to exit to another 979 * instruction, we must skip the single stepping. 980 */ 981 if (!p->pre_handler || !p->pre_handler(p, regs)) 982 setup_singlestep(p, regs, kcb, 0); 983 else 984 reset_current_kprobe(); 985 return 1; 986 } 987 } else if (kprobe_is_ss(kcb)) { 988 p = kprobe_running(); 989 if ((unsigned long)p->ainsn.insn < regs->ip && 990 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { 991 /* Most provably this is the second int3 for singlestep */ 992 resume_singlestep(p, regs, kcb); 993 kprobe_post_process(p, regs, kcb); 994 return 1; 995 } 996 } 997 998 if (*addr != INT3_INSN_OPCODE) { 999 /* 1000 * The breakpoint instruction was removed right 1001 * after we hit it. Another cpu has removed 1002 * either a probepoint or a debugger breakpoint 1003 * at this address. In either case, no further 1004 * handling of this interrupt is appropriate. 1005 * Back up over the (now missing) int3 and run 1006 * the original instruction. 1007 */ 1008 regs->ip = (unsigned long)addr; 1009 return 1; 1010 } /* else: not a kprobe fault; let the kernel handle it */ 1011 1012 return 0; 1013 } 1014 NOKPROBE_SYMBOL(kprobe_int3_handler); 1015 1016 /* 1017 * When a retprobed function returns, this code saves registers and 1018 * calls trampoline_handler() runs, which calls the kretprobe's handler. 1019 */ 1020 asm( 1021 ".text\n" 1022 ".global kretprobe_trampoline\n" 1023 ".type kretprobe_trampoline, @function\n" 1024 "kretprobe_trampoline:\n" 1025 /* We don't bother saving the ss register */ 1026 #ifdef CONFIG_X86_64 1027 " pushq %rsp\n" 1028 " pushfq\n" 1029 SAVE_REGS_STRING 1030 " movq %rsp, %rdi\n" 1031 " call trampoline_handler\n" 1032 /* Replace saved sp with true return address. */ 1033 " movq %rax, 19*8(%rsp)\n" 1034 RESTORE_REGS_STRING 1035 " popfq\n" 1036 #else 1037 " pushl %esp\n" 1038 " pushfl\n" 1039 SAVE_REGS_STRING 1040 " movl %esp, %eax\n" 1041 " call trampoline_handler\n" 1042 /* Replace saved sp with true return address. */ 1043 " movl %eax, 15*4(%esp)\n" 1044 RESTORE_REGS_STRING 1045 " popfl\n" 1046 #endif 1047 " ret\n" 1048 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 1049 ); 1050 NOKPROBE_SYMBOL(kretprobe_trampoline); 1051 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 1052 1053 1054 /* 1055 * Called from kretprobe_trampoline 1056 */ 1057 __used __visible void *trampoline_handler(struct pt_regs *regs) 1058 { 1059 /* fixup registers */ 1060 regs->cs = __KERNEL_CS; 1061 #ifdef CONFIG_X86_32 1062 regs->gs = 0; 1063 #endif 1064 regs->ip = (unsigned long)&kretprobe_trampoline; 1065 regs->orig_ax = ~0UL; 1066 1067 return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, ®s->sp); 1068 } 1069 NOKPROBE_SYMBOL(trampoline_handler); 1070 1071 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1072 { 1073 struct kprobe *cur = kprobe_running(); 1074 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1075 1076 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1077 /* This must happen on single-stepping */ 1078 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1079 kcb->kprobe_status != KPROBE_REENTER); 1080 /* 1081 * We are here because the instruction being single 1082 * stepped caused a page fault. We reset the current 1083 * kprobe and the ip points back to the probe address 1084 * and allow the page fault handler to continue as a 1085 * normal page fault. 1086 */ 1087 regs->ip = (unsigned long)cur->addr; 1088 1089 /* 1090 * If the IF flag was set before the kprobe hit, 1091 * don't touch it: 1092 */ 1093 regs->flags |= kcb->kprobe_old_flags; 1094 1095 if (kcb->kprobe_status == KPROBE_REENTER) 1096 restore_previous_kprobe(kcb); 1097 else 1098 reset_current_kprobe(); 1099 } 1100 1101 return 0; 1102 } 1103 NOKPROBE_SYMBOL(kprobe_fault_handler); 1104 1105 int __init arch_populate_kprobe_blacklist(void) 1106 { 1107 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1108 (unsigned long)__entry_text_end); 1109 } 1110 1111 int __init arch_init_kprobes(void) 1112 { 1113 return 0; 1114 } 1115 1116 int arch_trampoline_kprobe(struct kprobe *p) 1117 { 1118 return 0; 1119 } 1120