1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/perf_event.h> 37 #include <linux/extable.h> 38 #include <linux/kdebug.h> 39 #include <linux/kallsyms.h> 40 #include <linux/ftrace.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 #include <linux/objtool.h> 44 #include <linux/vmalloc.h> 45 #include <linux/pgtable.h> 46 47 #include <asm/text-patching.h> 48 #include <asm/cacheflush.h> 49 #include <asm/desc.h> 50 #include <linux/uaccess.h> 51 #include <asm/alternative.h> 52 #include <asm/insn.h> 53 #include <asm/debugreg.h> 54 #include <asm/set_memory.h> 55 56 #include "common.h" 57 58 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 59 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 60 61 #define stack_addr(regs) ((unsigned long *)regs->sp) 62 63 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 64 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 65 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 66 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 67 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 68 << (row % 32)) 69 /* 70 * Undefined/reserved opcodes, conditional jump, Opcode Extension 71 * Groups, and some special opcodes can not boost. 72 * This is non-const and volatile to keep gcc from statically 73 * optimizing it out, as variable_test_bit makes gcc think only 74 * *(unsigned long*) is used. 75 */ 76 static volatile u32 twobyte_is_boostable[256 / 32] = { 77 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 78 /* ---------------------------------------------- */ 79 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 80 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 81 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 82 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 83 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 84 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 85 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 86 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 87 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 88 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 89 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 90 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 91 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 92 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 93 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 94 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 95 /* ----------------------------------------------- */ 96 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 97 }; 98 #undef W 99 100 struct kretprobe_blackpoint kretprobe_blacklist[] = { 101 {"__switch_to", }, /* This function switches only current task, but 102 doesn't switch kernel stack.*/ 103 {NULL, NULL} /* Terminator */ 104 }; 105 106 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 107 108 static nokprobe_inline void 109 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 110 { 111 struct __arch_relative_insn { 112 u8 op; 113 s32 raddr; 114 } __packed *insn; 115 116 insn = (struct __arch_relative_insn *)dest; 117 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 118 insn->op = op; 119 } 120 121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 122 void synthesize_reljump(void *dest, void *from, void *to) 123 { 124 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); 125 } 126 NOKPROBE_SYMBOL(synthesize_reljump); 127 128 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 129 void synthesize_relcall(void *dest, void *from, void *to) 130 { 131 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); 132 } 133 NOKPROBE_SYMBOL(synthesize_relcall); 134 135 /* 136 * Returns non-zero if INSN is boostable. 137 * RIP relative instructions are adjusted at copying time in 64 bits mode 138 */ 139 int can_boost(struct insn *insn, void *addr) 140 { 141 kprobe_opcode_t opcode; 142 insn_byte_t prefix; 143 int i; 144 145 if (search_exception_tables((unsigned long)addr)) 146 return 0; /* Page fault may occur on this address. */ 147 148 /* 2nd-byte opcode */ 149 if (insn->opcode.nbytes == 2) 150 return test_bit(insn->opcode.bytes[1], 151 (unsigned long *)twobyte_is_boostable); 152 153 if (insn->opcode.nbytes != 1) 154 return 0; 155 156 for_each_insn_prefix(insn, i, prefix) { 157 insn_attr_t attr; 158 159 attr = inat_get_opcode_attribute(prefix); 160 /* Can't boost Address-size override prefix and CS override prefix */ 161 if (prefix == 0x2e || inat_is_address_size_prefix(attr)) 162 return 0; 163 } 164 165 opcode = insn->opcode.bytes[0]; 166 167 switch (opcode) { 168 case 0x62: /* bound */ 169 case 0x70 ... 0x7f: /* Conditional jumps */ 170 case 0x9a: /* Call far */ 171 case 0xc0 ... 0xc1: /* Grp2 */ 172 case 0xcc ... 0xce: /* software exceptions */ 173 case 0xd0 ... 0xd3: /* Grp2 */ 174 case 0xd6: /* (UD) */ 175 case 0xd8 ... 0xdf: /* ESC */ 176 case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ 177 case 0xe8 ... 0xe9: /* near Call, JMP */ 178 case 0xeb: /* Short JMP */ 179 case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ 180 case 0xf6 ... 0xf7: /* Grp3 */ 181 case 0xfe: /* Grp4 */ 182 /* ... are not boostable */ 183 return 0; 184 case 0xff: /* Grp5 */ 185 /* Only indirect jmp is boostable */ 186 return X86_MODRM_REG(insn->modrm.bytes[0]) == 4; 187 default: 188 return 1; 189 } 190 } 191 192 static unsigned long 193 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 194 { 195 struct kprobe *kp; 196 unsigned long faddr; 197 198 kp = get_kprobe((void *)addr); 199 faddr = ftrace_location(addr); 200 /* 201 * Addresses inside the ftrace location are refused by 202 * arch_check_ftrace_location(). Something went terribly wrong 203 * if such an address is checked here. 204 */ 205 if (WARN_ON(faddr && faddr != addr)) 206 return 0UL; 207 /* 208 * Use the current code if it is not modified by Kprobe 209 * and it cannot be modified by ftrace. 210 */ 211 if (!kp && !faddr) 212 return addr; 213 214 /* 215 * Basically, kp->ainsn.insn has an original instruction. 216 * However, RIP-relative instruction can not do single-stepping 217 * at different place, __copy_instruction() tweaks the displacement of 218 * that instruction. In that case, we can't recover the instruction 219 * from the kp->ainsn.insn. 220 * 221 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 222 * of the first byte of the probed instruction, which is overwritten 223 * by int3. And the instruction at kp->addr is not modified by kprobes 224 * except for the first byte, we can recover the original instruction 225 * from it and kp->opcode. 226 * 227 * In case of Kprobes using ftrace, we do not have a copy of 228 * the original instruction. In fact, the ftrace location might 229 * be modified at anytime and even could be in an inconsistent state. 230 * Fortunately, we know that the original code is the ideal 5-byte 231 * long NOP. 232 */ 233 if (copy_from_kernel_nofault(buf, (void *)addr, 234 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 235 return 0UL; 236 237 if (faddr) 238 memcpy(buf, x86_nops[5], 5); 239 else 240 buf[0] = kp->opcode; 241 return (unsigned long)buf; 242 } 243 244 /* 245 * Recover the probed instruction at addr for further analysis. 246 * Caller must lock kprobes by kprobe_mutex, or disable preemption 247 * for preventing to release referencing kprobes. 248 * Returns zero if the instruction can not get recovered (or access failed). 249 */ 250 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 251 { 252 unsigned long __addr; 253 254 __addr = __recover_optprobed_insn(buf, addr); 255 if (__addr != addr) 256 return __addr; 257 258 return __recover_probed_insn(buf, addr); 259 } 260 261 /* Check if paddr is at an instruction boundary */ 262 static int can_probe(unsigned long paddr) 263 { 264 unsigned long addr, __addr, offset = 0; 265 struct insn insn; 266 kprobe_opcode_t buf[MAX_INSN_SIZE]; 267 268 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 269 return 0; 270 271 /* Decode instructions */ 272 addr = paddr - offset; 273 while (addr < paddr) { 274 int ret; 275 276 /* 277 * Check if the instruction has been modified by another 278 * kprobe, in which case we replace the breakpoint by the 279 * original instruction in our buffer. 280 * Also, jump optimization will change the breakpoint to 281 * relative-jump. Since the relative-jump itself is 282 * normally used, we just go through if there is no kprobe. 283 */ 284 __addr = recover_probed_instruction(buf, addr); 285 if (!__addr) 286 return 0; 287 288 ret = insn_decode_kernel(&insn, (void *)__addr); 289 if (ret < 0) 290 return 0; 291 292 /* 293 * Another debugging subsystem might insert this breakpoint. 294 * In that case, we can't recover it. 295 */ 296 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE) 297 return 0; 298 addr += insn.length; 299 } 300 301 return (addr == paddr); 302 } 303 304 /* 305 * Copy an instruction with recovering modified instruction by kprobes 306 * and adjust the displacement if the instruction uses the %rip-relative 307 * addressing mode. Note that since @real will be the final place of copied 308 * instruction, displacement must be adjust by @real, not @dest. 309 * This returns the length of copied instruction, or 0 if it has an error. 310 */ 311 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 312 { 313 kprobe_opcode_t buf[MAX_INSN_SIZE]; 314 unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); 315 int ret; 316 317 if (!recovered_insn || !insn) 318 return 0; 319 320 /* This can access kernel text if given address is not recovered */ 321 if (copy_from_kernel_nofault(dest, (void *)recovered_insn, 322 MAX_INSN_SIZE)) 323 return 0; 324 325 ret = insn_decode_kernel(insn, dest); 326 if (ret < 0) 327 return 0; 328 329 /* We can not probe force emulate prefixed instruction */ 330 if (insn_has_emulate_prefix(insn)) 331 return 0; 332 333 /* Another subsystem puts a breakpoint, failed to recover */ 334 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) 335 return 0; 336 337 /* We should not singlestep on the exception masking instructions */ 338 if (insn_masking_exception(insn)) 339 return 0; 340 341 #ifdef CONFIG_X86_64 342 /* Only x86_64 has RIP relative instructions */ 343 if (insn_rip_relative(insn)) { 344 s64 newdisp; 345 u8 *disp; 346 /* 347 * The copied instruction uses the %rip-relative addressing 348 * mode. Adjust the displacement for the difference between 349 * the original location of this instruction and the location 350 * of the copy that will actually be run. The tricky bit here 351 * is making sure that the sign extension happens correctly in 352 * this calculation, since we need a signed 32-bit result to 353 * be sign-extended to 64 bits when it's added to the %rip 354 * value and yield the same 64-bit result that the sign- 355 * extension of the original signed 32-bit displacement would 356 * have given. 357 */ 358 newdisp = (u8 *) src + (s64) insn->displacement.value 359 - (u8 *) real; 360 if ((s64) (s32) newdisp != newdisp) { 361 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 362 return 0; 363 } 364 disp = (u8 *) dest + insn_offset_displacement(insn); 365 *(s32 *) disp = (s32) newdisp; 366 } 367 #endif 368 return insn->length; 369 } 370 371 /* Prepare reljump or int3 right after instruction */ 372 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, 373 struct insn *insn) 374 { 375 int len = insn->length; 376 377 if (!IS_ENABLED(CONFIG_PREEMPTION) && 378 !p->post_handler && can_boost(insn, p->addr) && 379 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { 380 /* 381 * These instructions can be executed directly if it 382 * jumps back to correct address. 383 */ 384 synthesize_reljump(buf + len, p->ainsn.insn + len, 385 p->addr + insn->length); 386 len += JMP32_INSN_SIZE; 387 p->ainsn.boostable = 1; 388 } else { 389 /* Otherwise, put an int3 for trapping singlestep */ 390 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) 391 return -ENOSPC; 392 393 buf[len] = INT3_INSN_OPCODE; 394 len += INT3_INSN_SIZE; 395 } 396 397 return len; 398 } 399 400 /* Make page to RO mode when allocate it */ 401 void *alloc_insn_page(void) 402 { 403 void *page; 404 405 page = module_alloc(PAGE_SIZE); 406 if (!page) 407 return NULL; 408 409 set_vm_flush_reset_perms(page); 410 /* 411 * First make the page read-only, and only then make it executable to 412 * prevent it from being W+X in between. 413 */ 414 set_memory_ro((unsigned long)page, 1); 415 416 /* 417 * TODO: Once additional kernel code protection mechanisms are set, ensure 418 * that the page was not maliciously altered and it is still zeroed. 419 */ 420 set_memory_x((unsigned long)page, 1); 421 422 return page; 423 } 424 425 /* Recover page to RW mode before releasing it */ 426 void free_insn_page(void *page) 427 { 428 module_memfree(page); 429 } 430 431 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ 432 433 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) 434 { 435 switch (p->ainsn.opcode) { 436 case 0xfa: /* cli */ 437 regs->flags &= ~(X86_EFLAGS_IF); 438 break; 439 case 0xfb: /* sti */ 440 regs->flags |= X86_EFLAGS_IF; 441 break; 442 case 0x9c: /* pushf */ 443 int3_emulate_push(regs, regs->flags); 444 break; 445 case 0x9d: /* popf */ 446 regs->flags = int3_emulate_pop(regs); 447 break; 448 } 449 regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 450 } 451 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); 452 453 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) 454 { 455 int3_emulate_ret(regs); 456 } 457 NOKPROBE_SYMBOL(kprobe_emulate_ret); 458 459 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) 460 { 461 unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 462 463 func += p->ainsn.rel32; 464 int3_emulate_call(regs, func); 465 } 466 NOKPROBE_SYMBOL(kprobe_emulate_call); 467 468 static nokprobe_inline 469 void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond) 470 { 471 unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; 472 473 if (cond) 474 ip += p->ainsn.rel32; 475 int3_emulate_jmp(regs, ip); 476 } 477 478 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) 479 { 480 __kprobe_emulate_jmp(p, regs, true); 481 } 482 NOKPROBE_SYMBOL(kprobe_emulate_jmp); 483 484 static const unsigned long jcc_mask[6] = { 485 [0] = X86_EFLAGS_OF, 486 [1] = X86_EFLAGS_CF, 487 [2] = X86_EFLAGS_ZF, 488 [3] = X86_EFLAGS_CF | X86_EFLAGS_ZF, 489 [4] = X86_EFLAGS_SF, 490 [5] = X86_EFLAGS_PF, 491 }; 492 493 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) 494 { 495 bool invert = p->ainsn.jcc.type & 1; 496 bool match; 497 498 if (p->ainsn.jcc.type < 0xc) { 499 match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1]; 500 } else { 501 match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^ 502 ((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT); 503 if (p->ainsn.jcc.type >= 0xe) 504 match = match && (regs->flags & X86_EFLAGS_ZF); 505 } 506 __kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert)); 507 } 508 NOKPROBE_SYMBOL(kprobe_emulate_jcc); 509 510 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) 511 { 512 bool match; 513 514 if (p->ainsn.loop.type != 3) { /* LOOP* */ 515 if (p->ainsn.loop.asize == 32) 516 match = ((*(u32 *)®s->cx)--) != 0; 517 #ifdef CONFIG_X86_64 518 else if (p->ainsn.loop.asize == 64) 519 match = ((*(u64 *)®s->cx)--) != 0; 520 #endif 521 else 522 match = ((*(u16 *)®s->cx)--) != 0; 523 } else { /* JCXZ */ 524 if (p->ainsn.loop.asize == 32) 525 match = *(u32 *)(®s->cx) == 0; 526 #ifdef CONFIG_X86_64 527 else if (p->ainsn.loop.asize == 64) 528 match = *(u64 *)(®s->cx) == 0; 529 #endif 530 else 531 match = *(u16 *)(®s->cx) == 0; 532 } 533 534 if (p->ainsn.loop.type == 0) /* LOOPNE */ 535 match = match && !(regs->flags & X86_EFLAGS_ZF); 536 else if (p->ainsn.loop.type == 1) /* LOOPE */ 537 match = match && (regs->flags & X86_EFLAGS_ZF); 538 539 __kprobe_emulate_jmp(p, regs, match); 540 } 541 NOKPROBE_SYMBOL(kprobe_emulate_loop); 542 543 static const int addrmode_regoffs[] = { 544 offsetof(struct pt_regs, ax), 545 offsetof(struct pt_regs, cx), 546 offsetof(struct pt_regs, dx), 547 offsetof(struct pt_regs, bx), 548 offsetof(struct pt_regs, sp), 549 offsetof(struct pt_regs, bp), 550 offsetof(struct pt_regs, si), 551 offsetof(struct pt_regs, di), 552 #ifdef CONFIG_X86_64 553 offsetof(struct pt_regs, r8), 554 offsetof(struct pt_regs, r9), 555 offsetof(struct pt_regs, r10), 556 offsetof(struct pt_regs, r11), 557 offsetof(struct pt_regs, r12), 558 offsetof(struct pt_regs, r13), 559 offsetof(struct pt_regs, r14), 560 offsetof(struct pt_regs, r15), 561 #endif 562 }; 563 564 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) 565 { 566 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 567 568 int3_emulate_call(regs, regs_get_register(regs, offs)); 569 } 570 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); 571 572 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) 573 { 574 unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; 575 576 int3_emulate_jmp(regs, regs_get_register(regs, offs)); 577 } 578 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); 579 580 static int prepare_emulation(struct kprobe *p, struct insn *insn) 581 { 582 insn_byte_t opcode = insn->opcode.bytes[0]; 583 584 switch (opcode) { 585 case 0xfa: /* cli */ 586 case 0xfb: /* sti */ 587 case 0x9c: /* pushfl */ 588 case 0x9d: /* popf/popfd */ 589 /* 590 * IF modifiers must be emulated since it will enable interrupt while 591 * int3 single stepping. 592 */ 593 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; 594 p->ainsn.opcode = opcode; 595 break; 596 case 0xc2: /* ret/lret */ 597 case 0xc3: 598 case 0xca: 599 case 0xcb: 600 p->ainsn.emulate_op = kprobe_emulate_ret; 601 break; 602 case 0x9a: /* far call absolute -- segment is not supported */ 603 case 0xea: /* far jmp absolute -- segment is not supported */ 604 case 0xcc: /* int3 */ 605 case 0xcf: /* iret -- in-kernel IRET is not supported */ 606 return -EOPNOTSUPP; 607 break; 608 case 0xe8: /* near call relative */ 609 p->ainsn.emulate_op = kprobe_emulate_call; 610 if (insn->immediate.nbytes == 2) 611 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 612 else 613 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 614 break; 615 case 0xeb: /* short jump relative */ 616 case 0xe9: /* near jump relative */ 617 p->ainsn.emulate_op = kprobe_emulate_jmp; 618 if (insn->immediate.nbytes == 1) 619 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 620 else if (insn->immediate.nbytes == 2) 621 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 622 else 623 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 624 break; 625 case 0x70 ... 0x7f: 626 /* 1 byte conditional jump */ 627 p->ainsn.emulate_op = kprobe_emulate_jcc; 628 p->ainsn.jcc.type = opcode & 0xf; 629 p->ainsn.rel32 = *(char *)insn->immediate.bytes; 630 break; 631 case 0x0f: 632 opcode = insn->opcode.bytes[1]; 633 if ((opcode & 0xf0) == 0x80) { 634 /* 2 bytes Conditional Jump */ 635 p->ainsn.emulate_op = kprobe_emulate_jcc; 636 p->ainsn.jcc.type = opcode & 0xf; 637 if (insn->immediate.nbytes == 2) 638 p->ainsn.rel32 = *(s16 *)&insn->immediate.value; 639 else 640 p->ainsn.rel32 = *(s32 *)&insn->immediate.value; 641 } else if (opcode == 0x01 && 642 X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && 643 X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { 644 /* VM extensions - not supported */ 645 return -EOPNOTSUPP; 646 } 647 break; 648 case 0xe0: /* Loop NZ */ 649 case 0xe1: /* Loop */ 650 case 0xe2: /* Loop */ 651 case 0xe3: /* J*CXZ */ 652 p->ainsn.emulate_op = kprobe_emulate_loop; 653 p->ainsn.loop.type = opcode & 0x3; 654 p->ainsn.loop.asize = insn->addr_bytes * 8; 655 p->ainsn.rel32 = *(s8 *)&insn->immediate.value; 656 break; 657 case 0xff: 658 /* 659 * Since the 0xff is an extended group opcode, the instruction 660 * is determined by the MOD/RM byte. 661 */ 662 opcode = insn->modrm.bytes[0]; 663 if ((opcode & 0x30) == 0x10) { 664 if ((opcode & 0x8) == 0x8) 665 return -EOPNOTSUPP; /* far call */ 666 /* call absolute, indirect */ 667 p->ainsn.emulate_op = kprobe_emulate_call_indirect; 668 } else if ((opcode & 0x30) == 0x20) { 669 if ((opcode & 0x8) == 0x8) 670 return -EOPNOTSUPP; /* far jmp */ 671 /* jmp near absolute indirect */ 672 p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; 673 } else 674 break; 675 676 if (insn->addr_bytes != sizeof(unsigned long)) 677 return -EOPNOTSUPP; /* Don't support differnt size */ 678 if (X86_MODRM_MOD(opcode) != 3) 679 return -EOPNOTSUPP; /* TODO: support memory addressing */ 680 681 p->ainsn.indirect.reg = X86_MODRM_RM(opcode); 682 #ifdef CONFIG_X86_64 683 if (X86_REX_B(insn->rex_prefix.value)) 684 p->ainsn.indirect.reg += 8; 685 #endif 686 break; 687 default: 688 break; 689 } 690 p->ainsn.size = insn->length; 691 692 return 0; 693 } 694 695 static int arch_copy_kprobe(struct kprobe *p) 696 { 697 struct insn insn; 698 kprobe_opcode_t buf[MAX_INSN_SIZE]; 699 int ret, len; 700 701 /* Copy an instruction with recovering if other optprobe modifies it.*/ 702 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 703 if (!len) 704 return -EINVAL; 705 706 /* Analyze the opcode and setup emulate functions */ 707 ret = prepare_emulation(p, &insn); 708 if (ret < 0) 709 return ret; 710 711 /* Add int3 for single-step or booster jmp */ 712 len = prepare_singlestep(buf, p, &insn); 713 if (len < 0) 714 return len; 715 716 /* Also, displacement change doesn't affect the first byte */ 717 p->opcode = buf[0]; 718 719 p->ainsn.tp_len = len; 720 perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); 721 722 /* OK, write back the instruction(s) into ROX insn buffer */ 723 text_poke(p->ainsn.insn, buf, len); 724 725 return 0; 726 } 727 728 int arch_prepare_kprobe(struct kprobe *p) 729 { 730 int ret; 731 732 if (alternatives_text_reserved(p->addr, p->addr)) 733 return -EINVAL; 734 735 if (!can_probe((unsigned long)p->addr)) 736 return -EILSEQ; 737 738 memset(&p->ainsn, 0, sizeof(p->ainsn)); 739 740 /* insn: must be on special executable page on x86. */ 741 p->ainsn.insn = get_insn_slot(); 742 if (!p->ainsn.insn) 743 return -ENOMEM; 744 745 ret = arch_copy_kprobe(p); 746 if (ret) { 747 free_insn_slot(p->ainsn.insn, 0); 748 p->ainsn.insn = NULL; 749 } 750 751 return ret; 752 } 753 754 void arch_arm_kprobe(struct kprobe *p) 755 { 756 u8 int3 = INT3_INSN_OPCODE; 757 758 text_poke(p->addr, &int3, 1); 759 text_poke_sync(); 760 perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); 761 } 762 763 void arch_disarm_kprobe(struct kprobe *p) 764 { 765 u8 int3 = INT3_INSN_OPCODE; 766 767 perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); 768 text_poke(p->addr, &p->opcode, 1); 769 text_poke_sync(); 770 } 771 772 void arch_remove_kprobe(struct kprobe *p) 773 { 774 if (p->ainsn.insn) { 775 /* Record the perf event before freeing the slot */ 776 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, 777 p->ainsn.tp_len, NULL, 0); 778 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 779 p->ainsn.insn = NULL; 780 } 781 } 782 783 static nokprobe_inline void 784 save_previous_kprobe(struct kprobe_ctlblk *kcb) 785 { 786 kcb->prev_kprobe.kp = kprobe_running(); 787 kcb->prev_kprobe.status = kcb->kprobe_status; 788 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 789 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 790 } 791 792 static nokprobe_inline void 793 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 794 { 795 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 796 kcb->kprobe_status = kcb->prev_kprobe.status; 797 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 798 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 799 } 800 801 static nokprobe_inline void 802 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 803 struct kprobe_ctlblk *kcb) 804 { 805 __this_cpu_write(current_kprobe, p); 806 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 807 = (regs->flags & X86_EFLAGS_IF); 808 } 809 810 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 811 { 812 unsigned long *sara = stack_addr(regs); 813 814 ri->ret_addr = (kprobe_opcode_t *) *sara; 815 ri->fp = sara; 816 817 /* Replace the return addr with trampoline addr */ 818 *sara = (unsigned long) &kretprobe_trampoline; 819 } 820 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 821 822 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, 823 struct kprobe_ctlblk *kcb) 824 { 825 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 826 kcb->kprobe_status = KPROBE_HIT_SSDONE; 827 cur->post_handler(cur, regs, 0); 828 } 829 830 /* Restore back the original saved kprobes variables and continue. */ 831 if (kcb->kprobe_status == KPROBE_REENTER) 832 restore_previous_kprobe(kcb); 833 else 834 reset_current_kprobe(); 835 } 836 NOKPROBE_SYMBOL(kprobe_post_process); 837 838 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 839 struct kprobe_ctlblk *kcb, int reenter) 840 { 841 if (setup_detour_execution(p, regs, reenter)) 842 return; 843 844 #if !defined(CONFIG_PREEMPTION) 845 if (p->ainsn.boostable) { 846 /* Boost up -- we can execute copied instructions directly */ 847 if (!reenter) 848 reset_current_kprobe(); 849 /* 850 * Reentering boosted probe doesn't reset current_kprobe, 851 * nor set current_kprobe, because it doesn't use single 852 * stepping. 853 */ 854 regs->ip = (unsigned long)p->ainsn.insn; 855 return; 856 } 857 #endif 858 if (reenter) { 859 save_previous_kprobe(kcb); 860 set_current_kprobe(p, regs, kcb); 861 kcb->kprobe_status = KPROBE_REENTER; 862 } else 863 kcb->kprobe_status = KPROBE_HIT_SS; 864 865 if (p->ainsn.emulate_op) { 866 p->ainsn.emulate_op(p, regs); 867 kprobe_post_process(p, regs, kcb); 868 return; 869 } 870 871 /* Disable interrupt, and set ip register on trampoline */ 872 regs->flags &= ~X86_EFLAGS_IF; 873 regs->ip = (unsigned long)p->ainsn.insn; 874 } 875 NOKPROBE_SYMBOL(setup_singlestep); 876 877 /* 878 * Called after single-stepping. p->addr is the address of the 879 * instruction whose first byte has been replaced by the "int3" 880 * instruction. To avoid the SMP problems that can occur when we 881 * temporarily put back the original opcode to single-step, we 882 * single-stepped a copy of the instruction. The address of this 883 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again 884 * right after the copied instruction. 885 * Different from the trap single-step, "int3" single-step can not 886 * handle the instruction which changes the ip register, e.g. jmp, 887 * call, conditional jmp, and the instructions which changes the IF 888 * flags because interrupt must be disabled around the single-stepping. 889 * Such instructions are software emulated, but others are single-stepped 890 * using "int3". 891 * 892 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to 893 * be adjusted, so that we can resume execution on correct code. 894 */ 895 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, 896 struct kprobe_ctlblk *kcb) 897 { 898 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 899 unsigned long orig_ip = (unsigned long)p->addr; 900 901 /* Restore saved interrupt flag and ip register */ 902 regs->flags |= kcb->kprobe_saved_flags; 903 /* Note that regs->ip is executed int3 so must be a step back */ 904 regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; 905 } 906 NOKPROBE_SYMBOL(resume_singlestep); 907 908 /* 909 * We have reentered the kprobe_handler(), since another probe was hit while 910 * within the handler. We save the original kprobes variables and just single 911 * step on the instruction of the new probe without calling any user handlers. 912 */ 913 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 914 struct kprobe_ctlblk *kcb) 915 { 916 switch (kcb->kprobe_status) { 917 case KPROBE_HIT_SSDONE: 918 case KPROBE_HIT_ACTIVE: 919 case KPROBE_HIT_SS: 920 kprobes_inc_nmissed_count(p); 921 setup_singlestep(p, regs, kcb, 1); 922 break; 923 case KPROBE_REENTER: 924 /* A probe has been hit in the codepath leading up to, or just 925 * after, single-stepping of a probed instruction. This entire 926 * codepath should strictly reside in .kprobes.text section. 927 * Raise a BUG or we'll continue in an endless reentering loop 928 * and eventually a stack overflow. 929 */ 930 pr_err("Unrecoverable kprobe detected.\n"); 931 dump_kprobe(p); 932 BUG(); 933 default: 934 /* impossible cases */ 935 WARN_ON(1); 936 return 0; 937 } 938 939 return 1; 940 } 941 NOKPROBE_SYMBOL(reenter_kprobe); 942 943 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) 944 { 945 return (kcb->kprobe_status == KPROBE_HIT_SS || 946 kcb->kprobe_status == KPROBE_REENTER); 947 } 948 949 /* 950 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 951 * remain disabled throughout this function. 952 */ 953 int kprobe_int3_handler(struct pt_regs *regs) 954 { 955 kprobe_opcode_t *addr; 956 struct kprobe *p; 957 struct kprobe_ctlblk *kcb; 958 959 if (user_mode(regs)) 960 return 0; 961 962 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 963 /* 964 * We don't want to be preempted for the entire duration of kprobe 965 * processing. Since int3 and debug trap disables irqs and we clear 966 * IF while singlestepping, it must be no preemptible. 967 */ 968 969 kcb = get_kprobe_ctlblk(); 970 p = get_kprobe(addr); 971 972 if (p) { 973 if (kprobe_running()) { 974 if (reenter_kprobe(p, regs, kcb)) 975 return 1; 976 } else { 977 set_current_kprobe(p, regs, kcb); 978 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 979 980 /* 981 * If we have no pre-handler or it returned 0, we 982 * continue with normal processing. If we have a 983 * pre-handler and it returned non-zero, that means 984 * user handler setup registers to exit to another 985 * instruction, we must skip the single stepping. 986 */ 987 if (!p->pre_handler || !p->pre_handler(p, regs)) 988 setup_singlestep(p, regs, kcb, 0); 989 else 990 reset_current_kprobe(); 991 return 1; 992 } 993 } else if (kprobe_is_ss(kcb)) { 994 p = kprobe_running(); 995 if ((unsigned long)p->ainsn.insn < regs->ip && 996 (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { 997 /* Most provably this is the second int3 for singlestep */ 998 resume_singlestep(p, regs, kcb); 999 kprobe_post_process(p, regs, kcb); 1000 return 1; 1001 } 1002 } 1003 1004 if (*addr != INT3_INSN_OPCODE) { 1005 /* 1006 * The breakpoint instruction was removed right 1007 * after we hit it. Another cpu has removed 1008 * either a probepoint or a debugger breakpoint 1009 * at this address. In either case, no further 1010 * handling of this interrupt is appropriate. 1011 * Back up over the (now missing) int3 and run 1012 * the original instruction. 1013 */ 1014 regs->ip = (unsigned long)addr; 1015 return 1; 1016 } /* else: not a kprobe fault; let the kernel handle it */ 1017 1018 return 0; 1019 } 1020 NOKPROBE_SYMBOL(kprobe_int3_handler); 1021 1022 /* 1023 * When a retprobed function returns, this code saves registers and 1024 * calls trampoline_handler() runs, which calls the kretprobe's handler. 1025 */ 1026 asm( 1027 ".text\n" 1028 ".global kretprobe_trampoline\n" 1029 ".type kretprobe_trampoline, @function\n" 1030 "kretprobe_trampoline:\n" 1031 /* We don't bother saving the ss register */ 1032 #ifdef CONFIG_X86_64 1033 " pushq %rsp\n" 1034 " pushfq\n" 1035 SAVE_REGS_STRING 1036 " movq %rsp, %rdi\n" 1037 " call trampoline_handler\n" 1038 /* Replace saved sp with true return address. */ 1039 " movq %rax, 19*8(%rsp)\n" 1040 RESTORE_REGS_STRING 1041 " popfq\n" 1042 #else 1043 " pushl %esp\n" 1044 " pushfl\n" 1045 SAVE_REGS_STRING 1046 " movl %esp, %eax\n" 1047 " call trampoline_handler\n" 1048 /* Replace saved sp with true return address. */ 1049 " movl %eax, 15*4(%esp)\n" 1050 RESTORE_REGS_STRING 1051 " popfl\n" 1052 #endif 1053 " ret\n" 1054 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 1055 ); 1056 NOKPROBE_SYMBOL(kretprobe_trampoline); 1057 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 1058 1059 1060 /* 1061 * Called from kretprobe_trampoline 1062 */ 1063 __used __visible void *trampoline_handler(struct pt_regs *regs) 1064 { 1065 /* fixup registers */ 1066 regs->cs = __KERNEL_CS; 1067 #ifdef CONFIG_X86_32 1068 regs->gs = 0; 1069 #endif 1070 regs->ip = (unsigned long)&kretprobe_trampoline; 1071 regs->orig_ax = ~0UL; 1072 1073 return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, ®s->sp); 1074 } 1075 NOKPROBE_SYMBOL(trampoline_handler); 1076 1077 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1078 { 1079 struct kprobe *cur = kprobe_running(); 1080 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1081 1082 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1083 /* This must happen on single-stepping */ 1084 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1085 kcb->kprobe_status != KPROBE_REENTER); 1086 /* 1087 * We are here because the instruction being single 1088 * stepped caused a page fault. We reset the current 1089 * kprobe and the ip points back to the probe address 1090 * and allow the page fault handler to continue as a 1091 * normal page fault. 1092 */ 1093 regs->ip = (unsigned long)cur->addr; 1094 1095 /* 1096 * If the IF flag was set before the kprobe hit, 1097 * don't touch it: 1098 */ 1099 regs->flags |= kcb->kprobe_old_flags; 1100 1101 if (kcb->kprobe_status == KPROBE_REENTER) 1102 restore_previous_kprobe(kcb); 1103 else 1104 reset_current_kprobe(); 1105 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1106 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1107 /* 1108 * We increment the nmissed count for accounting, 1109 * we can also use npre/npostfault count for accounting 1110 * these specific fault cases. 1111 */ 1112 kprobes_inc_nmissed_count(cur); 1113 1114 /* 1115 * We come here because instructions in the pre/post 1116 * handler caused the page_fault, this could happen 1117 * if handler tries to access user space by 1118 * copy_from_user(), get_user() etc. Let the 1119 * user-specified handler try to fix it first. 1120 */ 1121 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1122 return 1; 1123 } 1124 1125 return 0; 1126 } 1127 NOKPROBE_SYMBOL(kprobe_fault_handler); 1128 1129 int __init arch_populate_kprobe_blacklist(void) 1130 { 1131 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1132 (unsigned long)__entry_text_end); 1133 } 1134 1135 int __init arch_init_kprobes(void) 1136 { 1137 return 0; 1138 } 1139 1140 int arch_trampoline_kprobe(struct kprobe *p) 1141 { 1142 return 0; 1143 } 1144