1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 13 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 14 * 2005-Mar Roland McGrath <roland@redhat.com> 15 * Fixed to handle %rip-relative addressing mode correctly. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 20 * Added function return probes functionality 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 22 * kprobe-booster and kretprobe-booster for i386. 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 24 * and kretprobe-booster for x86-64 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 27 * unified x86 kprobes code. 28 */ 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/string.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 #include <linux/preempt.h> 35 #include <linux/sched/debug.h> 36 #include <linux/extable.h> 37 #include <linux/kdebug.h> 38 #include <linux/kallsyms.h> 39 #include <linux/ftrace.h> 40 #include <linux/frame.h> 41 #include <linux/kasan.h> 42 #include <linux/moduleloader.h> 43 44 #include <asm/text-patching.h> 45 #include <asm/cacheflush.h> 46 #include <asm/desc.h> 47 #include <asm/pgtable.h> 48 #include <linux/uaccess.h> 49 #include <asm/alternative.h> 50 #include <asm/insn.h> 51 #include <asm/debugreg.h> 52 #include <asm/set_memory.h> 53 54 #include "common.h" 55 56 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 57 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 58 59 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 60 61 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 66 << (row % 32)) 67 /* 68 * Undefined/reserved opcodes, conditional jump, Opcode Extension 69 * Groups, and some special opcodes can not boost. 70 * This is non-const and volatile to keep gcc from statically 71 * optimizing it out, as variable_test_bit makes gcc think only 72 * *(unsigned long*) is used. 73 */ 74 static volatile u32 twobyte_is_boostable[256 / 32] = { 75 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 76 /* ---------------------------------------------- */ 77 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 78 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 79 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 80 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 81 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 82 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 83 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 84 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 85 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 86 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 87 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 88 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 89 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 90 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 91 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 92 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 93 /* ----------------------------------------------- */ 94 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 95 }; 96 #undef W 97 98 struct kretprobe_blackpoint kretprobe_blacklist[] = { 99 {"__switch_to", }, /* This function switches only current task, but 100 doesn't switch kernel stack.*/ 101 {NULL, NULL} /* Terminator */ 102 }; 103 104 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 105 106 static nokprobe_inline void 107 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) 108 { 109 struct __arch_relative_insn { 110 u8 op; 111 s32 raddr; 112 } __packed *insn; 113 114 insn = (struct __arch_relative_insn *)dest; 115 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 116 insn->op = op; 117 } 118 119 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 120 void synthesize_reljump(void *dest, void *from, void *to) 121 { 122 __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE); 123 } 124 NOKPROBE_SYMBOL(synthesize_reljump); 125 126 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 127 void synthesize_relcall(void *dest, void *from, void *to) 128 { 129 __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE); 130 } 131 NOKPROBE_SYMBOL(synthesize_relcall); 132 133 /* 134 * Skip the prefixes of the instruction. 135 */ 136 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 137 { 138 insn_attr_t attr; 139 140 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 141 while (inat_is_legacy_prefix(attr)) { 142 insn++; 143 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 144 } 145 #ifdef CONFIG_X86_64 146 if (inat_is_rex_prefix(attr)) 147 insn++; 148 #endif 149 return insn; 150 } 151 NOKPROBE_SYMBOL(skip_prefixes); 152 153 /* 154 * Returns non-zero if INSN is boostable. 155 * RIP relative instructions are adjusted at copying time in 64 bits mode 156 */ 157 int can_boost(struct insn *insn, void *addr) 158 { 159 kprobe_opcode_t opcode; 160 161 if (search_exception_tables((unsigned long)addr)) 162 return 0; /* Page fault may occur on this address. */ 163 164 /* 2nd-byte opcode */ 165 if (insn->opcode.nbytes == 2) 166 return test_bit(insn->opcode.bytes[1], 167 (unsigned long *)twobyte_is_boostable); 168 169 if (insn->opcode.nbytes != 1) 170 return 0; 171 172 /* Can't boost Address-size override prefix */ 173 if (unlikely(inat_is_address_size_prefix(insn->attr))) 174 return 0; 175 176 opcode = insn->opcode.bytes[0]; 177 178 switch (opcode & 0xf0) { 179 case 0x60: 180 /* can't boost "bound" */ 181 return (opcode != 0x62); 182 case 0x70: 183 return 0; /* can't boost conditional jump */ 184 case 0x90: 185 return opcode != 0x9a; /* can't boost call far */ 186 case 0xc0: 187 /* can't boost software-interruptions */ 188 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 189 case 0xd0: 190 /* can boost AA* and XLAT */ 191 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 192 case 0xe0: 193 /* can boost in/out and absolute jmps */ 194 return ((opcode & 0x04) || opcode == 0xea); 195 case 0xf0: 196 /* clear and set flags are boostable */ 197 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 198 default: 199 /* CS override prefix and call are not boostable */ 200 return (opcode != 0x2e && opcode != 0x9a); 201 } 202 } 203 204 static unsigned long 205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 206 { 207 struct kprobe *kp; 208 unsigned long faddr; 209 210 kp = get_kprobe((void *)addr); 211 faddr = ftrace_location(addr); 212 /* 213 * Addresses inside the ftrace location are refused by 214 * arch_check_ftrace_location(). Something went terribly wrong 215 * if such an address is checked here. 216 */ 217 if (WARN_ON(faddr && faddr != addr)) 218 return 0UL; 219 /* 220 * Use the current code if it is not modified by Kprobe 221 * and it cannot be modified by ftrace. 222 */ 223 if (!kp && !faddr) 224 return addr; 225 226 /* 227 * Basically, kp->ainsn.insn has an original instruction. 228 * However, RIP-relative instruction can not do single-stepping 229 * at different place, __copy_instruction() tweaks the displacement of 230 * that instruction. In that case, we can't recover the instruction 231 * from the kp->ainsn.insn. 232 * 233 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 234 * of the first byte of the probed instruction, which is overwritten 235 * by int3. And the instruction at kp->addr is not modified by kprobes 236 * except for the first byte, we can recover the original instruction 237 * from it and kp->opcode. 238 * 239 * In case of Kprobes using ftrace, we do not have a copy of 240 * the original instruction. In fact, the ftrace location might 241 * be modified at anytime and even could be in an inconsistent state. 242 * Fortunately, we know that the original code is the ideal 5-byte 243 * long NOP. 244 */ 245 if (probe_kernel_read(buf, (void *)addr, 246 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 247 return 0UL; 248 249 if (faddr) 250 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 251 else 252 buf[0] = kp->opcode; 253 return (unsigned long)buf; 254 } 255 256 /* 257 * Recover the probed instruction at addr for further analysis. 258 * Caller must lock kprobes by kprobe_mutex, or disable preemption 259 * for preventing to release referencing kprobes. 260 * Returns zero if the instruction can not get recovered (or access failed). 261 */ 262 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 263 { 264 unsigned long __addr; 265 266 __addr = __recover_optprobed_insn(buf, addr); 267 if (__addr != addr) 268 return __addr; 269 270 return __recover_probed_insn(buf, addr); 271 } 272 273 /* Check if paddr is at an instruction boundary */ 274 static int can_probe(unsigned long paddr) 275 { 276 unsigned long addr, __addr, offset = 0; 277 struct insn insn; 278 kprobe_opcode_t buf[MAX_INSN_SIZE]; 279 280 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 281 return 0; 282 283 /* Decode instructions */ 284 addr = paddr - offset; 285 while (addr < paddr) { 286 /* 287 * Check if the instruction has been modified by another 288 * kprobe, in which case we replace the breakpoint by the 289 * original instruction in our buffer. 290 * Also, jump optimization will change the breakpoint to 291 * relative-jump. Since the relative-jump itself is 292 * normally used, we just go through if there is no kprobe. 293 */ 294 __addr = recover_probed_instruction(buf, addr); 295 if (!__addr) 296 return 0; 297 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 298 insn_get_length(&insn); 299 300 /* 301 * Another debugging subsystem might insert this breakpoint. 302 * In that case, we can't recover it. 303 */ 304 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 305 return 0; 306 addr += insn.length; 307 } 308 309 return (addr == paddr); 310 } 311 312 /* 313 * Returns non-zero if opcode modifies the interrupt flag. 314 */ 315 static int is_IF_modifier(kprobe_opcode_t *insn) 316 { 317 /* Skip prefixes */ 318 insn = skip_prefixes(insn); 319 320 switch (*insn) { 321 case 0xfa: /* cli */ 322 case 0xfb: /* sti */ 323 case 0xcf: /* iret/iretd */ 324 case 0x9d: /* popf/popfd */ 325 return 1; 326 } 327 328 return 0; 329 } 330 331 /* 332 * Copy an instruction with recovering modified instruction by kprobes 333 * and adjust the displacement if the instruction uses the %rip-relative 334 * addressing mode. Note that since @real will be the final place of copied 335 * instruction, displacement must be adjust by @real, not @dest. 336 * This returns the length of copied instruction, or 0 if it has an error. 337 */ 338 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) 339 { 340 kprobe_opcode_t buf[MAX_INSN_SIZE]; 341 unsigned long recovered_insn = 342 recover_probed_instruction(buf, (unsigned long)src); 343 344 if (!recovered_insn || !insn) 345 return 0; 346 347 /* This can access kernel text if given address is not recovered */ 348 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 349 return 0; 350 351 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 352 insn_get_length(insn); 353 354 /* Another subsystem puts a breakpoint, failed to recover */ 355 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 356 return 0; 357 358 /* We should not singlestep on the exception masking instructions */ 359 if (insn_masking_exception(insn)) 360 return 0; 361 362 #ifdef CONFIG_X86_64 363 /* Only x86_64 has RIP relative instructions */ 364 if (insn_rip_relative(insn)) { 365 s64 newdisp; 366 u8 *disp; 367 /* 368 * The copied instruction uses the %rip-relative addressing 369 * mode. Adjust the displacement for the difference between 370 * the original location of this instruction and the location 371 * of the copy that will actually be run. The tricky bit here 372 * is making sure that the sign extension happens correctly in 373 * this calculation, since we need a signed 32-bit result to 374 * be sign-extended to 64 bits when it's added to the %rip 375 * value and yield the same 64-bit result that the sign- 376 * extension of the original signed 32-bit displacement would 377 * have given. 378 */ 379 newdisp = (u8 *) src + (s64) insn->displacement.value 380 - (u8 *) real; 381 if ((s64) (s32) newdisp != newdisp) { 382 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 383 return 0; 384 } 385 disp = (u8 *) dest + insn_offset_displacement(insn); 386 *(s32 *) disp = (s32) newdisp; 387 } 388 #endif 389 return insn->length; 390 } 391 392 /* Prepare reljump right after instruction to boost */ 393 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, 394 struct insn *insn) 395 { 396 int len = insn->length; 397 398 if (can_boost(insn, p->addr) && 399 MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) { 400 /* 401 * These instructions can be executed directly if it 402 * jumps back to correct address. 403 */ 404 synthesize_reljump(buf + len, p->ainsn.insn + len, 405 p->addr + insn->length); 406 len += RELATIVEJUMP_SIZE; 407 p->ainsn.boostable = true; 408 } else { 409 p->ainsn.boostable = false; 410 } 411 412 return len; 413 } 414 415 /* Make page to RO mode when allocate it */ 416 void *alloc_insn_page(void) 417 { 418 void *page; 419 420 page = module_alloc(PAGE_SIZE); 421 if (!page) 422 return NULL; 423 424 set_vm_flush_reset_perms(page); 425 /* 426 * First make the page read-only, and only then make it executable to 427 * prevent it from being W+X in between. 428 */ 429 set_memory_ro((unsigned long)page, 1); 430 431 /* 432 * TODO: Once additional kernel code protection mechanisms are set, ensure 433 * that the page was not maliciously altered and it is still zeroed. 434 */ 435 set_memory_x((unsigned long)page, 1); 436 437 return page; 438 } 439 440 /* Recover page to RW mode before releasing it */ 441 void free_insn_page(void *page) 442 { 443 module_memfree(page); 444 } 445 446 static int arch_copy_kprobe(struct kprobe *p) 447 { 448 struct insn insn; 449 kprobe_opcode_t buf[MAX_INSN_SIZE]; 450 int len; 451 452 /* Copy an instruction with recovering if other optprobe modifies it.*/ 453 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); 454 if (!len) 455 return -EINVAL; 456 457 /* 458 * __copy_instruction can modify the displacement of the instruction, 459 * but it doesn't affect boostable check. 460 */ 461 len = prepare_boost(buf, p, &insn); 462 463 /* Check whether the instruction modifies Interrupt Flag or not */ 464 p->ainsn.if_modifier = is_IF_modifier(buf); 465 466 /* Also, displacement change doesn't affect the first byte */ 467 p->opcode = buf[0]; 468 469 /* OK, write back the instruction(s) into ROX insn buffer */ 470 text_poke(p->ainsn.insn, buf, len); 471 472 return 0; 473 } 474 475 int arch_prepare_kprobe(struct kprobe *p) 476 { 477 int ret; 478 479 if (alternatives_text_reserved(p->addr, p->addr)) 480 return -EINVAL; 481 482 if (!can_probe((unsigned long)p->addr)) 483 return -EILSEQ; 484 /* insn: must be on special executable page on x86. */ 485 p->ainsn.insn = get_insn_slot(); 486 if (!p->ainsn.insn) 487 return -ENOMEM; 488 489 ret = arch_copy_kprobe(p); 490 if (ret) { 491 free_insn_slot(p->ainsn.insn, 0); 492 p->ainsn.insn = NULL; 493 } 494 495 return ret; 496 } 497 498 void arch_arm_kprobe(struct kprobe *p) 499 { 500 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 501 } 502 503 void arch_disarm_kprobe(struct kprobe *p) 504 { 505 text_poke(p->addr, &p->opcode, 1); 506 } 507 508 void arch_remove_kprobe(struct kprobe *p) 509 { 510 if (p->ainsn.insn) { 511 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 512 p->ainsn.insn = NULL; 513 } 514 } 515 516 static nokprobe_inline void 517 save_previous_kprobe(struct kprobe_ctlblk *kcb) 518 { 519 kcb->prev_kprobe.kp = kprobe_running(); 520 kcb->prev_kprobe.status = kcb->kprobe_status; 521 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 522 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 523 } 524 525 static nokprobe_inline void 526 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 527 { 528 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 529 kcb->kprobe_status = kcb->prev_kprobe.status; 530 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 531 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 532 } 533 534 static nokprobe_inline void 535 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 536 struct kprobe_ctlblk *kcb) 537 { 538 __this_cpu_write(current_kprobe, p); 539 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 540 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 541 if (p->ainsn.if_modifier) 542 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 543 } 544 545 static nokprobe_inline void clear_btf(void) 546 { 547 if (test_thread_flag(TIF_BLOCKSTEP)) { 548 unsigned long debugctl = get_debugctlmsr(); 549 550 debugctl &= ~DEBUGCTLMSR_BTF; 551 update_debugctlmsr(debugctl); 552 } 553 } 554 555 static nokprobe_inline void restore_btf(void) 556 { 557 if (test_thread_flag(TIF_BLOCKSTEP)) { 558 unsigned long debugctl = get_debugctlmsr(); 559 560 debugctl |= DEBUGCTLMSR_BTF; 561 update_debugctlmsr(debugctl); 562 } 563 } 564 565 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 566 { 567 unsigned long *sara = stack_addr(regs); 568 569 ri->ret_addr = (kprobe_opcode_t *) *sara; 570 ri->fp = sara; 571 572 /* Replace the return addr with trampoline addr */ 573 *sara = (unsigned long) &kretprobe_trampoline; 574 } 575 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 576 577 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 578 struct kprobe_ctlblk *kcb, int reenter) 579 { 580 if (setup_detour_execution(p, regs, reenter)) 581 return; 582 583 #if !defined(CONFIG_PREEMPT) 584 if (p->ainsn.boostable && !p->post_handler) { 585 /* Boost up -- we can execute copied instructions directly */ 586 if (!reenter) 587 reset_current_kprobe(); 588 /* 589 * Reentering boosted probe doesn't reset current_kprobe, 590 * nor set current_kprobe, because it doesn't use single 591 * stepping. 592 */ 593 regs->ip = (unsigned long)p->ainsn.insn; 594 return; 595 } 596 #endif 597 if (reenter) { 598 save_previous_kprobe(kcb); 599 set_current_kprobe(p, regs, kcb); 600 kcb->kprobe_status = KPROBE_REENTER; 601 } else 602 kcb->kprobe_status = KPROBE_HIT_SS; 603 /* Prepare real single stepping */ 604 clear_btf(); 605 regs->flags |= X86_EFLAGS_TF; 606 regs->flags &= ~X86_EFLAGS_IF; 607 /* single step inline if the instruction is an int3 */ 608 if (p->opcode == BREAKPOINT_INSTRUCTION) 609 regs->ip = (unsigned long)p->addr; 610 else 611 regs->ip = (unsigned long)p->ainsn.insn; 612 } 613 NOKPROBE_SYMBOL(setup_singlestep); 614 615 /* 616 * We have reentered the kprobe_handler(), since another probe was hit while 617 * within the handler. We save the original kprobes variables and just single 618 * step on the instruction of the new probe without calling any user handlers. 619 */ 620 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 621 struct kprobe_ctlblk *kcb) 622 { 623 switch (kcb->kprobe_status) { 624 case KPROBE_HIT_SSDONE: 625 case KPROBE_HIT_ACTIVE: 626 case KPROBE_HIT_SS: 627 kprobes_inc_nmissed_count(p); 628 setup_singlestep(p, regs, kcb, 1); 629 break; 630 case KPROBE_REENTER: 631 /* A probe has been hit in the codepath leading up to, or just 632 * after, single-stepping of a probed instruction. This entire 633 * codepath should strictly reside in .kprobes.text section. 634 * Raise a BUG or we'll continue in an endless reentering loop 635 * and eventually a stack overflow. 636 */ 637 pr_err("Unrecoverable kprobe detected.\n"); 638 dump_kprobe(p); 639 BUG(); 640 default: 641 /* impossible cases */ 642 WARN_ON(1); 643 return 0; 644 } 645 646 return 1; 647 } 648 NOKPROBE_SYMBOL(reenter_kprobe); 649 650 /* 651 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 652 * remain disabled throughout this function. 653 */ 654 int kprobe_int3_handler(struct pt_regs *regs) 655 { 656 kprobe_opcode_t *addr; 657 struct kprobe *p; 658 struct kprobe_ctlblk *kcb; 659 660 if (user_mode(regs)) 661 return 0; 662 663 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 664 /* 665 * We don't want to be preempted for the entire duration of kprobe 666 * processing. Since int3 and debug trap disables irqs and we clear 667 * IF while singlestepping, it must be no preemptible. 668 */ 669 670 kcb = get_kprobe_ctlblk(); 671 p = get_kprobe(addr); 672 673 if (p) { 674 if (kprobe_running()) { 675 if (reenter_kprobe(p, regs, kcb)) 676 return 1; 677 } else { 678 set_current_kprobe(p, regs, kcb); 679 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 680 681 /* 682 * If we have no pre-handler or it returned 0, we 683 * continue with normal processing. If we have a 684 * pre-handler and it returned non-zero, that means 685 * user handler setup registers to exit to another 686 * instruction, we must skip the single stepping. 687 */ 688 if (!p->pre_handler || !p->pre_handler(p, regs)) 689 setup_singlestep(p, regs, kcb, 0); 690 else 691 reset_current_kprobe(); 692 return 1; 693 } 694 } else if (*addr != BREAKPOINT_INSTRUCTION) { 695 /* 696 * The breakpoint instruction was removed right 697 * after we hit it. Another cpu has removed 698 * either a probepoint or a debugger breakpoint 699 * at this address. In either case, no further 700 * handling of this interrupt is appropriate. 701 * Back up over the (now missing) int3 and run 702 * the original instruction. 703 */ 704 regs->ip = (unsigned long)addr; 705 return 1; 706 } /* else: not a kprobe fault; let the kernel handle it */ 707 708 return 0; 709 } 710 NOKPROBE_SYMBOL(kprobe_int3_handler); 711 712 /* 713 * When a retprobed function returns, this code saves registers and 714 * calls trampoline_handler() runs, which calls the kretprobe's handler. 715 */ 716 asm( 717 ".text\n" 718 ".global kretprobe_trampoline\n" 719 ".type kretprobe_trampoline, @function\n" 720 "kretprobe_trampoline:\n" 721 #ifdef CONFIG_X86_64 722 /* We don't bother saving the ss register */ 723 " pushq %rsp\n" 724 " pushfq\n" 725 SAVE_REGS_STRING 726 " movq %rsp, %rdi\n" 727 " call trampoline_handler\n" 728 /* Replace saved sp with true return address. */ 729 " movq %rax, 152(%rsp)\n" 730 RESTORE_REGS_STRING 731 " popfq\n" 732 #else 733 " pushf\n" 734 SAVE_REGS_STRING 735 " movl %esp, %eax\n" 736 " call trampoline_handler\n" 737 /* Move flags to cs */ 738 " movl 56(%esp), %edx\n" 739 " movl %edx, 52(%esp)\n" 740 /* Replace saved flags with true return address. */ 741 " movl %eax, 56(%esp)\n" 742 RESTORE_REGS_STRING 743 " popf\n" 744 #endif 745 " ret\n" 746 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 747 ); 748 NOKPROBE_SYMBOL(kretprobe_trampoline); 749 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 750 751 static struct kprobe kretprobe_kprobe = { 752 .addr = (void *)kretprobe_trampoline, 753 }; 754 755 /* 756 * Called from kretprobe_trampoline 757 */ 758 __used __visible void *trampoline_handler(struct pt_regs *regs) 759 { 760 struct kprobe_ctlblk *kcb; 761 struct kretprobe_instance *ri = NULL; 762 struct hlist_head *head, empty_rp; 763 struct hlist_node *tmp; 764 unsigned long flags, orig_ret_address = 0; 765 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 766 kprobe_opcode_t *correct_ret_addr = NULL; 767 void *frame_pointer; 768 bool skipped = false; 769 770 preempt_disable(); 771 772 /* 773 * Set a dummy kprobe for avoiding kretprobe recursion. 774 * Since kretprobe never run in kprobe handler, kprobe must not 775 * be running at this point. 776 */ 777 kcb = get_kprobe_ctlblk(); 778 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 779 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 780 781 INIT_HLIST_HEAD(&empty_rp); 782 kretprobe_hash_lock(current, &head, &flags); 783 /* fixup registers */ 784 #ifdef CONFIG_X86_64 785 regs->cs = __KERNEL_CS; 786 /* On x86-64, we use pt_regs->sp for return address holder. */ 787 frame_pointer = ®s->sp; 788 #else 789 regs->cs = __KERNEL_CS | get_kernel_rpl(); 790 regs->gs = 0; 791 /* On x86-32, we use pt_regs->flags for return address holder. */ 792 frame_pointer = ®s->flags; 793 #endif 794 regs->ip = trampoline_address; 795 regs->orig_ax = ~0UL; 796 797 /* 798 * It is possible to have multiple instances associated with a given 799 * task either because multiple functions in the call path have 800 * return probes installed on them, and/or more than one 801 * return probe was registered for a target function. 802 * 803 * We can handle this because: 804 * - instances are always pushed into the head of the list 805 * - when multiple return probes are registered for the same 806 * function, the (chronologically) first instance's ret_addr 807 * will be the real return address, and all the rest will 808 * point to kretprobe_trampoline. 809 */ 810 hlist_for_each_entry(ri, head, hlist) { 811 if (ri->task != current) 812 /* another task is sharing our hash bucket */ 813 continue; 814 /* 815 * Return probes must be pushed on this hash list correct 816 * order (same as return order) so that it can be poped 817 * correctly. However, if we find it is pushed it incorrect 818 * order, this means we find a function which should not be 819 * probed, because the wrong order entry is pushed on the 820 * path of processing other kretprobe itself. 821 */ 822 if (ri->fp != frame_pointer) { 823 if (!skipped) 824 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); 825 skipped = true; 826 continue; 827 } 828 829 orig_ret_address = (unsigned long)ri->ret_addr; 830 if (skipped) 831 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", 832 ri->rp->kp.addr); 833 834 if (orig_ret_address != trampoline_address) 835 /* 836 * This is the real return address. Any other 837 * instances associated with this task are for 838 * other calls deeper on the call stack 839 */ 840 break; 841 } 842 843 kretprobe_assert(ri, orig_ret_address, trampoline_address); 844 845 correct_ret_addr = ri->ret_addr; 846 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 847 if (ri->task != current) 848 /* another task is sharing our hash bucket */ 849 continue; 850 if (ri->fp != frame_pointer) 851 continue; 852 853 orig_ret_address = (unsigned long)ri->ret_addr; 854 if (ri->rp && ri->rp->handler) { 855 __this_cpu_write(current_kprobe, &ri->rp->kp); 856 ri->ret_addr = correct_ret_addr; 857 ri->rp->handler(ri, regs); 858 __this_cpu_write(current_kprobe, &kretprobe_kprobe); 859 } 860 861 recycle_rp_inst(ri, &empty_rp); 862 863 if (orig_ret_address != trampoline_address) 864 /* 865 * This is the real return address. Any other 866 * instances associated with this task are for 867 * other calls deeper on the call stack 868 */ 869 break; 870 } 871 872 kretprobe_hash_unlock(current, &flags); 873 874 __this_cpu_write(current_kprobe, NULL); 875 preempt_enable(); 876 877 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 878 hlist_del(&ri->hlist); 879 kfree(ri); 880 } 881 return (void *)orig_ret_address; 882 } 883 NOKPROBE_SYMBOL(trampoline_handler); 884 885 /* 886 * Called after single-stepping. p->addr is the address of the 887 * instruction whose first byte has been replaced by the "int 3" 888 * instruction. To avoid the SMP problems that can occur when we 889 * temporarily put back the original opcode to single-step, we 890 * single-stepped a copy of the instruction. The address of this 891 * copy is p->ainsn.insn. 892 * 893 * This function prepares to return from the post-single-step 894 * interrupt. We have to fix up the stack as follows: 895 * 896 * 0) Except in the case of absolute or indirect jump or call instructions, 897 * the new ip is relative to the copied instruction. We need to make 898 * it relative to the original instruction. 899 * 900 * 1) If the single-stepped instruction was pushfl, then the TF and IF 901 * flags are set in the just-pushed flags, and may need to be cleared. 902 * 903 * 2) If the single-stepped instruction was a call, the return address 904 * that is atop the stack is the address following the copied instruction. 905 * We need to make it the address following the original instruction. 906 * 907 * If this is the first time we've single-stepped the instruction at 908 * this probepoint, and the instruction is boostable, boost it: add a 909 * jump instruction after the copied instruction, that jumps to the next 910 * instruction after the probepoint. 911 */ 912 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 913 struct kprobe_ctlblk *kcb) 914 { 915 unsigned long *tos = stack_addr(regs); 916 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 917 unsigned long orig_ip = (unsigned long)p->addr; 918 kprobe_opcode_t *insn = p->ainsn.insn; 919 920 /* Skip prefixes */ 921 insn = skip_prefixes(insn); 922 923 regs->flags &= ~X86_EFLAGS_TF; 924 switch (*insn) { 925 case 0x9c: /* pushfl */ 926 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 927 *tos |= kcb->kprobe_old_flags; 928 break; 929 case 0xc2: /* iret/ret/lret */ 930 case 0xc3: 931 case 0xca: 932 case 0xcb: 933 case 0xcf: 934 case 0xea: /* jmp absolute -- ip is correct */ 935 /* ip is already adjusted, no more changes required */ 936 p->ainsn.boostable = true; 937 goto no_change; 938 case 0xe8: /* call relative - Fix return addr */ 939 *tos = orig_ip + (*tos - copy_ip); 940 break; 941 #ifdef CONFIG_X86_32 942 case 0x9a: /* call absolute -- same as call absolute, indirect */ 943 *tos = orig_ip + (*tos - copy_ip); 944 goto no_change; 945 #endif 946 case 0xff: 947 if ((insn[1] & 0x30) == 0x10) { 948 /* 949 * call absolute, indirect 950 * Fix return addr; ip is correct. 951 * But this is not boostable 952 */ 953 *tos = orig_ip + (*tos - copy_ip); 954 goto no_change; 955 } else if (((insn[1] & 0x31) == 0x20) || 956 ((insn[1] & 0x31) == 0x21)) { 957 /* 958 * jmp near and far, absolute indirect 959 * ip is correct. And this is boostable 960 */ 961 p->ainsn.boostable = true; 962 goto no_change; 963 } 964 default: 965 break; 966 } 967 968 regs->ip += orig_ip - copy_ip; 969 970 no_change: 971 restore_btf(); 972 } 973 NOKPROBE_SYMBOL(resume_execution); 974 975 /* 976 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 977 * remain disabled throughout this function. 978 */ 979 int kprobe_debug_handler(struct pt_regs *regs) 980 { 981 struct kprobe *cur = kprobe_running(); 982 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 983 984 if (!cur) 985 return 0; 986 987 resume_execution(cur, regs, kcb); 988 regs->flags |= kcb->kprobe_saved_flags; 989 990 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 991 kcb->kprobe_status = KPROBE_HIT_SSDONE; 992 cur->post_handler(cur, regs, 0); 993 } 994 995 /* Restore back the original saved kprobes variables and continue. */ 996 if (kcb->kprobe_status == KPROBE_REENTER) { 997 restore_previous_kprobe(kcb); 998 goto out; 999 } 1000 reset_current_kprobe(); 1001 out: 1002 /* 1003 * if somebody else is singlestepping across a probe point, flags 1004 * will have TF set, in which case, continue the remaining processing 1005 * of do_debug, as if this is not a probe hit. 1006 */ 1007 if (regs->flags & X86_EFLAGS_TF) 1008 return 0; 1009 1010 return 1; 1011 } 1012 NOKPROBE_SYMBOL(kprobe_debug_handler); 1013 1014 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 1015 { 1016 struct kprobe *cur = kprobe_running(); 1017 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1018 1019 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 1020 /* This must happen on single-stepping */ 1021 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 1022 kcb->kprobe_status != KPROBE_REENTER); 1023 /* 1024 * We are here because the instruction being single 1025 * stepped caused a page fault. We reset the current 1026 * kprobe and the ip points back to the probe address 1027 * and allow the page fault handler to continue as a 1028 * normal page fault. 1029 */ 1030 regs->ip = (unsigned long)cur->addr; 1031 /* 1032 * Trap flag (TF) has been set here because this fault 1033 * happened where the single stepping will be done. 1034 * So clear it by resetting the current kprobe: 1035 */ 1036 regs->flags &= ~X86_EFLAGS_TF; 1037 1038 /* 1039 * If the TF flag was set before the kprobe hit, 1040 * don't touch it: 1041 */ 1042 regs->flags |= kcb->kprobe_old_flags; 1043 1044 if (kcb->kprobe_status == KPROBE_REENTER) 1045 restore_previous_kprobe(kcb); 1046 else 1047 reset_current_kprobe(); 1048 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 1049 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 1050 /* 1051 * We increment the nmissed count for accounting, 1052 * we can also use npre/npostfault count for accounting 1053 * these specific fault cases. 1054 */ 1055 kprobes_inc_nmissed_count(cur); 1056 1057 /* 1058 * We come here because instructions in the pre/post 1059 * handler caused the page_fault, this could happen 1060 * if handler tries to access user space by 1061 * copy_from_user(), get_user() etc. Let the 1062 * user-specified handler try to fix it first. 1063 */ 1064 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1065 return 1; 1066 } 1067 1068 return 0; 1069 } 1070 NOKPROBE_SYMBOL(kprobe_fault_handler); 1071 1072 int __init arch_populate_kprobe_blacklist(void) 1073 { 1074 int ret; 1075 1076 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, 1077 (unsigned long)__irqentry_text_end); 1078 if (ret) 1079 return ret; 1080 1081 return kprobe_add_area_blacklist((unsigned long)__entry_text_start, 1082 (unsigned long)__entry_text_end); 1083 } 1084 1085 int __init arch_init_kprobes(void) 1086 { 1087 return 0; 1088 } 1089 1090 int arch_trampoline_kprobe(struct kprobe *p) 1091 { 1092 return 0; 1093 } 1094