xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 1c2dd16a)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 
56 #include <asm/text-patching.h>
57 #include <asm/cacheflush.h>
58 #include <asm/desc.h>
59 #include <asm/pgtable.h>
60 #include <linux/uaccess.h>
61 #include <asm/alternative.h>
62 #include <asm/insn.h>
63 #include <asm/debugreg.h>
64 
65 #include "common.h"
66 
67 void jprobe_return_end(void);
68 
69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
71 
72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
73 
74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
76 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
77 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
78 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
79 	 << (row % 32))
80 	/*
81 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 	 * Groups, and some special opcodes can not boost.
83 	 * This is non-const and volatile to keep gcc from statically
84 	 * optimizing it out, as variable_test_bit makes gcc think only
85 	 * *(unsigned long*) is used.
86 	 */
87 static volatile u32 twobyte_is_boostable[256 / 32] = {
88 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
89 	/*      ----------------------------------------------          */
90 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
106 	/*      -----------------------------------------------         */
107 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
108 };
109 #undef W
110 
111 struct kretprobe_blackpoint kretprobe_blacklist[] = {
112 	{"__switch_to", }, /* This function switches only current task, but
113 			      doesn't switch kernel stack.*/
114 	{NULL, NULL}	/* Terminator */
115 };
116 
117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
118 
119 static nokprobe_inline void
120 __synthesize_relative_insn(void *from, void *to, u8 op)
121 {
122 	struct __arch_relative_insn {
123 		u8 op;
124 		s32 raddr;
125 	} __packed *insn;
126 
127 	insn = (struct __arch_relative_insn *)from;
128 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
129 	insn->op = op;
130 }
131 
132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133 void synthesize_reljump(void *from, void *to)
134 {
135 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
136 }
137 NOKPROBE_SYMBOL(synthesize_reljump);
138 
139 /* Insert a call instruction at address 'from', which calls address 'to'.*/
140 void synthesize_relcall(void *from, void *to)
141 {
142 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
143 }
144 NOKPROBE_SYMBOL(synthesize_relcall);
145 
146 /*
147  * Skip the prefixes of the instruction.
148  */
149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
150 {
151 	insn_attr_t attr;
152 
153 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 	while (inat_is_legacy_prefix(attr)) {
155 		insn++;
156 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 	}
158 #ifdef CONFIG_X86_64
159 	if (inat_is_rex_prefix(attr))
160 		insn++;
161 #endif
162 	return insn;
163 }
164 NOKPROBE_SYMBOL(skip_prefixes);
165 
166 /*
167  * Returns non-zero if INSN is boostable.
168  * RIP relative instructions are adjusted at copying time in 64 bits mode
169  */
170 int can_boost(struct insn *insn, void *addr)
171 {
172 	kprobe_opcode_t opcode;
173 
174 	if (search_exception_tables((unsigned long)addr))
175 		return 0;	/* Page fault may occur on this address. */
176 
177 	/* 2nd-byte opcode */
178 	if (insn->opcode.nbytes == 2)
179 		return test_bit(insn->opcode.bytes[1],
180 				(unsigned long *)twobyte_is_boostable);
181 
182 	if (insn->opcode.nbytes != 1)
183 		return 0;
184 
185 	/* Can't boost Address-size override prefix */
186 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
187 		return 0;
188 
189 	opcode = insn->opcode.bytes[0];
190 
191 	switch (opcode & 0xf0) {
192 	case 0x60:
193 		/* can't boost "bound" */
194 		return (opcode != 0x62);
195 	case 0x70:
196 		return 0; /* can't boost conditional jump */
197 	case 0x90:
198 		return opcode != 0x9a;	/* can't boost call far */
199 	case 0xc0:
200 		/* can't boost software-interruptions */
201 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 	case 0xd0:
203 		/* can boost AA* and XLAT */
204 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 	case 0xe0:
206 		/* can boost in/out and absolute jmps */
207 		return ((opcode & 0x04) || opcode == 0xea);
208 	case 0xf0:
209 		/* clear and set flags are boostable */
210 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
211 	default:
212 		/* CS override prefix and call are not boostable */
213 		return (opcode != 0x2e && opcode != 0x9a);
214 	}
215 }
216 
217 static unsigned long
218 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
219 {
220 	struct kprobe *kp;
221 	unsigned long faddr;
222 
223 	kp = get_kprobe((void *)addr);
224 	faddr = ftrace_location(addr);
225 	/*
226 	 * Addresses inside the ftrace location are refused by
227 	 * arch_check_ftrace_location(). Something went terribly wrong
228 	 * if such an address is checked here.
229 	 */
230 	if (WARN_ON(faddr && faddr != addr))
231 		return 0UL;
232 	/*
233 	 * Use the current code if it is not modified by Kprobe
234 	 * and it cannot be modified by ftrace.
235 	 */
236 	if (!kp && !faddr)
237 		return addr;
238 
239 	/*
240 	 * Basically, kp->ainsn.insn has an original instruction.
241 	 * However, RIP-relative instruction can not do single-stepping
242 	 * at different place, __copy_instruction() tweaks the displacement of
243 	 * that instruction. In that case, we can't recover the instruction
244 	 * from the kp->ainsn.insn.
245 	 *
246 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
247 	 * of the first byte of the probed instruction, which is overwritten
248 	 * by int3. And the instruction at kp->addr is not modified by kprobes
249 	 * except for the first byte, we can recover the original instruction
250 	 * from it and kp->opcode.
251 	 *
252 	 * In case of Kprobes using ftrace, we do not have a copy of
253 	 * the original instruction. In fact, the ftrace location might
254 	 * be modified at anytime and even could be in an inconsistent state.
255 	 * Fortunately, we know that the original code is the ideal 5-byte
256 	 * long NOP.
257 	 */
258 	if (probe_kernel_read(buf, (void *)addr,
259 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
260 		return 0UL;
261 
262 	if (faddr)
263 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
264 	else
265 		buf[0] = kp->opcode;
266 	return (unsigned long)buf;
267 }
268 
269 /*
270  * Recover the probed instruction at addr for further analysis.
271  * Caller must lock kprobes by kprobe_mutex, or disable preemption
272  * for preventing to release referencing kprobes.
273  * Returns zero if the instruction can not get recovered (or access failed).
274  */
275 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
276 {
277 	unsigned long __addr;
278 
279 	__addr = __recover_optprobed_insn(buf, addr);
280 	if (__addr != addr)
281 		return __addr;
282 
283 	return __recover_probed_insn(buf, addr);
284 }
285 
286 /* Check if paddr is at an instruction boundary */
287 static int can_probe(unsigned long paddr)
288 {
289 	unsigned long addr, __addr, offset = 0;
290 	struct insn insn;
291 	kprobe_opcode_t buf[MAX_INSN_SIZE];
292 
293 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
294 		return 0;
295 
296 	/* Decode instructions */
297 	addr = paddr - offset;
298 	while (addr < paddr) {
299 		/*
300 		 * Check if the instruction has been modified by another
301 		 * kprobe, in which case we replace the breakpoint by the
302 		 * original instruction in our buffer.
303 		 * Also, jump optimization will change the breakpoint to
304 		 * relative-jump. Since the relative-jump itself is
305 		 * normally used, we just go through if there is no kprobe.
306 		 */
307 		__addr = recover_probed_instruction(buf, addr);
308 		if (!__addr)
309 			return 0;
310 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
311 		insn_get_length(&insn);
312 
313 		/*
314 		 * Another debugging subsystem might insert this breakpoint.
315 		 * In that case, we can't recover it.
316 		 */
317 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
318 			return 0;
319 		addr += insn.length;
320 	}
321 
322 	return (addr == paddr);
323 }
324 
325 /*
326  * Returns non-zero if opcode modifies the interrupt flag.
327  */
328 static int is_IF_modifier(kprobe_opcode_t *insn)
329 {
330 	/* Skip prefixes */
331 	insn = skip_prefixes(insn);
332 
333 	switch (*insn) {
334 	case 0xfa:		/* cli */
335 	case 0xfb:		/* sti */
336 	case 0xcf:		/* iret/iretd */
337 	case 0x9d:		/* popf/popfd */
338 		return 1;
339 	}
340 
341 	return 0;
342 }
343 
344 /*
345  * Copy an instruction with recovering modified instruction by kprobes
346  * and adjust the displacement if the instruction uses the %rip-relative
347  * addressing mode.
348  * This returns the length of copied instruction, or 0 if it has an error.
349  */
350 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
351 {
352 	kprobe_opcode_t buf[MAX_INSN_SIZE];
353 	unsigned long recovered_insn =
354 		recover_probed_instruction(buf, (unsigned long)src);
355 
356 	if (!recovered_insn || !insn)
357 		return 0;
358 
359 	/* This can access kernel text if given address is not recovered */
360 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
361 		return 0;
362 
363 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
364 	insn_get_length(insn);
365 
366 	/* Another subsystem puts a breakpoint, failed to recover */
367 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
368 		return 0;
369 
370 #ifdef CONFIG_X86_64
371 	/* Only x86_64 has RIP relative instructions */
372 	if (insn_rip_relative(insn)) {
373 		s64 newdisp;
374 		u8 *disp;
375 		/*
376 		 * The copied instruction uses the %rip-relative addressing
377 		 * mode.  Adjust the displacement for the difference between
378 		 * the original location of this instruction and the location
379 		 * of the copy that will actually be run.  The tricky bit here
380 		 * is making sure that the sign extension happens correctly in
381 		 * this calculation, since we need a signed 32-bit result to
382 		 * be sign-extended to 64 bits when it's added to the %rip
383 		 * value and yield the same 64-bit result that the sign-
384 		 * extension of the original signed 32-bit displacement would
385 		 * have given.
386 		 */
387 		newdisp = (u8 *) src + (s64) insn->displacement.value
388 			  - (u8 *) dest;
389 		if ((s64) (s32) newdisp != newdisp) {
390 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
391 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n",
392 				src, dest, insn->displacement.value);
393 			return 0;
394 		}
395 		disp = (u8 *) dest + insn_offset_displacement(insn);
396 		*(s32 *) disp = (s32) newdisp;
397 	}
398 #endif
399 	return insn->length;
400 }
401 
402 /* Prepare reljump right after instruction to boost */
403 static void prepare_boost(struct kprobe *p, struct insn *insn)
404 {
405 	if (can_boost(insn, p->addr) &&
406 	    MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
407 		/*
408 		 * These instructions can be executed directly if it
409 		 * jumps back to correct address.
410 		 */
411 		synthesize_reljump(p->ainsn.insn + insn->length,
412 				   p->addr + insn->length);
413 		p->ainsn.boostable = true;
414 	} else {
415 		p->ainsn.boostable = false;
416 	}
417 }
418 
419 static int arch_copy_kprobe(struct kprobe *p)
420 {
421 	struct insn insn;
422 	int len;
423 
424 	set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
425 
426 	/* Copy an instruction with recovering if other optprobe modifies it.*/
427 	len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
428 	if (!len)
429 		return -EINVAL;
430 
431 	/*
432 	 * __copy_instruction can modify the displacement of the instruction,
433 	 * but it doesn't affect boostable check.
434 	 */
435 	prepare_boost(p, &insn);
436 
437 	set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
438 
439 	/* Check whether the instruction modifies Interrupt Flag or not */
440 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
441 
442 	/* Also, displacement change doesn't affect the first byte */
443 	p->opcode = p->ainsn.insn[0];
444 
445 	return 0;
446 }
447 
448 int arch_prepare_kprobe(struct kprobe *p)
449 {
450 	if (alternatives_text_reserved(p->addr, p->addr))
451 		return -EINVAL;
452 
453 	if (!can_probe((unsigned long)p->addr))
454 		return -EILSEQ;
455 	/* insn: must be on special executable page on x86. */
456 	p->ainsn.insn = get_insn_slot();
457 	if (!p->ainsn.insn)
458 		return -ENOMEM;
459 
460 	return arch_copy_kprobe(p);
461 }
462 
463 void arch_arm_kprobe(struct kprobe *p)
464 {
465 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
466 }
467 
468 void arch_disarm_kprobe(struct kprobe *p)
469 {
470 	text_poke(p->addr, &p->opcode, 1);
471 }
472 
473 void arch_remove_kprobe(struct kprobe *p)
474 {
475 	if (p->ainsn.insn) {
476 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
477 		p->ainsn.insn = NULL;
478 	}
479 }
480 
481 static nokprobe_inline void
482 save_previous_kprobe(struct kprobe_ctlblk *kcb)
483 {
484 	kcb->prev_kprobe.kp = kprobe_running();
485 	kcb->prev_kprobe.status = kcb->kprobe_status;
486 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
487 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
488 }
489 
490 static nokprobe_inline void
491 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
492 {
493 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
494 	kcb->kprobe_status = kcb->prev_kprobe.status;
495 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
496 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
497 }
498 
499 static nokprobe_inline void
500 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
501 		   struct kprobe_ctlblk *kcb)
502 {
503 	__this_cpu_write(current_kprobe, p);
504 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
505 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
506 	if (p->ainsn.if_modifier)
507 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
508 }
509 
510 static nokprobe_inline void clear_btf(void)
511 {
512 	if (test_thread_flag(TIF_BLOCKSTEP)) {
513 		unsigned long debugctl = get_debugctlmsr();
514 
515 		debugctl &= ~DEBUGCTLMSR_BTF;
516 		update_debugctlmsr(debugctl);
517 	}
518 }
519 
520 static nokprobe_inline void restore_btf(void)
521 {
522 	if (test_thread_flag(TIF_BLOCKSTEP)) {
523 		unsigned long debugctl = get_debugctlmsr();
524 
525 		debugctl |= DEBUGCTLMSR_BTF;
526 		update_debugctlmsr(debugctl);
527 	}
528 }
529 
530 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
531 {
532 	unsigned long *sara = stack_addr(regs);
533 
534 	ri->ret_addr = (kprobe_opcode_t *) *sara;
535 
536 	/* Replace the return addr with trampoline addr */
537 	*sara = (unsigned long) &kretprobe_trampoline;
538 }
539 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
540 
541 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
542 			     struct kprobe_ctlblk *kcb, int reenter)
543 {
544 	if (setup_detour_execution(p, regs, reenter))
545 		return;
546 
547 #if !defined(CONFIG_PREEMPT)
548 	if (p->ainsn.boostable && !p->post_handler) {
549 		/* Boost up -- we can execute copied instructions directly */
550 		if (!reenter)
551 			reset_current_kprobe();
552 		/*
553 		 * Reentering boosted probe doesn't reset current_kprobe,
554 		 * nor set current_kprobe, because it doesn't use single
555 		 * stepping.
556 		 */
557 		regs->ip = (unsigned long)p->ainsn.insn;
558 		preempt_enable_no_resched();
559 		return;
560 	}
561 #endif
562 	if (reenter) {
563 		save_previous_kprobe(kcb);
564 		set_current_kprobe(p, regs, kcb);
565 		kcb->kprobe_status = KPROBE_REENTER;
566 	} else
567 		kcb->kprobe_status = KPROBE_HIT_SS;
568 	/* Prepare real single stepping */
569 	clear_btf();
570 	regs->flags |= X86_EFLAGS_TF;
571 	regs->flags &= ~X86_EFLAGS_IF;
572 	/* single step inline if the instruction is an int3 */
573 	if (p->opcode == BREAKPOINT_INSTRUCTION)
574 		regs->ip = (unsigned long)p->addr;
575 	else
576 		regs->ip = (unsigned long)p->ainsn.insn;
577 }
578 NOKPROBE_SYMBOL(setup_singlestep);
579 
580 /*
581  * We have reentered the kprobe_handler(), since another probe was hit while
582  * within the handler. We save the original kprobes variables and just single
583  * step on the instruction of the new probe without calling any user handlers.
584  */
585 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
586 			  struct kprobe_ctlblk *kcb)
587 {
588 	switch (kcb->kprobe_status) {
589 	case KPROBE_HIT_SSDONE:
590 	case KPROBE_HIT_ACTIVE:
591 	case KPROBE_HIT_SS:
592 		kprobes_inc_nmissed_count(p);
593 		setup_singlestep(p, regs, kcb, 1);
594 		break;
595 	case KPROBE_REENTER:
596 		/* A probe has been hit in the codepath leading up to, or just
597 		 * after, single-stepping of a probed instruction. This entire
598 		 * codepath should strictly reside in .kprobes.text section.
599 		 * Raise a BUG or we'll continue in an endless reentering loop
600 		 * and eventually a stack overflow.
601 		 */
602 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
603 		       p->addr);
604 		dump_kprobe(p);
605 		BUG();
606 	default:
607 		/* impossible cases */
608 		WARN_ON(1);
609 		return 0;
610 	}
611 
612 	return 1;
613 }
614 NOKPROBE_SYMBOL(reenter_kprobe);
615 
616 /*
617  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
618  * remain disabled throughout this function.
619  */
620 int kprobe_int3_handler(struct pt_regs *regs)
621 {
622 	kprobe_opcode_t *addr;
623 	struct kprobe *p;
624 	struct kprobe_ctlblk *kcb;
625 
626 	if (user_mode(regs))
627 		return 0;
628 
629 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
630 	/*
631 	 * We don't want to be preempted for the entire
632 	 * duration of kprobe processing. We conditionally
633 	 * re-enable preemption at the end of this function,
634 	 * and also in reenter_kprobe() and setup_singlestep().
635 	 */
636 	preempt_disable();
637 
638 	kcb = get_kprobe_ctlblk();
639 	p = get_kprobe(addr);
640 
641 	if (p) {
642 		if (kprobe_running()) {
643 			if (reenter_kprobe(p, regs, kcb))
644 				return 1;
645 		} else {
646 			set_current_kprobe(p, regs, kcb);
647 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
648 
649 			/*
650 			 * If we have no pre-handler or it returned 0, we
651 			 * continue with normal processing.  If we have a
652 			 * pre-handler and it returned non-zero, it prepped
653 			 * for calling the break_handler below on re-entry
654 			 * for jprobe processing, so get out doing nothing
655 			 * more here.
656 			 */
657 			if (!p->pre_handler || !p->pre_handler(p, regs))
658 				setup_singlestep(p, regs, kcb, 0);
659 			return 1;
660 		}
661 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
662 		/*
663 		 * The breakpoint instruction was removed right
664 		 * after we hit it.  Another cpu has removed
665 		 * either a probepoint or a debugger breakpoint
666 		 * at this address.  In either case, no further
667 		 * handling of this interrupt is appropriate.
668 		 * Back up over the (now missing) int3 and run
669 		 * the original instruction.
670 		 */
671 		regs->ip = (unsigned long)addr;
672 		preempt_enable_no_resched();
673 		return 1;
674 	} else if (kprobe_running()) {
675 		p = __this_cpu_read(current_kprobe);
676 		if (p->break_handler && p->break_handler(p, regs)) {
677 			if (!skip_singlestep(p, regs, kcb))
678 				setup_singlestep(p, regs, kcb, 0);
679 			return 1;
680 		}
681 	} /* else: not a kprobe fault; let the kernel handle it */
682 
683 	preempt_enable_no_resched();
684 	return 0;
685 }
686 NOKPROBE_SYMBOL(kprobe_int3_handler);
687 
688 /*
689  * When a retprobed function returns, this code saves registers and
690  * calls trampoline_handler() runs, which calls the kretprobe's handler.
691  */
692 asm(
693 	".global kretprobe_trampoline\n"
694 	".type kretprobe_trampoline, @function\n"
695 	"kretprobe_trampoline:\n"
696 #ifdef CONFIG_X86_64
697 	/* We don't bother saving the ss register */
698 	"	pushq %rsp\n"
699 	"	pushfq\n"
700 	SAVE_REGS_STRING
701 	"	movq %rsp, %rdi\n"
702 	"	call trampoline_handler\n"
703 	/* Replace saved sp with true return address. */
704 	"	movq %rax, 152(%rsp)\n"
705 	RESTORE_REGS_STRING
706 	"	popfq\n"
707 #else
708 	"	pushf\n"
709 	SAVE_REGS_STRING
710 	"	movl %esp, %eax\n"
711 	"	call trampoline_handler\n"
712 	/* Move flags to cs */
713 	"	movl 56(%esp), %edx\n"
714 	"	movl %edx, 52(%esp)\n"
715 	/* Replace saved flags with true return address. */
716 	"	movl %eax, 56(%esp)\n"
717 	RESTORE_REGS_STRING
718 	"	popf\n"
719 #endif
720 	"	ret\n"
721 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
722 );
723 NOKPROBE_SYMBOL(kretprobe_trampoline);
724 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
725 
726 /*
727  * Called from kretprobe_trampoline
728  */
729 __visible __used void *trampoline_handler(struct pt_regs *regs)
730 {
731 	struct kretprobe_instance *ri = NULL;
732 	struct hlist_head *head, empty_rp;
733 	struct hlist_node *tmp;
734 	unsigned long flags, orig_ret_address = 0;
735 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
736 	kprobe_opcode_t *correct_ret_addr = NULL;
737 
738 	INIT_HLIST_HEAD(&empty_rp);
739 	kretprobe_hash_lock(current, &head, &flags);
740 	/* fixup registers */
741 #ifdef CONFIG_X86_64
742 	regs->cs = __KERNEL_CS;
743 #else
744 	regs->cs = __KERNEL_CS | get_kernel_rpl();
745 	regs->gs = 0;
746 #endif
747 	regs->ip = trampoline_address;
748 	regs->orig_ax = ~0UL;
749 
750 	/*
751 	 * It is possible to have multiple instances associated with a given
752 	 * task either because multiple functions in the call path have
753 	 * return probes installed on them, and/or more than one
754 	 * return probe was registered for a target function.
755 	 *
756 	 * We can handle this because:
757 	 *     - instances are always pushed into the head of the list
758 	 *     - when multiple return probes are registered for the same
759 	 *	 function, the (chronologically) first instance's ret_addr
760 	 *	 will be the real return address, and all the rest will
761 	 *	 point to kretprobe_trampoline.
762 	 */
763 	hlist_for_each_entry(ri, head, hlist) {
764 		if (ri->task != current)
765 			/* another task is sharing our hash bucket */
766 			continue;
767 
768 		orig_ret_address = (unsigned long)ri->ret_addr;
769 
770 		if (orig_ret_address != trampoline_address)
771 			/*
772 			 * This is the real return address. Any other
773 			 * instances associated with this task are for
774 			 * other calls deeper on the call stack
775 			 */
776 			break;
777 	}
778 
779 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
780 
781 	correct_ret_addr = ri->ret_addr;
782 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
783 		if (ri->task != current)
784 			/* another task is sharing our hash bucket */
785 			continue;
786 
787 		orig_ret_address = (unsigned long)ri->ret_addr;
788 		if (ri->rp && ri->rp->handler) {
789 			__this_cpu_write(current_kprobe, &ri->rp->kp);
790 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
791 			ri->ret_addr = correct_ret_addr;
792 			ri->rp->handler(ri, regs);
793 			__this_cpu_write(current_kprobe, NULL);
794 		}
795 
796 		recycle_rp_inst(ri, &empty_rp);
797 
798 		if (orig_ret_address != trampoline_address)
799 			/*
800 			 * This is the real return address. Any other
801 			 * instances associated with this task are for
802 			 * other calls deeper on the call stack
803 			 */
804 			break;
805 	}
806 
807 	kretprobe_hash_unlock(current, &flags);
808 
809 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
810 		hlist_del(&ri->hlist);
811 		kfree(ri);
812 	}
813 	return (void *)orig_ret_address;
814 }
815 NOKPROBE_SYMBOL(trampoline_handler);
816 
817 /*
818  * Called after single-stepping.  p->addr is the address of the
819  * instruction whose first byte has been replaced by the "int 3"
820  * instruction.  To avoid the SMP problems that can occur when we
821  * temporarily put back the original opcode to single-step, we
822  * single-stepped a copy of the instruction.  The address of this
823  * copy is p->ainsn.insn.
824  *
825  * This function prepares to return from the post-single-step
826  * interrupt.  We have to fix up the stack as follows:
827  *
828  * 0) Except in the case of absolute or indirect jump or call instructions,
829  * the new ip is relative to the copied instruction.  We need to make
830  * it relative to the original instruction.
831  *
832  * 1) If the single-stepped instruction was pushfl, then the TF and IF
833  * flags are set in the just-pushed flags, and may need to be cleared.
834  *
835  * 2) If the single-stepped instruction was a call, the return address
836  * that is atop the stack is the address following the copied instruction.
837  * We need to make it the address following the original instruction.
838  *
839  * If this is the first time we've single-stepped the instruction at
840  * this probepoint, and the instruction is boostable, boost it: add a
841  * jump instruction after the copied instruction, that jumps to the next
842  * instruction after the probepoint.
843  */
844 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
845 			     struct kprobe_ctlblk *kcb)
846 {
847 	unsigned long *tos = stack_addr(regs);
848 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
849 	unsigned long orig_ip = (unsigned long)p->addr;
850 	kprobe_opcode_t *insn = p->ainsn.insn;
851 
852 	/* Skip prefixes */
853 	insn = skip_prefixes(insn);
854 
855 	regs->flags &= ~X86_EFLAGS_TF;
856 	switch (*insn) {
857 	case 0x9c:	/* pushfl */
858 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
859 		*tos |= kcb->kprobe_old_flags;
860 		break;
861 	case 0xc2:	/* iret/ret/lret */
862 	case 0xc3:
863 	case 0xca:
864 	case 0xcb:
865 	case 0xcf:
866 	case 0xea:	/* jmp absolute -- ip is correct */
867 		/* ip is already adjusted, no more changes required */
868 		p->ainsn.boostable = true;
869 		goto no_change;
870 	case 0xe8:	/* call relative - Fix return addr */
871 		*tos = orig_ip + (*tos - copy_ip);
872 		break;
873 #ifdef CONFIG_X86_32
874 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
875 		*tos = orig_ip + (*tos - copy_ip);
876 		goto no_change;
877 #endif
878 	case 0xff:
879 		if ((insn[1] & 0x30) == 0x10) {
880 			/*
881 			 * call absolute, indirect
882 			 * Fix return addr; ip is correct.
883 			 * But this is not boostable
884 			 */
885 			*tos = orig_ip + (*tos - copy_ip);
886 			goto no_change;
887 		} else if (((insn[1] & 0x31) == 0x20) ||
888 			   ((insn[1] & 0x31) == 0x21)) {
889 			/*
890 			 * jmp near and far, absolute indirect
891 			 * ip is correct. And this is boostable
892 			 */
893 			p->ainsn.boostable = true;
894 			goto no_change;
895 		}
896 	default:
897 		break;
898 	}
899 
900 	regs->ip += orig_ip - copy_ip;
901 
902 no_change:
903 	restore_btf();
904 }
905 NOKPROBE_SYMBOL(resume_execution);
906 
907 /*
908  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
909  * remain disabled throughout this function.
910  */
911 int kprobe_debug_handler(struct pt_regs *regs)
912 {
913 	struct kprobe *cur = kprobe_running();
914 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
915 
916 	if (!cur)
917 		return 0;
918 
919 	resume_execution(cur, regs, kcb);
920 	regs->flags |= kcb->kprobe_saved_flags;
921 
922 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
923 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
924 		cur->post_handler(cur, regs, 0);
925 	}
926 
927 	/* Restore back the original saved kprobes variables and continue. */
928 	if (kcb->kprobe_status == KPROBE_REENTER) {
929 		restore_previous_kprobe(kcb);
930 		goto out;
931 	}
932 	reset_current_kprobe();
933 out:
934 	preempt_enable_no_resched();
935 
936 	/*
937 	 * if somebody else is singlestepping across a probe point, flags
938 	 * will have TF set, in which case, continue the remaining processing
939 	 * of do_debug, as if this is not a probe hit.
940 	 */
941 	if (regs->flags & X86_EFLAGS_TF)
942 		return 0;
943 
944 	return 1;
945 }
946 NOKPROBE_SYMBOL(kprobe_debug_handler);
947 
948 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
949 {
950 	struct kprobe *cur = kprobe_running();
951 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
952 
953 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
954 		/* This must happen on single-stepping */
955 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
956 			kcb->kprobe_status != KPROBE_REENTER);
957 		/*
958 		 * We are here because the instruction being single
959 		 * stepped caused a page fault. We reset the current
960 		 * kprobe and the ip points back to the probe address
961 		 * and allow the page fault handler to continue as a
962 		 * normal page fault.
963 		 */
964 		regs->ip = (unsigned long)cur->addr;
965 		/*
966 		 * Trap flag (TF) has been set here because this fault
967 		 * happened where the single stepping will be done.
968 		 * So clear it by resetting the current kprobe:
969 		 */
970 		regs->flags &= ~X86_EFLAGS_TF;
971 
972 		/*
973 		 * If the TF flag was set before the kprobe hit,
974 		 * don't touch it:
975 		 */
976 		regs->flags |= kcb->kprobe_old_flags;
977 
978 		if (kcb->kprobe_status == KPROBE_REENTER)
979 			restore_previous_kprobe(kcb);
980 		else
981 			reset_current_kprobe();
982 		preempt_enable_no_resched();
983 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
984 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
985 		/*
986 		 * We increment the nmissed count for accounting,
987 		 * we can also use npre/npostfault count for accounting
988 		 * these specific fault cases.
989 		 */
990 		kprobes_inc_nmissed_count(cur);
991 
992 		/*
993 		 * We come here because instructions in the pre/post
994 		 * handler caused the page_fault, this could happen
995 		 * if handler tries to access user space by
996 		 * copy_from_user(), get_user() etc. Let the
997 		 * user-specified handler try to fix it first.
998 		 */
999 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1000 			return 1;
1001 
1002 		/*
1003 		 * In case the user-specified fault handler returned
1004 		 * zero, try to fix up.
1005 		 */
1006 		if (fixup_exception(regs, trapnr))
1007 			return 1;
1008 
1009 		/*
1010 		 * fixup routine could not handle it,
1011 		 * Let do_page_fault() fix it.
1012 		 */
1013 	}
1014 
1015 	return 0;
1016 }
1017 NOKPROBE_SYMBOL(kprobe_fault_handler);
1018 
1019 /*
1020  * Wrapper routine for handling exceptions.
1021  */
1022 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1023 			     void *data)
1024 {
1025 	struct die_args *args = data;
1026 	int ret = NOTIFY_DONE;
1027 
1028 	if (args->regs && user_mode(args->regs))
1029 		return ret;
1030 
1031 	if (val == DIE_GPF) {
1032 		/*
1033 		 * To be potentially processing a kprobe fault and to
1034 		 * trust the result from kprobe_running(), we have
1035 		 * be non-preemptible.
1036 		 */
1037 		if (!preemptible() && kprobe_running() &&
1038 		    kprobe_fault_handler(args->regs, args->trapnr))
1039 			ret = NOTIFY_STOP;
1040 	}
1041 	return ret;
1042 }
1043 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1044 
1045 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1046 {
1047 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1048 	unsigned long addr;
1049 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1050 
1051 	kcb->jprobe_saved_regs = *regs;
1052 	kcb->jprobe_saved_sp = stack_addr(regs);
1053 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1054 
1055 	/*
1056 	 * As Linus pointed out, gcc assumes that the callee
1057 	 * owns the argument space and could overwrite it, e.g.
1058 	 * tailcall optimization. So, to be absolutely safe
1059 	 * we also save and restore enough stack bytes to cover
1060 	 * the argument area.
1061 	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1062 	 * raw stack chunk with redzones:
1063 	 */
1064 	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1065 	regs->flags &= ~X86_EFLAGS_IF;
1066 	trace_hardirqs_off();
1067 	regs->ip = (unsigned long)(jp->entry);
1068 
1069 	/*
1070 	 * jprobes use jprobe_return() which skips the normal return
1071 	 * path of the function, and this messes up the accounting of the
1072 	 * function graph tracer to get messed up.
1073 	 *
1074 	 * Pause function graph tracing while performing the jprobe function.
1075 	 */
1076 	pause_graph_tracing();
1077 	return 1;
1078 }
1079 NOKPROBE_SYMBOL(setjmp_pre_handler);
1080 
1081 void jprobe_return(void)
1082 {
1083 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084 
1085 	/* Unpoison stack redzones in the frames we are going to jump over. */
1086 	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1087 
1088 	asm volatile (
1089 #ifdef CONFIG_X86_64
1090 			"       xchg   %%rbx,%%rsp	\n"
1091 #else
1092 			"       xchgl   %%ebx,%%esp	\n"
1093 #endif
1094 			"       int3			\n"
1095 			"       .globl jprobe_return_end\n"
1096 			"       jprobe_return_end:	\n"
1097 			"       nop			\n"::"b"
1098 			(kcb->jprobe_saved_sp):"memory");
1099 }
1100 NOKPROBE_SYMBOL(jprobe_return);
1101 NOKPROBE_SYMBOL(jprobe_return_end);
1102 
1103 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1104 {
1105 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1106 	u8 *addr = (u8 *) (regs->ip - 1);
1107 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1108 	void *saved_sp = kcb->jprobe_saved_sp;
1109 
1110 	if ((addr > (u8 *) jprobe_return) &&
1111 	    (addr < (u8 *) jprobe_return_end)) {
1112 		if (stack_addr(regs) != saved_sp) {
1113 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1114 			printk(KERN_ERR
1115 			       "current sp %p does not match saved sp %p\n",
1116 			       stack_addr(regs), saved_sp);
1117 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1118 			show_regs(saved_regs);
1119 			printk(KERN_ERR "Current registers\n");
1120 			show_regs(regs);
1121 			BUG();
1122 		}
1123 		/* It's OK to start function graph tracing again */
1124 		unpause_graph_tracing();
1125 		*regs = kcb->jprobe_saved_regs;
1126 		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1127 		preempt_enable_no_resched();
1128 		return 1;
1129 	}
1130 	return 0;
1131 }
1132 NOKPROBE_SYMBOL(longjmp_break_handler);
1133 
1134 bool arch_within_kprobe_blacklist(unsigned long addr)
1135 {
1136 	return  (addr >= (unsigned long)__kprobes_text_start &&
1137 		 addr < (unsigned long)__kprobes_text_end) ||
1138 		(addr >= (unsigned long)__entry_text_start &&
1139 		 addr < (unsigned long)__entry_text_end);
1140 }
1141 
1142 int __init arch_init_kprobes(void)
1143 {
1144 	return 0;
1145 }
1146 
1147 int arch_trampoline_kprobe(struct kprobe *p)
1148 {
1149 	return 0;
1150 }
1151