1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 26 * <prasanna@in.ibm.com> adapted for x86_64 from i386. 27 * 2005-Mar Roland McGrath <roland@redhat.com> 28 * Fixed to handle %rip-relative addressing mode correctly. 29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 31 * <prasanna@in.ibm.com> added function-return probes. 32 * 2005-May Rusty Lynch <rusty.lynch@intel.com> 33 * Added function return probes functionality 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added 35 * kprobe-booster and kretprobe-booster for i386. 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster 37 * and kretprobe-booster for x86-64 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven 39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> 40 * unified x86 kprobes code. 41 */ 42 #include <linux/kprobes.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/slab.h> 46 #include <linux/hardirq.h> 47 #include <linux/preempt.h> 48 #include <linux/sched/debug.h> 49 #include <linux/extable.h> 50 #include <linux/kdebug.h> 51 #include <linux/kallsyms.h> 52 #include <linux/ftrace.h> 53 #include <linux/frame.h> 54 #include <linux/kasan.h> 55 56 #include <asm/text-patching.h> 57 #include <asm/cacheflush.h> 58 #include <asm/desc.h> 59 #include <asm/pgtable.h> 60 #include <linux/uaccess.h> 61 #include <asm/alternative.h> 62 #include <asm/insn.h> 63 #include <asm/debugreg.h> 64 65 #include "common.h" 66 67 void jprobe_return_end(void); 68 69 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 70 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 71 72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) 73 74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 79 << (row % 32)) 80 /* 81 * Undefined/reserved opcodes, conditional jump, Opcode Extension 82 * Groups, and some special opcodes can not boost. 83 * This is non-const and volatile to keep gcc from statically 84 * optimizing it out, as variable_test_bit makes gcc think only 85 * *(unsigned long*) is used. 86 */ 87 static volatile u32 twobyte_is_boostable[256 / 32] = { 88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 89 /* ---------------------------------------------- */ 90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ 91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ 92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ 93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ 94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ 96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ 97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ 98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ 99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ 101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ 102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ 104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ 105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ 106 /* ----------------------------------------------- */ 107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 108 }; 109 #undef W 110 111 struct kretprobe_blackpoint kretprobe_blacklist[] = { 112 {"__switch_to", }, /* This function switches only current task, but 113 doesn't switch kernel stack.*/ 114 {NULL, NULL} /* Terminator */ 115 }; 116 117 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); 118 119 static nokprobe_inline void 120 __synthesize_relative_insn(void *from, void *to, u8 op) 121 { 122 struct __arch_relative_insn { 123 u8 op; 124 s32 raddr; 125 } __packed *insn; 126 127 insn = (struct __arch_relative_insn *)from; 128 insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); 129 insn->op = op; 130 } 131 132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ 133 void synthesize_reljump(void *from, void *to) 134 { 135 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); 136 } 137 NOKPROBE_SYMBOL(synthesize_reljump); 138 139 /* Insert a call instruction at address 'from', which calls address 'to'.*/ 140 void synthesize_relcall(void *from, void *to) 141 { 142 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); 143 } 144 NOKPROBE_SYMBOL(synthesize_relcall); 145 146 /* 147 * Skip the prefixes of the instruction. 148 */ 149 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) 150 { 151 insn_attr_t attr; 152 153 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 154 while (inat_is_legacy_prefix(attr)) { 155 insn++; 156 attr = inat_get_opcode_attribute((insn_byte_t)*insn); 157 } 158 #ifdef CONFIG_X86_64 159 if (inat_is_rex_prefix(attr)) 160 insn++; 161 #endif 162 return insn; 163 } 164 NOKPROBE_SYMBOL(skip_prefixes); 165 166 /* 167 * Returns non-zero if INSN is boostable. 168 * RIP relative instructions are adjusted at copying time in 64 bits mode 169 */ 170 int can_boost(struct insn *insn, void *addr) 171 { 172 kprobe_opcode_t opcode; 173 174 if (search_exception_tables((unsigned long)addr)) 175 return 0; /* Page fault may occur on this address. */ 176 177 /* 2nd-byte opcode */ 178 if (insn->opcode.nbytes == 2) 179 return test_bit(insn->opcode.bytes[1], 180 (unsigned long *)twobyte_is_boostable); 181 182 if (insn->opcode.nbytes != 1) 183 return 0; 184 185 /* Can't boost Address-size override prefix */ 186 if (unlikely(inat_is_address_size_prefix(insn->attr))) 187 return 0; 188 189 opcode = insn->opcode.bytes[0]; 190 191 switch (opcode & 0xf0) { 192 case 0x60: 193 /* can't boost "bound" */ 194 return (opcode != 0x62); 195 case 0x70: 196 return 0; /* can't boost conditional jump */ 197 case 0x90: 198 return opcode != 0x9a; /* can't boost call far */ 199 case 0xc0: 200 /* can't boost software-interruptions */ 201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; 202 case 0xd0: 203 /* can boost AA* and XLAT */ 204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); 205 case 0xe0: 206 /* can boost in/out and absolute jmps */ 207 return ((opcode & 0x04) || opcode == 0xea); 208 case 0xf0: 209 /* clear and set flags are boostable */ 210 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); 211 default: 212 /* CS override prefix and call are not boostable */ 213 return (opcode != 0x2e && opcode != 0x9a); 214 } 215 } 216 217 static unsigned long 218 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) 219 { 220 struct kprobe *kp; 221 unsigned long faddr; 222 223 kp = get_kprobe((void *)addr); 224 faddr = ftrace_location(addr); 225 /* 226 * Addresses inside the ftrace location are refused by 227 * arch_check_ftrace_location(). Something went terribly wrong 228 * if such an address is checked here. 229 */ 230 if (WARN_ON(faddr && faddr != addr)) 231 return 0UL; 232 /* 233 * Use the current code if it is not modified by Kprobe 234 * and it cannot be modified by ftrace. 235 */ 236 if (!kp && !faddr) 237 return addr; 238 239 /* 240 * Basically, kp->ainsn.insn has an original instruction. 241 * However, RIP-relative instruction can not do single-stepping 242 * at different place, __copy_instruction() tweaks the displacement of 243 * that instruction. In that case, we can't recover the instruction 244 * from the kp->ainsn.insn. 245 * 246 * On the other hand, in case on normal Kprobe, kp->opcode has a copy 247 * of the first byte of the probed instruction, which is overwritten 248 * by int3. And the instruction at kp->addr is not modified by kprobes 249 * except for the first byte, we can recover the original instruction 250 * from it and kp->opcode. 251 * 252 * In case of Kprobes using ftrace, we do not have a copy of 253 * the original instruction. In fact, the ftrace location might 254 * be modified at anytime and even could be in an inconsistent state. 255 * Fortunately, we know that the original code is the ideal 5-byte 256 * long NOP. 257 */ 258 if (probe_kernel_read(buf, (void *)addr, 259 MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 260 return 0UL; 261 262 if (faddr) 263 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); 264 else 265 buf[0] = kp->opcode; 266 return (unsigned long)buf; 267 } 268 269 /* 270 * Recover the probed instruction at addr for further analysis. 271 * Caller must lock kprobes by kprobe_mutex, or disable preemption 272 * for preventing to release referencing kprobes. 273 * Returns zero if the instruction can not get recovered (or access failed). 274 */ 275 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) 276 { 277 unsigned long __addr; 278 279 __addr = __recover_optprobed_insn(buf, addr); 280 if (__addr != addr) 281 return __addr; 282 283 return __recover_probed_insn(buf, addr); 284 } 285 286 /* Check if paddr is at an instruction boundary */ 287 static int can_probe(unsigned long paddr) 288 { 289 unsigned long addr, __addr, offset = 0; 290 struct insn insn; 291 kprobe_opcode_t buf[MAX_INSN_SIZE]; 292 293 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 294 return 0; 295 296 /* Decode instructions */ 297 addr = paddr - offset; 298 while (addr < paddr) { 299 /* 300 * Check if the instruction has been modified by another 301 * kprobe, in which case we replace the breakpoint by the 302 * original instruction in our buffer. 303 * Also, jump optimization will change the breakpoint to 304 * relative-jump. Since the relative-jump itself is 305 * normally used, we just go through if there is no kprobe. 306 */ 307 __addr = recover_probed_instruction(buf, addr); 308 if (!__addr) 309 return 0; 310 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); 311 insn_get_length(&insn); 312 313 /* 314 * Another debugging subsystem might insert this breakpoint. 315 * In that case, we can't recover it. 316 */ 317 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 318 return 0; 319 addr += insn.length; 320 } 321 322 return (addr == paddr); 323 } 324 325 /* 326 * Returns non-zero if opcode modifies the interrupt flag. 327 */ 328 static int is_IF_modifier(kprobe_opcode_t *insn) 329 { 330 /* Skip prefixes */ 331 insn = skip_prefixes(insn); 332 333 switch (*insn) { 334 case 0xfa: /* cli */ 335 case 0xfb: /* sti */ 336 case 0xcf: /* iret/iretd */ 337 case 0x9d: /* popf/popfd */ 338 return 1; 339 } 340 341 return 0; 342 } 343 344 /* 345 * Copy an instruction with recovering modified instruction by kprobes 346 * and adjust the displacement if the instruction uses the %rip-relative 347 * addressing mode. 348 * This returns the length of copied instruction, or 0 if it has an error. 349 */ 350 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn) 351 { 352 kprobe_opcode_t buf[MAX_INSN_SIZE]; 353 unsigned long recovered_insn = 354 recover_probed_instruction(buf, (unsigned long)src); 355 356 if (!recovered_insn || !insn) 357 return 0; 358 359 /* This can access kernel text if given address is not recovered */ 360 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) 361 return 0; 362 363 kernel_insn_init(insn, dest, MAX_INSN_SIZE); 364 insn_get_length(insn); 365 366 /* Another subsystem puts a breakpoint, failed to recover */ 367 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) 368 return 0; 369 370 #ifdef CONFIG_X86_64 371 /* Only x86_64 has RIP relative instructions */ 372 if (insn_rip_relative(insn)) { 373 s64 newdisp; 374 u8 *disp; 375 /* 376 * The copied instruction uses the %rip-relative addressing 377 * mode. Adjust the displacement for the difference between 378 * the original location of this instruction and the location 379 * of the copy that will actually be run. The tricky bit here 380 * is making sure that the sign extension happens correctly in 381 * this calculation, since we need a signed 32-bit result to 382 * be sign-extended to 64 bits when it's added to the %rip 383 * value and yield the same 64-bit result that the sign- 384 * extension of the original signed 32-bit displacement would 385 * have given. 386 */ 387 newdisp = (u8 *) src + (s64) insn->displacement.value 388 - (u8 *) dest; 389 if ((s64) (s32) newdisp != newdisp) { 390 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); 391 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", 392 src, dest, insn->displacement.value); 393 return 0; 394 } 395 disp = (u8 *) dest + insn_offset_displacement(insn); 396 *(s32 *) disp = (s32) newdisp; 397 } 398 #endif 399 return insn->length; 400 } 401 402 /* Prepare reljump right after instruction to boost */ 403 static void prepare_boost(struct kprobe *p, struct insn *insn) 404 { 405 if (can_boost(insn, p->addr) && 406 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) { 407 /* 408 * These instructions can be executed directly if it 409 * jumps back to correct address. 410 */ 411 synthesize_reljump(p->ainsn.insn + insn->length, 412 p->addr + insn->length); 413 p->ainsn.boostable = true; 414 } else { 415 p->ainsn.boostable = false; 416 } 417 } 418 419 static int arch_copy_kprobe(struct kprobe *p) 420 { 421 struct insn insn; 422 int len; 423 424 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 425 426 /* Copy an instruction with recovering if other optprobe modifies it.*/ 427 len = __copy_instruction(p->ainsn.insn, p->addr, &insn); 428 if (!len) 429 return -EINVAL; 430 431 /* 432 * __copy_instruction can modify the displacement of the instruction, 433 * but it doesn't affect boostable check. 434 */ 435 prepare_boost(p, &insn); 436 437 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1); 438 439 /* Check whether the instruction modifies Interrupt Flag or not */ 440 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn); 441 442 /* Also, displacement change doesn't affect the first byte */ 443 p->opcode = p->ainsn.insn[0]; 444 445 return 0; 446 } 447 448 int arch_prepare_kprobe(struct kprobe *p) 449 { 450 if (alternatives_text_reserved(p->addr, p->addr)) 451 return -EINVAL; 452 453 if (!can_probe((unsigned long)p->addr)) 454 return -EILSEQ; 455 /* insn: must be on special executable page on x86. */ 456 p->ainsn.insn = get_insn_slot(); 457 if (!p->ainsn.insn) 458 return -ENOMEM; 459 460 return arch_copy_kprobe(p); 461 } 462 463 void arch_arm_kprobe(struct kprobe *p) 464 { 465 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); 466 } 467 468 void arch_disarm_kprobe(struct kprobe *p) 469 { 470 text_poke(p->addr, &p->opcode, 1); 471 } 472 473 void arch_remove_kprobe(struct kprobe *p) 474 { 475 if (p->ainsn.insn) { 476 free_insn_slot(p->ainsn.insn, p->ainsn.boostable); 477 p->ainsn.insn = NULL; 478 } 479 } 480 481 static nokprobe_inline void 482 save_previous_kprobe(struct kprobe_ctlblk *kcb) 483 { 484 kcb->prev_kprobe.kp = kprobe_running(); 485 kcb->prev_kprobe.status = kcb->kprobe_status; 486 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; 487 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; 488 } 489 490 static nokprobe_inline void 491 restore_previous_kprobe(struct kprobe_ctlblk *kcb) 492 { 493 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 494 kcb->kprobe_status = kcb->prev_kprobe.status; 495 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; 496 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; 497 } 498 499 static nokprobe_inline void 500 set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 501 struct kprobe_ctlblk *kcb) 502 { 503 __this_cpu_write(current_kprobe, p); 504 kcb->kprobe_saved_flags = kcb->kprobe_old_flags 505 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); 506 if (p->ainsn.if_modifier) 507 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; 508 } 509 510 static nokprobe_inline void clear_btf(void) 511 { 512 if (test_thread_flag(TIF_BLOCKSTEP)) { 513 unsigned long debugctl = get_debugctlmsr(); 514 515 debugctl &= ~DEBUGCTLMSR_BTF; 516 update_debugctlmsr(debugctl); 517 } 518 } 519 520 static nokprobe_inline void restore_btf(void) 521 { 522 if (test_thread_flag(TIF_BLOCKSTEP)) { 523 unsigned long debugctl = get_debugctlmsr(); 524 525 debugctl |= DEBUGCTLMSR_BTF; 526 update_debugctlmsr(debugctl); 527 } 528 } 529 530 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 531 { 532 unsigned long *sara = stack_addr(regs); 533 534 ri->ret_addr = (kprobe_opcode_t *) *sara; 535 536 /* Replace the return addr with trampoline addr */ 537 *sara = (unsigned long) &kretprobe_trampoline; 538 } 539 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 540 541 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, 542 struct kprobe_ctlblk *kcb, int reenter) 543 { 544 if (setup_detour_execution(p, regs, reenter)) 545 return; 546 547 #if !defined(CONFIG_PREEMPT) 548 if (p->ainsn.boostable && !p->post_handler) { 549 /* Boost up -- we can execute copied instructions directly */ 550 if (!reenter) 551 reset_current_kprobe(); 552 /* 553 * Reentering boosted probe doesn't reset current_kprobe, 554 * nor set current_kprobe, because it doesn't use single 555 * stepping. 556 */ 557 regs->ip = (unsigned long)p->ainsn.insn; 558 preempt_enable_no_resched(); 559 return; 560 } 561 #endif 562 if (reenter) { 563 save_previous_kprobe(kcb); 564 set_current_kprobe(p, regs, kcb); 565 kcb->kprobe_status = KPROBE_REENTER; 566 } else 567 kcb->kprobe_status = KPROBE_HIT_SS; 568 /* Prepare real single stepping */ 569 clear_btf(); 570 regs->flags |= X86_EFLAGS_TF; 571 regs->flags &= ~X86_EFLAGS_IF; 572 /* single step inline if the instruction is an int3 */ 573 if (p->opcode == BREAKPOINT_INSTRUCTION) 574 regs->ip = (unsigned long)p->addr; 575 else 576 regs->ip = (unsigned long)p->ainsn.insn; 577 } 578 NOKPROBE_SYMBOL(setup_singlestep); 579 580 /* 581 * We have reentered the kprobe_handler(), since another probe was hit while 582 * within the handler. We save the original kprobes variables and just single 583 * step on the instruction of the new probe without calling any user handlers. 584 */ 585 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, 586 struct kprobe_ctlblk *kcb) 587 { 588 switch (kcb->kprobe_status) { 589 case KPROBE_HIT_SSDONE: 590 case KPROBE_HIT_ACTIVE: 591 case KPROBE_HIT_SS: 592 kprobes_inc_nmissed_count(p); 593 setup_singlestep(p, regs, kcb, 1); 594 break; 595 case KPROBE_REENTER: 596 /* A probe has been hit in the codepath leading up to, or just 597 * after, single-stepping of a probed instruction. This entire 598 * codepath should strictly reside in .kprobes.text section. 599 * Raise a BUG or we'll continue in an endless reentering loop 600 * and eventually a stack overflow. 601 */ 602 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", 603 p->addr); 604 dump_kprobe(p); 605 BUG(); 606 default: 607 /* impossible cases */ 608 WARN_ON(1); 609 return 0; 610 } 611 612 return 1; 613 } 614 NOKPROBE_SYMBOL(reenter_kprobe); 615 616 /* 617 * Interrupts are disabled on entry as trap3 is an interrupt gate and they 618 * remain disabled throughout this function. 619 */ 620 int kprobe_int3_handler(struct pt_regs *regs) 621 { 622 kprobe_opcode_t *addr; 623 struct kprobe *p; 624 struct kprobe_ctlblk *kcb; 625 626 if (user_mode(regs)) 627 return 0; 628 629 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); 630 /* 631 * We don't want to be preempted for the entire 632 * duration of kprobe processing. We conditionally 633 * re-enable preemption at the end of this function, 634 * and also in reenter_kprobe() and setup_singlestep(). 635 */ 636 preempt_disable(); 637 638 kcb = get_kprobe_ctlblk(); 639 p = get_kprobe(addr); 640 641 if (p) { 642 if (kprobe_running()) { 643 if (reenter_kprobe(p, regs, kcb)) 644 return 1; 645 } else { 646 set_current_kprobe(p, regs, kcb); 647 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 648 649 /* 650 * If we have no pre-handler or it returned 0, we 651 * continue with normal processing. If we have a 652 * pre-handler and it returned non-zero, it prepped 653 * for calling the break_handler below on re-entry 654 * for jprobe processing, so get out doing nothing 655 * more here. 656 */ 657 if (!p->pre_handler || !p->pre_handler(p, regs)) 658 setup_singlestep(p, regs, kcb, 0); 659 return 1; 660 } 661 } else if (*addr != BREAKPOINT_INSTRUCTION) { 662 /* 663 * The breakpoint instruction was removed right 664 * after we hit it. Another cpu has removed 665 * either a probepoint or a debugger breakpoint 666 * at this address. In either case, no further 667 * handling of this interrupt is appropriate. 668 * Back up over the (now missing) int3 and run 669 * the original instruction. 670 */ 671 regs->ip = (unsigned long)addr; 672 preempt_enable_no_resched(); 673 return 1; 674 } else if (kprobe_running()) { 675 p = __this_cpu_read(current_kprobe); 676 if (p->break_handler && p->break_handler(p, regs)) { 677 if (!skip_singlestep(p, regs, kcb)) 678 setup_singlestep(p, regs, kcb, 0); 679 return 1; 680 } 681 } /* else: not a kprobe fault; let the kernel handle it */ 682 683 preempt_enable_no_resched(); 684 return 0; 685 } 686 NOKPROBE_SYMBOL(kprobe_int3_handler); 687 688 /* 689 * When a retprobed function returns, this code saves registers and 690 * calls trampoline_handler() runs, which calls the kretprobe's handler. 691 */ 692 asm( 693 ".global kretprobe_trampoline\n" 694 ".type kretprobe_trampoline, @function\n" 695 "kretprobe_trampoline:\n" 696 #ifdef CONFIG_X86_64 697 /* We don't bother saving the ss register */ 698 " pushq %rsp\n" 699 " pushfq\n" 700 SAVE_REGS_STRING 701 " movq %rsp, %rdi\n" 702 " call trampoline_handler\n" 703 /* Replace saved sp with true return address. */ 704 " movq %rax, 152(%rsp)\n" 705 RESTORE_REGS_STRING 706 " popfq\n" 707 #else 708 " pushf\n" 709 SAVE_REGS_STRING 710 " movl %esp, %eax\n" 711 " call trampoline_handler\n" 712 /* Move flags to cs */ 713 " movl 56(%esp), %edx\n" 714 " movl %edx, 52(%esp)\n" 715 /* Replace saved flags with true return address. */ 716 " movl %eax, 56(%esp)\n" 717 RESTORE_REGS_STRING 718 " popf\n" 719 #endif 720 " ret\n" 721 ".size kretprobe_trampoline, .-kretprobe_trampoline\n" 722 ); 723 NOKPROBE_SYMBOL(kretprobe_trampoline); 724 STACK_FRAME_NON_STANDARD(kretprobe_trampoline); 725 726 /* 727 * Called from kretprobe_trampoline 728 */ 729 __visible __used void *trampoline_handler(struct pt_regs *regs) 730 { 731 struct kretprobe_instance *ri = NULL; 732 struct hlist_head *head, empty_rp; 733 struct hlist_node *tmp; 734 unsigned long flags, orig_ret_address = 0; 735 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 736 kprobe_opcode_t *correct_ret_addr = NULL; 737 738 INIT_HLIST_HEAD(&empty_rp); 739 kretprobe_hash_lock(current, &head, &flags); 740 /* fixup registers */ 741 #ifdef CONFIG_X86_64 742 regs->cs = __KERNEL_CS; 743 #else 744 regs->cs = __KERNEL_CS | get_kernel_rpl(); 745 regs->gs = 0; 746 #endif 747 regs->ip = trampoline_address; 748 regs->orig_ax = ~0UL; 749 750 /* 751 * It is possible to have multiple instances associated with a given 752 * task either because multiple functions in the call path have 753 * return probes installed on them, and/or more than one 754 * return probe was registered for a target function. 755 * 756 * We can handle this because: 757 * - instances are always pushed into the head of the list 758 * - when multiple return probes are registered for the same 759 * function, the (chronologically) first instance's ret_addr 760 * will be the real return address, and all the rest will 761 * point to kretprobe_trampoline. 762 */ 763 hlist_for_each_entry(ri, head, hlist) { 764 if (ri->task != current) 765 /* another task is sharing our hash bucket */ 766 continue; 767 768 orig_ret_address = (unsigned long)ri->ret_addr; 769 770 if (orig_ret_address != trampoline_address) 771 /* 772 * This is the real return address. Any other 773 * instances associated with this task are for 774 * other calls deeper on the call stack 775 */ 776 break; 777 } 778 779 kretprobe_assert(ri, orig_ret_address, trampoline_address); 780 781 correct_ret_addr = ri->ret_addr; 782 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 783 if (ri->task != current) 784 /* another task is sharing our hash bucket */ 785 continue; 786 787 orig_ret_address = (unsigned long)ri->ret_addr; 788 if (ri->rp && ri->rp->handler) { 789 __this_cpu_write(current_kprobe, &ri->rp->kp); 790 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 791 ri->ret_addr = correct_ret_addr; 792 ri->rp->handler(ri, regs); 793 __this_cpu_write(current_kprobe, NULL); 794 } 795 796 recycle_rp_inst(ri, &empty_rp); 797 798 if (orig_ret_address != trampoline_address) 799 /* 800 * This is the real return address. Any other 801 * instances associated with this task are for 802 * other calls deeper on the call stack 803 */ 804 break; 805 } 806 807 kretprobe_hash_unlock(current, &flags); 808 809 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 810 hlist_del(&ri->hlist); 811 kfree(ri); 812 } 813 return (void *)orig_ret_address; 814 } 815 NOKPROBE_SYMBOL(trampoline_handler); 816 817 /* 818 * Called after single-stepping. p->addr is the address of the 819 * instruction whose first byte has been replaced by the "int 3" 820 * instruction. To avoid the SMP problems that can occur when we 821 * temporarily put back the original opcode to single-step, we 822 * single-stepped a copy of the instruction. The address of this 823 * copy is p->ainsn.insn. 824 * 825 * This function prepares to return from the post-single-step 826 * interrupt. We have to fix up the stack as follows: 827 * 828 * 0) Except in the case of absolute or indirect jump or call instructions, 829 * the new ip is relative to the copied instruction. We need to make 830 * it relative to the original instruction. 831 * 832 * 1) If the single-stepped instruction was pushfl, then the TF and IF 833 * flags are set in the just-pushed flags, and may need to be cleared. 834 * 835 * 2) If the single-stepped instruction was a call, the return address 836 * that is atop the stack is the address following the copied instruction. 837 * We need to make it the address following the original instruction. 838 * 839 * If this is the first time we've single-stepped the instruction at 840 * this probepoint, and the instruction is boostable, boost it: add a 841 * jump instruction after the copied instruction, that jumps to the next 842 * instruction after the probepoint. 843 */ 844 static void resume_execution(struct kprobe *p, struct pt_regs *regs, 845 struct kprobe_ctlblk *kcb) 846 { 847 unsigned long *tos = stack_addr(regs); 848 unsigned long copy_ip = (unsigned long)p->ainsn.insn; 849 unsigned long orig_ip = (unsigned long)p->addr; 850 kprobe_opcode_t *insn = p->ainsn.insn; 851 852 /* Skip prefixes */ 853 insn = skip_prefixes(insn); 854 855 regs->flags &= ~X86_EFLAGS_TF; 856 switch (*insn) { 857 case 0x9c: /* pushfl */ 858 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); 859 *tos |= kcb->kprobe_old_flags; 860 break; 861 case 0xc2: /* iret/ret/lret */ 862 case 0xc3: 863 case 0xca: 864 case 0xcb: 865 case 0xcf: 866 case 0xea: /* jmp absolute -- ip is correct */ 867 /* ip is already adjusted, no more changes required */ 868 p->ainsn.boostable = true; 869 goto no_change; 870 case 0xe8: /* call relative - Fix return addr */ 871 *tos = orig_ip + (*tos - copy_ip); 872 break; 873 #ifdef CONFIG_X86_32 874 case 0x9a: /* call absolute -- same as call absolute, indirect */ 875 *tos = orig_ip + (*tos - copy_ip); 876 goto no_change; 877 #endif 878 case 0xff: 879 if ((insn[1] & 0x30) == 0x10) { 880 /* 881 * call absolute, indirect 882 * Fix return addr; ip is correct. 883 * But this is not boostable 884 */ 885 *tos = orig_ip + (*tos - copy_ip); 886 goto no_change; 887 } else if (((insn[1] & 0x31) == 0x20) || 888 ((insn[1] & 0x31) == 0x21)) { 889 /* 890 * jmp near and far, absolute indirect 891 * ip is correct. And this is boostable 892 */ 893 p->ainsn.boostable = true; 894 goto no_change; 895 } 896 default: 897 break; 898 } 899 900 regs->ip += orig_ip - copy_ip; 901 902 no_change: 903 restore_btf(); 904 } 905 NOKPROBE_SYMBOL(resume_execution); 906 907 /* 908 * Interrupts are disabled on entry as trap1 is an interrupt gate and they 909 * remain disabled throughout this function. 910 */ 911 int kprobe_debug_handler(struct pt_regs *regs) 912 { 913 struct kprobe *cur = kprobe_running(); 914 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 915 916 if (!cur) 917 return 0; 918 919 resume_execution(cur, regs, kcb); 920 regs->flags |= kcb->kprobe_saved_flags; 921 922 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 923 kcb->kprobe_status = KPROBE_HIT_SSDONE; 924 cur->post_handler(cur, regs, 0); 925 } 926 927 /* Restore back the original saved kprobes variables and continue. */ 928 if (kcb->kprobe_status == KPROBE_REENTER) { 929 restore_previous_kprobe(kcb); 930 goto out; 931 } 932 reset_current_kprobe(); 933 out: 934 preempt_enable_no_resched(); 935 936 /* 937 * if somebody else is singlestepping across a probe point, flags 938 * will have TF set, in which case, continue the remaining processing 939 * of do_debug, as if this is not a probe hit. 940 */ 941 if (regs->flags & X86_EFLAGS_TF) 942 return 0; 943 944 return 1; 945 } 946 NOKPROBE_SYMBOL(kprobe_debug_handler); 947 948 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 949 { 950 struct kprobe *cur = kprobe_running(); 951 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 952 953 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { 954 /* This must happen on single-stepping */ 955 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && 956 kcb->kprobe_status != KPROBE_REENTER); 957 /* 958 * We are here because the instruction being single 959 * stepped caused a page fault. We reset the current 960 * kprobe and the ip points back to the probe address 961 * and allow the page fault handler to continue as a 962 * normal page fault. 963 */ 964 regs->ip = (unsigned long)cur->addr; 965 /* 966 * Trap flag (TF) has been set here because this fault 967 * happened where the single stepping will be done. 968 * So clear it by resetting the current kprobe: 969 */ 970 regs->flags &= ~X86_EFLAGS_TF; 971 972 /* 973 * If the TF flag was set before the kprobe hit, 974 * don't touch it: 975 */ 976 regs->flags |= kcb->kprobe_old_flags; 977 978 if (kcb->kprobe_status == KPROBE_REENTER) 979 restore_previous_kprobe(kcb); 980 else 981 reset_current_kprobe(); 982 preempt_enable_no_resched(); 983 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || 984 kcb->kprobe_status == KPROBE_HIT_SSDONE) { 985 /* 986 * We increment the nmissed count for accounting, 987 * we can also use npre/npostfault count for accounting 988 * these specific fault cases. 989 */ 990 kprobes_inc_nmissed_count(cur); 991 992 /* 993 * We come here because instructions in the pre/post 994 * handler caused the page_fault, this could happen 995 * if handler tries to access user space by 996 * copy_from_user(), get_user() etc. Let the 997 * user-specified handler try to fix it first. 998 */ 999 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 1000 return 1; 1001 1002 /* 1003 * In case the user-specified fault handler returned 1004 * zero, try to fix up. 1005 */ 1006 if (fixup_exception(regs, trapnr)) 1007 return 1; 1008 1009 /* 1010 * fixup routine could not handle it, 1011 * Let do_page_fault() fix it. 1012 */ 1013 } 1014 1015 return 0; 1016 } 1017 NOKPROBE_SYMBOL(kprobe_fault_handler); 1018 1019 /* 1020 * Wrapper routine for handling exceptions. 1021 */ 1022 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, 1023 void *data) 1024 { 1025 struct die_args *args = data; 1026 int ret = NOTIFY_DONE; 1027 1028 if (args->regs && user_mode(args->regs)) 1029 return ret; 1030 1031 if (val == DIE_GPF) { 1032 /* 1033 * To be potentially processing a kprobe fault and to 1034 * trust the result from kprobe_running(), we have 1035 * be non-preemptible. 1036 */ 1037 if (!preemptible() && kprobe_running() && 1038 kprobe_fault_handler(args->regs, args->trapnr)) 1039 ret = NOTIFY_STOP; 1040 } 1041 return ret; 1042 } 1043 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1044 1045 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 1046 { 1047 struct jprobe *jp = container_of(p, struct jprobe, kp); 1048 unsigned long addr; 1049 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1050 1051 kcb->jprobe_saved_regs = *regs; 1052 kcb->jprobe_saved_sp = stack_addr(regs); 1053 addr = (unsigned long)(kcb->jprobe_saved_sp); 1054 1055 /* 1056 * As Linus pointed out, gcc assumes that the callee 1057 * owns the argument space and could overwrite it, e.g. 1058 * tailcall optimization. So, to be absolutely safe 1059 * we also save and restore enough stack bytes to cover 1060 * the argument area. 1061 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy 1062 * raw stack chunk with redzones: 1063 */ 1064 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); 1065 regs->flags &= ~X86_EFLAGS_IF; 1066 trace_hardirqs_off(); 1067 regs->ip = (unsigned long)(jp->entry); 1068 1069 /* 1070 * jprobes use jprobe_return() which skips the normal return 1071 * path of the function, and this messes up the accounting of the 1072 * function graph tracer to get messed up. 1073 * 1074 * Pause function graph tracing while performing the jprobe function. 1075 */ 1076 pause_graph_tracing(); 1077 return 1; 1078 } 1079 NOKPROBE_SYMBOL(setjmp_pre_handler); 1080 1081 void jprobe_return(void) 1082 { 1083 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1084 1085 /* Unpoison stack redzones in the frames we are going to jump over. */ 1086 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); 1087 1088 asm volatile ( 1089 #ifdef CONFIG_X86_64 1090 " xchg %%rbx,%%rsp \n" 1091 #else 1092 " xchgl %%ebx,%%esp \n" 1093 #endif 1094 " int3 \n" 1095 " .globl jprobe_return_end\n" 1096 " jprobe_return_end: \n" 1097 " nop \n"::"b" 1098 (kcb->jprobe_saved_sp):"memory"); 1099 } 1100 NOKPROBE_SYMBOL(jprobe_return); 1101 NOKPROBE_SYMBOL(jprobe_return_end); 1102 1103 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 1104 { 1105 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 1106 u8 *addr = (u8 *) (regs->ip - 1); 1107 struct jprobe *jp = container_of(p, struct jprobe, kp); 1108 void *saved_sp = kcb->jprobe_saved_sp; 1109 1110 if ((addr > (u8 *) jprobe_return) && 1111 (addr < (u8 *) jprobe_return_end)) { 1112 if (stack_addr(regs) != saved_sp) { 1113 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; 1114 printk(KERN_ERR 1115 "current sp %p does not match saved sp %p\n", 1116 stack_addr(regs), saved_sp); 1117 printk(KERN_ERR "Saved registers for jprobe %p\n", jp); 1118 show_regs(saved_regs); 1119 printk(KERN_ERR "Current registers\n"); 1120 show_regs(regs); 1121 BUG(); 1122 } 1123 /* It's OK to start function graph tracing again */ 1124 unpause_graph_tracing(); 1125 *regs = kcb->jprobe_saved_regs; 1126 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); 1127 preempt_enable_no_resched(); 1128 return 1; 1129 } 1130 return 0; 1131 } 1132 NOKPROBE_SYMBOL(longjmp_break_handler); 1133 1134 bool arch_within_kprobe_blacklist(unsigned long addr) 1135 { 1136 return (addr >= (unsigned long)__kprobes_text_start && 1137 addr < (unsigned long)__kprobes_text_end) || 1138 (addr >= (unsigned long)__entry_text_start && 1139 addr < (unsigned long)__entry_text_end); 1140 } 1141 1142 int __init arch_init_kprobes(void) 1143 { 1144 return 0; 1145 } 1146 1147 int arch_trampoline_kprobe(struct kprobe *p) 1148 { 1149 return 0; 1150 } 1151