xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 1c0a0af5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/kgdb.h>
41 #include <linux/ftrace.h>
42 #include <linux/kasan.h>
43 #include <linux/moduleloader.h>
44 #include <linux/objtool.h>
45 #include <linux/vmalloc.h>
46 #include <linux/pgtable.h>
47 #include <linux/set_memory.h>
48 
49 #include <asm/text-patching.h>
50 #include <asm/cacheflush.h>
51 #include <asm/desc.h>
52 #include <linux/uaccess.h>
53 #include <asm/alternative.h>
54 #include <asm/insn.h>
55 #include <asm/debugreg.h>
56 #include <asm/ibt.h>
57 
58 #include "common.h"
59 
60 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
61 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
62 
63 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
64 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
65 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
66 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
67 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
68 	 << (row % 32))
69 	/*
70 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
71 	 * Groups, and some special opcodes can not boost.
72 	 * This is non-const and volatile to keep gcc from statically
73 	 * optimizing it out, as variable_test_bit makes gcc think only
74 	 * *(unsigned long*) is used.
75 	 */
76 static volatile u32 twobyte_is_boostable[256 / 32] = {
77 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
78 	/*      ----------------------------------------------          */
79 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
80 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
81 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
82 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
83 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
84 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
85 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
86 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
87 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
88 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
89 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
90 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
91 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
92 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
93 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
94 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
95 	/*      -----------------------------------------------         */
96 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
97 };
98 #undef W
99 
100 struct kretprobe_blackpoint kretprobe_blacklist[] = {
101 	{"__switch_to", }, /* This function switches only current task, but
102 			      doesn't switch kernel stack.*/
103 	{NULL, NULL}	/* Terminator */
104 };
105 
106 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
107 
108 static nokprobe_inline void
109 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
110 {
111 	struct __arch_relative_insn {
112 		u8 op;
113 		s32 raddr;
114 	} __packed *insn;
115 
116 	insn = (struct __arch_relative_insn *)dest;
117 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
118 	insn->op = op;
119 }
120 
121 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
122 void synthesize_reljump(void *dest, void *from, void *to)
123 {
124 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
125 }
126 NOKPROBE_SYMBOL(synthesize_reljump);
127 
128 /* Insert a call instruction at address 'from', which calls address 'to'.*/
129 void synthesize_relcall(void *dest, void *from, void *to)
130 {
131 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_relcall);
134 
135 /*
136  * Returns non-zero if INSN is boostable.
137  * RIP relative instructions are adjusted at copying time in 64 bits mode
138  */
139 int can_boost(struct insn *insn, void *addr)
140 {
141 	kprobe_opcode_t opcode;
142 	insn_byte_t prefix;
143 	int i;
144 
145 	if (search_exception_tables((unsigned long)addr))
146 		return 0;	/* Page fault may occur on this address. */
147 
148 	/* 2nd-byte opcode */
149 	if (insn->opcode.nbytes == 2)
150 		return test_bit(insn->opcode.bytes[1],
151 				(unsigned long *)twobyte_is_boostable);
152 
153 	if (insn->opcode.nbytes != 1)
154 		return 0;
155 
156 	for_each_insn_prefix(insn, i, prefix) {
157 		insn_attr_t attr;
158 
159 		attr = inat_get_opcode_attribute(prefix);
160 		/* Can't boost Address-size override prefix and CS override prefix */
161 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
162 			return 0;
163 	}
164 
165 	opcode = insn->opcode.bytes[0];
166 
167 	switch (opcode) {
168 	case 0x62:		/* bound */
169 	case 0x70 ... 0x7f:	/* Conditional jumps */
170 	case 0x9a:		/* Call far */
171 	case 0xc0 ... 0xc1:	/* Grp2 */
172 	case 0xcc ... 0xce:	/* software exceptions */
173 	case 0xd0 ... 0xd3:	/* Grp2 */
174 	case 0xd6:		/* (UD) */
175 	case 0xd8 ... 0xdf:	/* ESC */
176 	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
177 	case 0xe8 ... 0xe9:	/* near Call, JMP */
178 	case 0xeb:		/* Short JMP */
179 	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
180 	case 0xf6 ... 0xf7:	/* Grp3 */
181 	case 0xfe:		/* Grp4 */
182 		/* ... are not boostable */
183 		return 0;
184 	case 0xff:		/* Grp5 */
185 		/* Only indirect jmp is boostable */
186 		return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
187 	default:
188 		return 1;
189 	}
190 }
191 
192 static unsigned long
193 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
194 {
195 	struct kprobe *kp;
196 	bool faddr;
197 
198 	kp = get_kprobe((void *)addr);
199 	faddr = ftrace_location(addr) == addr;
200 	/*
201 	 * Use the current code if it is not modified by Kprobe
202 	 * and it cannot be modified by ftrace.
203 	 */
204 	if (!kp && !faddr)
205 		return addr;
206 
207 	/*
208 	 * Basically, kp->ainsn.insn has an original instruction.
209 	 * However, RIP-relative instruction can not do single-stepping
210 	 * at different place, __copy_instruction() tweaks the displacement of
211 	 * that instruction. In that case, we can't recover the instruction
212 	 * from the kp->ainsn.insn.
213 	 *
214 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
215 	 * of the first byte of the probed instruction, which is overwritten
216 	 * by int3. And the instruction at kp->addr is not modified by kprobes
217 	 * except for the first byte, we can recover the original instruction
218 	 * from it and kp->opcode.
219 	 *
220 	 * In case of Kprobes using ftrace, we do not have a copy of
221 	 * the original instruction. In fact, the ftrace location might
222 	 * be modified at anytime and even could be in an inconsistent state.
223 	 * Fortunately, we know that the original code is the ideal 5-byte
224 	 * long NOP.
225 	 */
226 	if (copy_from_kernel_nofault(buf, (void *)addr,
227 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
228 		return 0UL;
229 
230 	if (faddr)
231 		memcpy(buf, x86_nops[5], 5);
232 	else
233 		buf[0] = kp->opcode;
234 	return (unsigned long)buf;
235 }
236 
237 /*
238  * Recover the probed instruction at addr for further analysis.
239  * Caller must lock kprobes by kprobe_mutex, or disable preemption
240  * for preventing to release referencing kprobes.
241  * Returns zero if the instruction can not get recovered (or access failed).
242  */
243 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
244 {
245 	unsigned long __addr;
246 
247 	__addr = __recover_optprobed_insn(buf, addr);
248 	if (__addr != addr)
249 		return __addr;
250 
251 	return __recover_probed_insn(buf, addr);
252 }
253 
254 /* Check if paddr is at an instruction boundary */
255 static int can_probe(unsigned long paddr)
256 {
257 	unsigned long addr, __addr, offset = 0;
258 	struct insn insn;
259 	kprobe_opcode_t buf[MAX_INSN_SIZE];
260 
261 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
262 		return 0;
263 
264 	/* Decode instructions */
265 	addr = paddr - offset;
266 	while (addr < paddr) {
267 		int ret;
268 
269 		/*
270 		 * Check if the instruction has been modified by another
271 		 * kprobe, in which case we replace the breakpoint by the
272 		 * original instruction in our buffer.
273 		 * Also, jump optimization will change the breakpoint to
274 		 * relative-jump. Since the relative-jump itself is
275 		 * normally used, we just go through if there is no kprobe.
276 		 */
277 		__addr = recover_probed_instruction(buf, addr);
278 		if (!__addr)
279 			return 0;
280 
281 		ret = insn_decode_kernel(&insn, (void *)__addr);
282 		if (ret < 0)
283 			return 0;
284 
285 #ifdef CONFIG_KGDB
286 		/*
287 		 * If there is a dynamically installed kgdb sw breakpoint,
288 		 * this function should not be probed.
289 		 */
290 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
291 		    kgdb_has_hit_break(addr))
292 			return 0;
293 #endif
294 		addr += insn.length;
295 	}
296 
297 	return (addr == paddr);
298 }
299 
300 /* If x86 supports IBT (ENDBR) it must be skipped. */
301 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
302 					 bool *on_func_entry)
303 {
304 	if (is_endbr(*(u32 *)addr)) {
305 		*on_func_entry = !offset || offset == 4;
306 		if (*on_func_entry)
307 			offset = 4;
308 
309 	} else {
310 		*on_func_entry = !offset;
311 	}
312 
313 	return (kprobe_opcode_t *)(addr + offset);
314 }
315 
316 /*
317  * Copy an instruction with recovering modified instruction by kprobes
318  * and adjust the displacement if the instruction uses the %rip-relative
319  * addressing mode. Note that since @real will be the final place of copied
320  * instruction, displacement must be adjust by @real, not @dest.
321  * This returns the length of copied instruction, or 0 if it has an error.
322  */
323 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
324 {
325 	kprobe_opcode_t buf[MAX_INSN_SIZE];
326 	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
327 	int ret;
328 
329 	if (!recovered_insn || !insn)
330 		return 0;
331 
332 	/* This can access kernel text if given address is not recovered */
333 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
334 			MAX_INSN_SIZE))
335 		return 0;
336 
337 	ret = insn_decode_kernel(insn, dest);
338 	if (ret < 0)
339 		return 0;
340 
341 	/* We can not probe force emulate prefixed instruction */
342 	if (insn_has_emulate_prefix(insn))
343 		return 0;
344 
345 	/* Another subsystem puts a breakpoint, failed to recover */
346 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
347 		return 0;
348 
349 	/* We should not singlestep on the exception masking instructions */
350 	if (insn_masking_exception(insn))
351 		return 0;
352 
353 #ifdef CONFIG_X86_64
354 	/* Only x86_64 has RIP relative instructions */
355 	if (insn_rip_relative(insn)) {
356 		s64 newdisp;
357 		u8 *disp;
358 		/*
359 		 * The copied instruction uses the %rip-relative addressing
360 		 * mode.  Adjust the displacement for the difference between
361 		 * the original location of this instruction and the location
362 		 * of the copy that will actually be run.  The tricky bit here
363 		 * is making sure that the sign extension happens correctly in
364 		 * this calculation, since we need a signed 32-bit result to
365 		 * be sign-extended to 64 bits when it's added to the %rip
366 		 * value and yield the same 64-bit result that the sign-
367 		 * extension of the original signed 32-bit displacement would
368 		 * have given.
369 		 */
370 		newdisp = (u8 *) src + (s64) insn->displacement.value
371 			  - (u8 *) real;
372 		if ((s64) (s32) newdisp != newdisp) {
373 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
374 			return 0;
375 		}
376 		disp = (u8 *) dest + insn_offset_displacement(insn);
377 		*(s32 *) disp = (s32) newdisp;
378 	}
379 #endif
380 	return insn->length;
381 }
382 
383 /* Prepare reljump or int3 right after instruction */
384 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
385 			      struct insn *insn)
386 {
387 	int len = insn->length;
388 
389 	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
390 	    !p->post_handler && can_boost(insn, p->addr) &&
391 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
392 		/*
393 		 * These instructions can be executed directly if it
394 		 * jumps back to correct address.
395 		 */
396 		synthesize_reljump(buf + len, p->ainsn.insn + len,
397 				   p->addr + insn->length);
398 		len += JMP32_INSN_SIZE;
399 		p->ainsn.boostable = 1;
400 	} else {
401 		/* Otherwise, put an int3 for trapping singlestep */
402 		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
403 			return -ENOSPC;
404 
405 		buf[len] = INT3_INSN_OPCODE;
406 		len += INT3_INSN_SIZE;
407 	}
408 
409 	return len;
410 }
411 
412 /* Make page to RO mode when allocate it */
413 void *alloc_insn_page(void)
414 {
415 	void *page;
416 
417 	page = module_alloc(PAGE_SIZE);
418 	if (!page)
419 		return NULL;
420 
421 	/*
422 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
423 	 * that the page was not maliciously altered and it is still zeroed.
424 	 */
425 	set_memory_rox((unsigned long)page, 1);
426 
427 	return page;
428 }
429 
430 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
431 
432 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
433 {
434 	switch (p->ainsn.opcode) {
435 	case 0xfa:	/* cli */
436 		regs->flags &= ~(X86_EFLAGS_IF);
437 		break;
438 	case 0xfb:	/* sti */
439 		regs->flags |= X86_EFLAGS_IF;
440 		break;
441 	case 0x9c:	/* pushf */
442 		int3_emulate_push(regs, regs->flags);
443 		break;
444 	case 0x9d:	/* popf */
445 		regs->flags = int3_emulate_pop(regs);
446 		break;
447 	}
448 	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
449 }
450 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
451 
452 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
453 {
454 	int3_emulate_ret(regs);
455 }
456 NOKPROBE_SYMBOL(kprobe_emulate_ret);
457 
458 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
459 {
460 	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
461 
462 	func += p->ainsn.rel32;
463 	int3_emulate_call(regs, func);
464 }
465 NOKPROBE_SYMBOL(kprobe_emulate_call);
466 
467 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
468 {
469 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
470 
471 	ip += p->ainsn.rel32;
472 	int3_emulate_jmp(regs, ip);
473 }
474 NOKPROBE_SYMBOL(kprobe_emulate_jmp);
475 
476 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
477 {
478 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
479 
480 	int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
481 }
482 NOKPROBE_SYMBOL(kprobe_emulate_jcc);
483 
484 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
485 {
486 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
487 	bool match;
488 
489 	if (p->ainsn.loop.type != 3) {	/* LOOP* */
490 		if (p->ainsn.loop.asize == 32)
491 			match = ((*(u32 *)&regs->cx)--) != 0;
492 #ifdef CONFIG_X86_64
493 		else if (p->ainsn.loop.asize == 64)
494 			match = ((*(u64 *)&regs->cx)--) != 0;
495 #endif
496 		else
497 			match = ((*(u16 *)&regs->cx)--) != 0;
498 	} else {			/* JCXZ */
499 		if (p->ainsn.loop.asize == 32)
500 			match = *(u32 *)(&regs->cx) == 0;
501 #ifdef CONFIG_X86_64
502 		else if (p->ainsn.loop.asize == 64)
503 			match = *(u64 *)(&regs->cx) == 0;
504 #endif
505 		else
506 			match = *(u16 *)(&regs->cx) == 0;
507 	}
508 
509 	if (p->ainsn.loop.type == 0)	/* LOOPNE */
510 		match = match && !(regs->flags & X86_EFLAGS_ZF);
511 	else if (p->ainsn.loop.type == 1)	/* LOOPE */
512 		match = match && (regs->flags & X86_EFLAGS_ZF);
513 
514 	if (match)
515 		ip += p->ainsn.rel32;
516 	int3_emulate_jmp(regs, ip);
517 }
518 NOKPROBE_SYMBOL(kprobe_emulate_loop);
519 
520 static const int addrmode_regoffs[] = {
521 	offsetof(struct pt_regs, ax),
522 	offsetof(struct pt_regs, cx),
523 	offsetof(struct pt_regs, dx),
524 	offsetof(struct pt_regs, bx),
525 	offsetof(struct pt_regs, sp),
526 	offsetof(struct pt_regs, bp),
527 	offsetof(struct pt_regs, si),
528 	offsetof(struct pt_regs, di),
529 #ifdef CONFIG_X86_64
530 	offsetof(struct pt_regs, r8),
531 	offsetof(struct pt_regs, r9),
532 	offsetof(struct pt_regs, r10),
533 	offsetof(struct pt_regs, r11),
534 	offsetof(struct pt_regs, r12),
535 	offsetof(struct pt_regs, r13),
536 	offsetof(struct pt_regs, r14),
537 	offsetof(struct pt_regs, r15),
538 #endif
539 };
540 
541 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
542 {
543 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
544 
545 	int3_emulate_call(regs, regs_get_register(regs, offs));
546 }
547 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
548 
549 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
550 {
551 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
552 
553 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
554 }
555 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
556 
557 static int prepare_emulation(struct kprobe *p, struct insn *insn)
558 {
559 	insn_byte_t opcode = insn->opcode.bytes[0];
560 
561 	switch (opcode) {
562 	case 0xfa:		/* cli */
563 	case 0xfb:		/* sti */
564 	case 0x9c:		/* pushfl */
565 	case 0x9d:		/* popf/popfd */
566 		/*
567 		 * IF modifiers must be emulated since it will enable interrupt while
568 		 * int3 single stepping.
569 		 */
570 		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
571 		p->ainsn.opcode = opcode;
572 		break;
573 	case 0xc2:	/* ret/lret */
574 	case 0xc3:
575 	case 0xca:
576 	case 0xcb:
577 		p->ainsn.emulate_op = kprobe_emulate_ret;
578 		break;
579 	case 0x9a:	/* far call absolute -- segment is not supported */
580 	case 0xea:	/* far jmp absolute -- segment is not supported */
581 	case 0xcc:	/* int3 */
582 	case 0xcf:	/* iret -- in-kernel IRET is not supported */
583 		return -EOPNOTSUPP;
584 		break;
585 	case 0xe8:	/* near call relative */
586 		p->ainsn.emulate_op = kprobe_emulate_call;
587 		if (insn->immediate.nbytes == 2)
588 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
589 		else
590 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
591 		break;
592 	case 0xeb:	/* short jump relative */
593 	case 0xe9:	/* near jump relative */
594 		p->ainsn.emulate_op = kprobe_emulate_jmp;
595 		if (insn->immediate.nbytes == 1)
596 			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
597 		else if (insn->immediate.nbytes == 2)
598 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
599 		else
600 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
601 		break;
602 	case 0x70 ... 0x7f:
603 		/* 1 byte conditional jump */
604 		p->ainsn.emulate_op = kprobe_emulate_jcc;
605 		p->ainsn.jcc.type = opcode & 0xf;
606 		p->ainsn.rel32 = insn->immediate.value;
607 		break;
608 	case 0x0f:
609 		opcode = insn->opcode.bytes[1];
610 		if ((opcode & 0xf0) == 0x80) {
611 			/* 2 bytes Conditional Jump */
612 			p->ainsn.emulate_op = kprobe_emulate_jcc;
613 			p->ainsn.jcc.type = opcode & 0xf;
614 			if (insn->immediate.nbytes == 2)
615 				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
616 			else
617 				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
618 		} else if (opcode == 0x01 &&
619 			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
620 			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
621 			/* VM extensions - not supported */
622 			return -EOPNOTSUPP;
623 		}
624 		break;
625 	case 0xe0:	/* Loop NZ */
626 	case 0xe1:	/* Loop */
627 	case 0xe2:	/* Loop */
628 	case 0xe3:	/* J*CXZ */
629 		p->ainsn.emulate_op = kprobe_emulate_loop;
630 		p->ainsn.loop.type = opcode & 0x3;
631 		p->ainsn.loop.asize = insn->addr_bytes * 8;
632 		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
633 		break;
634 	case 0xff:
635 		/*
636 		 * Since the 0xff is an extended group opcode, the instruction
637 		 * is determined by the MOD/RM byte.
638 		 */
639 		opcode = insn->modrm.bytes[0];
640 		switch (X86_MODRM_REG(opcode)) {
641 		case 0b010:	/* FF /2, call near, absolute indirect */
642 			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
643 			break;
644 		case 0b100:	/* FF /4, jmp near, absolute indirect */
645 			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
646 			break;
647 		case 0b011:	/* FF /3, call far, absolute indirect */
648 		case 0b101:	/* FF /5, jmp far, absolute indirect */
649 			return -EOPNOTSUPP;
650 		}
651 
652 		if (!p->ainsn.emulate_op)
653 			break;
654 
655 		if (insn->addr_bytes != sizeof(unsigned long))
656 			return -EOPNOTSUPP;	/* Don't support different size */
657 		if (X86_MODRM_MOD(opcode) != 3)
658 			return -EOPNOTSUPP;	/* TODO: support memory addressing */
659 
660 		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
661 #ifdef CONFIG_X86_64
662 		if (X86_REX_B(insn->rex_prefix.value))
663 			p->ainsn.indirect.reg += 8;
664 #endif
665 		break;
666 	default:
667 		break;
668 	}
669 	p->ainsn.size = insn->length;
670 
671 	return 0;
672 }
673 
674 static int arch_copy_kprobe(struct kprobe *p)
675 {
676 	struct insn insn;
677 	kprobe_opcode_t buf[MAX_INSN_SIZE];
678 	int ret, len;
679 
680 	/* Copy an instruction with recovering if other optprobe modifies it.*/
681 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
682 	if (!len)
683 		return -EINVAL;
684 
685 	/* Analyze the opcode and setup emulate functions */
686 	ret = prepare_emulation(p, &insn);
687 	if (ret < 0)
688 		return ret;
689 
690 	/* Add int3 for single-step or booster jmp */
691 	len = prepare_singlestep(buf, p, &insn);
692 	if (len < 0)
693 		return len;
694 
695 	/* Also, displacement change doesn't affect the first byte */
696 	p->opcode = buf[0];
697 
698 	p->ainsn.tp_len = len;
699 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
700 
701 	/* OK, write back the instruction(s) into ROX insn buffer */
702 	text_poke(p->ainsn.insn, buf, len);
703 
704 	return 0;
705 }
706 
707 int arch_prepare_kprobe(struct kprobe *p)
708 {
709 	int ret;
710 
711 	if (alternatives_text_reserved(p->addr, p->addr))
712 		return -EINVAL;
713 
714 	if (!can_probe((unsigned long)p->addr))
715 		return -EILSEQ;
716 
717 	memset(&p->ainsn, 0, sizeof(p->ainsn));
718 
719 	/* insn: must be on special executable page on x86. */
720 	p->ainsn.insn = get_insn_slot();
721 	if (!p->ainsn.insn)
722 		return -ENOMEM;
723 
724 	ret = arch_copy_kprobe(p);
725 	if (ret) {
726 		free_insn_slot(p->ainsn.insn, 0);
727 		p->ainsn.insn = NULL;
728 	}
729 
730 	return ret;
731 }
732 
733 void arch_arm_kprobe(struct kprobe *p)
734 {
735 	u8 int3 = INT3_INSN_OPCODE;
736 
737 	text_poke(p->addr, &int3, 1);
738 	text_poke_sync();
739 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
740 }
741 
742 void arch_disarm_kprobe(struct kprobe *p)
743 {
744 	u8 int3 = INT3_INSN_OPCODE;
745 
746 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
747 	text_poke(p->addr, &p->opcode, 1);
748 	text_poke_sync();
749 }
750 
751 void arch_remove_kprobe(struct kprobe *p)
752 {
753 	if (p->ainsn.insn) {
754 		/* Record the perf event before freeing the slot */
755 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
756 				     p->ainsn.tp_len, NULL, 0);
757 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
758 		p->ainsn.insn = NULL;
759 	}
760 }
761 
762 static nokprobe_inline void
763 save_previous_kprobe(struct kprobe_ctlblk *kcb)
764 {
765 	kcb->prev_kprobe.kp = kprobe_running();
766 	kcb->prev_kprobe.status = kcb->kprobe_status;
767 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
768 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
769 }
770 
771 static nokprobe_inline void
772 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
773 {
774 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
775 	kcb->kprobe_status = kcb->prev_kprobe.status;
776 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
777 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
778 }
779 
780 static nokprobe_inline void
781 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
782 		   struct kprobe_ctlblk *kcb)
783 {
784 	__this_cpu_write(current_kprobe, p);
785 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
786 		= (regs->flags & X86_EFLAGS_IF);
787 }
788 
789 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
790 			       struct kprobe_ctlblk *kcb)
791 {
792 	/* Restore back the original saved kprobes variables and continue. */
793 	if (kcb->kprobe_status == KPROBE_REENTER) {
794 		/* This will restore both kcb and current_kprobe */
795 		restore_previous_kprobe(kcb);
796 	} else {
797 		/*
798 		 * Always update the kcb status because
799 		 * reset_curent_kprobe() doesn't update kcb.
800 		 */
801 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
802 		if (cur->post_handler)
803 			cur->post_handler(cur, regs, 0);
804 		reset_current_kprobe();
805 	}
806 }
807 NOKPROBE_SYMBOL(kprobe_post_process);
808 
809 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
810 			     struct kprobe_ctlblk *kcb, int reenter)
811 {
812 	if (setup_detour_execution(p, regs, reenter))
813 		return;
814 
815 #if !defined(CONFIG_PREEMPTION)
816 	if (p->ainsn.boostable) {
817 		/* Boost up -- we can execute copied instructions directly */
818 		if (!reenter)
819 			reset_current_kprobe();
820 		/*
821 		 * Reentering boosted probe doesn't reset current_kprobe,
822 		 * nor set current_kprobe, because it doesn't use single
823 		 * stepping.
824 		 */
825 		regs->ip = (unsigned long)p->ainsn.insn;
826 		return;
827 	}
828 #endif
829 	if (reenter) {
830 		save_previous_kprobe(kcb);
831 		set_current_kprobe(p, regs, kcb);
832 		kcb->kprobe_status = KPROBE_REENTER;
833 	} else
834 		kcb->kprobe_status = KPROBE_HIT_SS;
835 
836 	if (p->ainsn.emulate_op) {
837 		p->ainsn.emulate_op(p, regs);
838 		kprobe_post_process(p, regs, kcb);
839 		return;
840 	}
841 
842 	/* Disable interrupt, and set ip register on trampoline */
843 	regs->flags &= ~X86_EFLAGS_IF;
844 	regs->ip = (unsigned long)p->ainsn.insn;
845 }
846 NOKPROBE_SYMBOL(setup_singlestep);
847 
848 /*
849  * Called after single-stepping.  p->addr is the address of the
850  * instruction whose first byte has been replaced by the "int3"
851  * instruction.  To avoid the SMP problems that can occur when we
852  * temporarily put back the original opcode to single-step, we
853  * single-stepped a copy of the instruction.  The address of this
854  * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
855  * right after the copied instruction.
856  * Different from the trap single-step, "int3" single-step can not
857  * handle the instruction which changes the ip register, e.g. jmp,
858  * call, conditional jmp, and the instructions which changes the IF
859  * flags because interrupt must be disabled around the single-stepping.
860  * Such instructions are software emulated, but others are single-stepped
861  * using "int3".
862  *
863  * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
864  * be adjusted, so that we can resume execution on correct code.
865  */
866 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
867 			      struct kprobe_ctlblk *kcb)
868 {
869 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
870 	unsigned long orig_ip = (unsigned long)p->addr;
871 
872 	/* Restore saved interrupt flag and ip register */
873 	regs->flags |= kcb->kprobe_saved_flags;
874 	/* Note that regs->ip is executed int3 so must be a step back */
875 	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
876 }
877 NOKPROBE_SYMBOL(resume_singlestep);
878 
879 /*
880  * We have reentered the kprobe_handler(), since another probe was hit while
881  * within the handler. We save the original kprobes variables and just single
882  * step on the instruction of the new probe without calling any user handlers.
883  */
884 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
885 			  struct kprobe_ctlblk *kcb)
886 {
887 	switch (kcb->kprobe_status) {
888 	case KPROBE_HIT_SSDONE:
889 	case KPROBE_HIT_ACTIVE:
890 	case KPROBE_HIT_SS:
891 		kprobes_inc_nmissed_count(p);
892 		setup_singlestep(p, regs, kcb, 1);
893 		break;
894 	case KPROBE_REENTER:
895 		/* A probe has been hit in the codepath leading up to, or just
896 		 * after, single-stepping of a probed instruction. This entire
897 		 * codepath should strictly reside in .kprobes.text section.
898 		 * Raise a BUG or we'll continue in an endless reentering loop
899 		 * and eventually a stack overflow.
900 		 */
901 		pr_err("Unrecoverable kprobe detected.\n");
902 		dump_kprobe(p);
903 		BUG();
904 	default:
905 		/* impossible cases */
906 		WARN_ON(1);
907 		return 0;
908 	}
909 
910 	return 1;
911 }
912 NOKPROBE_SYMBOL(reenter_kprobe);
913 
914 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
915 {
916 	return (kcb->kprobe_status == KPROBE_HIT_SS ||
917 		kcb->kprobe_status == KPROBE_REENTER);
918 }
919 
920 /*
921  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
922  * remain disabled throughout this function.
923  */
924 int kprobe_int3_handler(struct pt_regs *regs)
925 {
926 	kprobe_opcode_t *addr;
927 	struct kprobe *p;
928 	struct kprobe_ctlblk *kcb;
929 
930 	if (user_mode(regs))
931 		return 0;
932 
933 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
934 	/*
935 	 * We don't want to be preempted for the entire duration of kprobe
936 	 * processing. Since int3 and debug trap disables irqs and we clear
937 	 * IF while singlestepping, it must be no preemptible.
938 	 */
939 
940 	kcb = get_kprobe_ctlblk();
941 	p = get_kprobe(addr);
942 
943 	if (p) {
944 		if (kprobe_running()) {
945 			if (reenter_kprobe(p, regs, kcb))
946 				return 1;
947 		} else {
948 			set_current_kprobe(p, regs, kcb);
949 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
950 
951 			/*
952 			 * If we have no pre-handler or it returned 0, we
953 			 * continue with normal processing.  If we have a
954 			 * pre-handler and it returned non-zero, that means
955 			 * user handler setup registers to exit to another
956 			 * instruction, we must skip the single stepping.
957 			 */
958 			if (!p->pre_handler || !p->pre_handler(p, regs))
959 				setup_singlestep(p, regs, kcb, 0);
960 			else
961 				reset_current_kprobe();
962 			return 1;
963 		}
964 	} else if (kprobe_is_ss(kcb)) {
965 		p = kprobe_running();
966 		if ((unsigned long)p->ainsn.insn < regs->ip &&
967 		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
968 			/* Most provably this is the second int3 for singlestep */
969 			resume_singlestep(p, regs, kcb);
970 			kprobe_post_process(p, regs, kcb);
971 			return 1;
972 		}
973 	} /* else: not a kprobe fault; let the kernel handle it */
974 
975 	return 0;
976 }
977 NOKPROBE_SYMBOL(kprobe_int3_handler);
978 
979 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
980 {
981 	struct kprobe *cur = kprobe_running();
982 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
983 
984 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
985 		/* This must happen on single-stepping */
986 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
987 			kcb->kprobe_status != KPROBE_REENTER);
988 		/*
989 		 * We are here because the instruction being single
990 		 * stepped caused a page fault. We reset the current
991 		 * kprobe and the ip points back to the probe address
992 		 * and allow the page fault handler to continue as a
993 		 * normal page fault.
994 		 */
995 		regs->ip = (unsigned long)cur->addr;
996 
997 		/*
998 		 * If the IF flag was set before the kprobe hit,
999 		 * don't touch it:
1000 		 */
1001 		regs->flags |= kcb->kprobe_old_flags;
1002 
1003 		if (kcb->kprobe_status == KPROBE_REENTER)
1004 			restore_previous_kprobe(kcb);
1005 		else
1006 			reset_current_kprobe();
1007 	}
1008 
1009 	return 0;
1010 }
1011 NOKPROBE_SYMBOL(kprobe_fault_handler);
1012 
1013 int __init arch_populate_kprobe_blacklist(void)
1014 {
1015 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1016 					 (unsigned long)__entry_text_end);
1017 }
1018 
1019 int __init arch_init_kprobes(void)
1020 {
1021 	return 0;
1022 }
1023 
1024 int arch_trampoline_kprobe(struct kprobe *p)
1025 {
1026 	return 0;
1027 }
1028