xref: /openbmc/linux/arch/x86/kernel/kprobes/core.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/kgdb.h>
41 #include <linux/ftrace.h>
42 #include <linux/kasan.h>
43 #include <linux/moduleloader.h>
44 #include <linux/objtool.h>
45 #include <linux/vmalloc.h>
46 #include <linux/pgtable.h>
47 #include <linux/set_memory.h>
48 #include <linux/cfi.h>
49 
50 #include <asm/text-patching.h>
51 #include <asm/cacheflush.h>
52 #include <asm/desc.h>
53 #include <linux/uaccess.h>
54 #include <asm/alternative.h>
55 #include <asm/insn.h>
56 #include <asm/debugreg.h>
57 #include <asm/ibt.h>
58 
59 #include "common.h"
60 
61 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
62 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
63 
64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
65 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
66 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
67 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
68 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
69 	 << (row % 32))
70 	/*
71 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
72 	 * Groups, and some special opcodes can not boost.
73 	 * This is non-const and volatile to keep gcc from statically
74 	 * optimizing it out, as variable_test_bit makes gcc think only
75 	 * *(unsigned long*) is used.
76 	 */
77 static volatile u32 twobyte_is_boostable[256 / 32] = {
78 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
79 	/*      ----------------------------------------------          */
80 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
81 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
82 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
83 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
84 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
85 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
86 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
87 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
88 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
89 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
90 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
91 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
92 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
93 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
94 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
95 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
96 	/*      -----------------------------------------------         */
97 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
98 };
99 #undef W
100 
101 struct kretprobe_blackpoint kretprobe_blacklist[] = {
102 	{"__switch_to", }, /* This function switches only current task, but
103 			      doesn't switch kernel stack.*/
104 	{NULL, NULL}	/* Terminator */
105 };
106 
107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108 
109 static nokprobe_inline void
110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111 {
112 	struct __arch_relative_insn {
113 		u8 op;
114 		s32 raddr;
115 	} __packed *insn;
116 
117 	insn = (struct __arch_relative_insn *)dest;
118 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 	insn->op = op;
120 }
121 
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 void synthesize_reljump(void *dest, void *from, void *to)
124 {
125 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126 }
127 NOKPROBE_SYMBOL(synthesize_reljump);
128 
129 /* Insert a call instruction at address 'from', which calls address 'to'.*/
130 void synthesize_relcall(void *dest, void *from, void *to)
131 {
132 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133 }
134 NOKPROBE_SYMBOL(synthesize_relcall);
135 
136 /*
137  * Returns non-zero if INSN is boostable.
138  * RIP relative instructions are adjusted at copying time in 64 bits mode
139  */
140 int can_boost(struct insn *insn, void *addr)
141 {
142 	kprobe_opcode_t opcode;
143 	insn_byte_t prefix;
144 	int i;
145 
146 	if (search_exception_tables((unsigned long)addr))
147 		return 0;	/* Page fault may occur on this address. */
148 
149 	/* 2nd-byte opcode */
150 	if (insn->opcode.nbytes == 2)
151 		return test_bit(insn->opcode.bytes[1],
152 				(unsigned long *)twobyte_is_boostable);
153 
154 	if (insn->opcode.nbytes != 1)
155 		return 0;
156 
157 	for_each_insn_prefix(insn, i, prefix) {
158 		insn_attr_t attr;
159 
160 		attr = inat_get_opcode_attribute(prefix);
161 		/* Can't boost Address-size override prefix and CS override prefix */
162 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
163 			return 0;
164 	}
165 
166 	opcode = insn->opcode.bytes[0];
167 
168 	switch (opcode) {
169 	case 0x62:		/* bound */
170 	case 0x70 ... 0x7f:	/* Conditional jumps */
171 	case 0x9a:		/* Call far */
172 	case 0xc0 ... 0xc1:	/* Grp2 */
173 	case 0xcc ... 0xce:	/* software exceptions */
174 	case 0xd0 ... 0xd3:	/* Grp2 */
175 	case 0xd6:		/* (UD) */
176 	case 0xd8 ... 0xdf:	/* ESC */
177 	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
178 	case 0xe8 ... 0xe9:	/* near Call, JMP */
179 	case 0xeb:		/* Short JMP */
180 	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
181 	case 0xf6 ... 0xf7:	/* Grp3 */
182 	case 0xfe:		/* Grp4 */
183 		/* ... are not boostable */
184 		return 0;
185 	case 0xff:		/* Grp5 */
186 		/* Only indirect jmp is boostable */
187 		return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
188 	default:
189 		return 1;
190 	}
191 }
192 
193 static unsigned long
194 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
195 {
196 	struct kprobe *kp;
197 	bool faddr;
198 
199 	kp = get_kprobe((void *)addr);
200 	faddr = ftrace_location(addr) == addr;
201 	/*
202 	 * Use the current code if it is not modified by Kprobe
203 	 * and it cannot be modified by ftrace.
204 	 */
205 	if (!kp && !faddr)
206 		return addr;
207 
208 	/*
209 	 * Basically, kp->ainsn.insn has an original instruction.
210 	 * However, RIP-relative instruction can not do single-stepping
211 	 * at different place, __copy_instruction() tweaks the displacement of
212 	 * that instruction. In that case, we can't recover the instruction
213 	 * from the kp->ainsn.insn.
214 	 *
215 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
216 	 * of the first byte of the probed instruction, which is overwritten
217 	 * by int3. And the instruction at kp->addr is not modified by kprobes
218 	 * except for the first byte, we can recover the original instruction
219 	 * from it and kp->opcode.
220 	 *
221 	 * In case of Kprobes using ftrace, we do not have a copy of
222 	 * the original instruction. In fact, the ftrace location might
223 	 * be modified at anytime and even could be in an inconsistent state.
224 	 * Fortunately, we know that the original code is the ideal 5-byte
225 	 * long NOP.
226 	 */
227 	if (copy_from_kernel_nofault(buf, (void *)addr,
228 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
229 		return 0UL;
230 
231 	if (faddr)
232 		memcpy(buf, x86_nops[5], 5);
233 	else
234 		buf[0] = kp->opcode;
235 	return (unsigned long)buf;
236 }
237 
238 /*
239  * Recover the probed instruction at addr for further analysis.
240  * Caller must lock kprobes by kprobe_mutex, or disable preemption
241  * for preventing to release referencing kprobes.
242  * Returns zero if the instruction can not get recovered (or access failed).
243  */
244 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
245 {
246 	unsigned long __addr;
247 
248 	__addr = __recover_optprobed_insn(buf, addr);
249 	if (__addr != addr)
250 		return __addr;
251 
252 	return __recover_probed_insn(buf, addr);
253 }
254 
255 /* Check if paddr is at an instruction boundary */
256 static int can_probe(unsigned long paddr)
257 {
258 	unsigned long addr, __addr, offset = 0;
259 	struct insn insn;
260 	kprobe_opcode_t buf[MAX_INSN_SIZE];
261 
262 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
263 		return 0;
264 
265 	/* Decode instructions */
266 	addr = paddr - offset;
267 	while (addr < paddr) {
268 		int ret;
269 
270 		/*
271 		 * Check if the instruction has been modified by another
272 		 * kprobe, in which case we replace the breakpoint by the
273 		 * original instruction in our buffer.
274 		 * Also, jump optimization will change the breakpoint to
275 		 * relative-jump. Since the relative-jump itself is
276 		 * normally used, we just go through if there is no kprobe.
277 		 */
278 		__addr = recover_probed_instruction(buf, addr);
279 		if (!__addr)
280 			return 0;
281 
282 		ret = insn_decode_kernel(&insn, (void *)__addr);
283 		if (ret < 0)
284 			return 0;
285 
286 #ifdef CONFIG_KGDB
287 		/*
288 		 * If there is a dynamically installed kgdb sw breakpoint,
289 		 * this function should not be probed.
290 		 */
291 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
292 		    kgdb_has_hit_break(addr))
293 			return 0;
294 #endif
295 		addr += insn.length;
296 	}
297 	if (IS_ENABLED(CONFIG_CFI_CLANG)) {
298 		/*
299 		 * The compiler generates the following instruction sequence
300 		 * for indirect call checks and cfi.c decodes this;
301 		 *
302 		 *   movl    -<id>, %r10d       ; 6 bytes
303 		 *   addl    -4(%reg), %r10d    ; 4 bytes
304 		 *   je      .Ltmp1             ; 2 bytes
305 		 *   ud2                        ; <- regs->ip
306 		 *   .Ltmp1:
307 		 *
308 		 * Also, these movl and addl are used for showing expected
309 		 * type. So those must not be touched.
310 		 */
311 		__addr = recover_probed_instruction(buf, addr);
312 		if (!__addr)
313 			return 0;
314 
315 		if (insn_decode_kernel(&insn, (void *)__addr) < 0)
316 			return 0;
317 
318 		if (insn.opcode.value == 0xBA)
319 			offset = 12;
320 		else if (insn.opcode.value == 0x3)
321 			offset = 6;
322 		else
323 			goto out;
324 
325 		/* This movl/addl is used for decoding CFI. */
326 		if (is_cfi_trap(addr + offset))
327 			return 0;
328 	}
329 
330 out:
331 	return (addr == paddr);
332 }
333 
334 /* If x86 supports IBT (ENDBR) it must be skipped. */
335 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
336 					 bool *on_func_entry)
337 {
338 	if (is_endbr(*(u32 *)addr)) {
339 		*on_func_entry = !offset || offset == 4;
340 		if (*on_func_entry)
341 			offset = 4;
342 
343 	} else {
344 		*on_func_entry = !offset;
345 	}
346 
347 	return (kprobe_opcode_t *)(addr + offset);
348 }
349 
350 /*
351  * Copy an instruction with recovering modified instruction by kprobes
352  * and adjust the displacement if the instruction uses the %rip-relative
353  * addressing mode. Note that since @real will be the final place of copied
354  * instruction, displacement must be adjust by @real, not @dest.
355  * This returns the length of copied instruction, or 0 if it has an error.
356  */
357 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
358 {
359 	kprobe_opcode_t buf[MAX_INSN_SIZE];
360 	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
361 	int ret;
362 
363 	if (!recovered_insn || !insn)
364 		return 0;
365 
366 	/* This can access kernel text if given address is not recovered */
367 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
368 			MAX_INSN_SIZE))
369 		return 0;
370 
371 	ret = insn_decode_kernel(insn, dest);
372 	if (ret < 0)
373 		return 0;
374 
375 	/* We can not probe force emulate prefixed instruction */
376 	if (insn_has_emulate_prefix(insn))
377 		return 0;
378 
379 	/* Another subsystem puts a breakpoint, failed to recover */
380 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
381 		return 0;
382 
383 	/* We should not singlestep on the exception masking instructions */
384 	if (insn_masking_exception(insn))
385 		return 0;
386 
387 #ifdef CONFIG_X86_64
388 	/* Only x86_64 has RIP relative instructions */
389 	if (insn_rip_relative(insn)) {
390 		s64 newdisp;
391 		u8 *disp;
392 		/*
393 		 * The copied instruction uses the %rip-relative addressing
394 		 * mode.  Adjust the displacement for the difference between
395 		 * the original location of this instruction and the location
396 		 * of the copy that will actually be run.  The tricky bit here
397 		 * is making sure that the sign extension happens correctly in
398 		 * this calculation, since we need a signed 32-bit result to
399 		 * be sign-extended to 64 bits when it's added to the %rip
400 		 * value and yield the same 64-bit result that the sign-
401 		 * extension of the original signed 32-bit displacement would
402 		 * have given.
403 		 */
404 		newdisp = (u8 *) src + (s64) insn->displacement.value
405 			  - (u8 *) real;
406 		if ((s64) (s32) newdisp != newdisp) {
407 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
408 			return 0;
409 		}
410 		disp = (u8 *) dest + insn_offset_displacement(insn);
411 		*(s32 *) disp = (s32) newdisp;
412 	}
413 #endif
414 	return insn->length;
415 }
416 
417 /* Prepare reljump or int3 right after instruction */
418 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
419 			      struct insn *insn)
420 {
421 	int len = insn->length;
422 
423 	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
424 	    !p->post_handler && can_boost(insn, p->addr) &&
425 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
426 		/*
427 		 * These instructions can be executed directly if it
428 		 * jumps back to correct address.
429 		 */
430 		synthesize_reljump(buf + len, p->ainsn.insn + len,
431 				   p->addr + insn->length);
432 		len += JMP32_INSN_SIZE;
433 		p->ainsn.boostable = 1;
434 	} else {
435 		/* Otherwise, put an int3 for trapping singlestep */
436 		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
437 			return -ENOSPC;
438 
439 		buf[len] = INT3_INSN_OPCODE;
440 		len += INT3_INSN_SIZE;
441 	}
442 
443 	return len;
444 }
445 
446 /* Make page to RO mode when allocate it */
447 void *alloc_insn_page(void)
448 {
449 	void *page;
450 
451 	page = module_alloc(PAGE_SIZE);
452 	if (!page)
453 		return NULL;
454 
455 	/*
456 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
457 	 * that the page was not maliciously altered and it is still zeroed.
458 	 */
459 	set_memory_rox((unsigned long)page, 1);
460 
461 	return page;
462 }
463 
464 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
465 
466 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
467 {
468 	switch (p->ainsn.opcode) {
469 	case 0xfa:	/* cli */
470 		regs->flags &= ~(X86_EFLAGS_IF);
471 		break;
472 	case 0xfb:	/* sti */
473 		regs->flags |= X86_EFLAGS_IF;
474 		break;
475 	case 0x9c:	/* pushf */
476 		int3_emulate_push(regs, regs->flags);
477 		break;
478 	case 0x9d:	/* popf */
479 		regs->flags = int3_emulate_pop(regs);
480 		break;
481 	}
482 	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
483 }
484 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
485 
486 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
487 {
488 	int3_emulate_ret(regs);
489 }
490 NOKPROBE_SYMBOL(kprobe_emulate_ret);
491 
492 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
493 {
494 	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
495 
496 	func += p->ainsn.rel32;
497 	int3_emulate_call(regs, func);
498 }
499 NOKPROBE_SYMBOL(kprobe_emulate_call);
500 
501 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
502 {
503 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
504 
505 	ip += p->ainsn.rel32;
506 	int3_emulate_jmp(regs, ip);
507 }
508 NOKPROBE_SYMBOL(kprobe_emulate_jmp);
509 
510 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
511 {
512 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
513 
514 	int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
515 }
516 NOKPROBE_SYMBOL(kprobe_emulate_jcc);
517 
518 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
519 {
520 	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
521 	bool match;
522 
523 	if (p->ainsn.loop.type != 3) {	/* LOOP* */
524 		if (p->ainsn.loop.asize == 32)
525 			match = ((*(u32 *)&regs->cx)--) != 0;
526 #ifdef CONFIG_X86_64
527 		else if (p->ainsn.loop.asize == 64)
528 			match = ((*(u64 *)&regs->cx)--) != 0;
529 #endif
530 		else
531 			match = ((*(u16 *)&regs->cx)--) != 0;
532 	} else {			/* JCXZ */
533 		if (p->ainsn.loop.asize == 32)
534 			match = *(u32 *)(&regs->cx) == 0;
535 #ifdef CONFIG_X86_64
536 		else if (p->ainsn.loop.asize == 64)
537 			match = *(u64 *)(&regs->cx) == 0;
538 #endif
539 		else
540 			match = *(u16 *)(&regs->cx) == 0;
541 	}
542 
543 	if (p->ainsn.loop.type == 0)	/* LOOPNE */
544 		match = match && !(regs->flags & X86_EFLAGS_ZF);
545 	else if (p->ainsn.loop.type == 1)	/* LOOPE */
546 		match = match && (regs->flags & X86_EFLAGS_ZF);
547 
548 	if (match)
549 		ip += p->ainsn.rel32;
550 	int3_emulate_jmp(regs, ip);
551 }
552 NOKPROBE_SYMBOL(kprobe_emulate_loop);
553 
554 static const int addrmode_regoffs[] = {
555 	offsetof(struct pt_regs, ax),
556 	offsetof(struct pt_regs, cx),
557 	offsetof(struct pt_regs, dx),
558 	offsetof(struct pt_regs, bx),
559 	offsetof(struct pt_regs, sp),
560 	offsetof(struct pt_regs, bp),
561 	offsetof(struct pt_regs, si),
562 	offsetof(struct pt_regs, di),
563 #ifdef CONFIG_X86_64
564 	offsetof(struct pt_regs, r8),
565 	offsetof(struct pt_regs, r9),
566 	offsetof(struct pt_regs, r10),
567 	offsetof(struct pt_regs, r11),
568 	offsetof(struct pt_regs, r12),
569 	offsetof(struct pt_regs, r13),
570 	offsetof(struct pt_regs, r14),
571 	offsetof(struct pt_regs, r15),
572 #endif
573 };
574 
575 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
576 {
577 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
578 
579 	int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
580 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
581 }
582 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
583 
584 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
585 {
586 	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
587 
588 	int3_emulate_jmp(regs, regs_get_register(regs, offs));
589 }
590 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
591 
592 static int prepare_emulation(struct kprobe *p, struct insn *insn)
593 {
594 	insn_byte_t opcode = insn->opcode.bytes[0];
595 
596 	switch (opcode) {
597 	case 0xfa:		/* cli */
598 	case 0xfb:		/* sti */
599 	case 0x9c:		/* pushfl */
600 	case 0x9d:		/* popf/popfd */
601 		/*
602 		 * IF modifiers must be emulated since it will enable interrupt while
603 		 * int3 single stepping.
604 		 */
605 		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
606 		p->ainsn.opcode = opcode;
607 		break;
608 	case 0xc2:	/* ret/lret */
609 	case 0xc3:
610 	case 0xca:
611 	case 0xcb:
612 		p->ainsn.emulate_op = kprobe_emulate_ret;
613 		break;
614 	case 0x9a:	/* far call absolute -- segment is not supported */
615 	case 0xea:	/* far jmp absolute -- segment is not supported */
616 	case 0xcc:	/* int3 */
617 	case 0xcf:	/* iret -- in-kernel IRET is not supported */
618 		return -EOPNOTSUPP;
619 		break;
620 	case 0xe8:	/* near call relative */
621 		p->ainsn.emulate_op = kprobe_emulate_call;
622 		if (insn->immediate.nbytes == 2)
623 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
624 		else
625 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
626 		break;
627 	case 0xeb:	/* short jump relative */
628 	case 0xe9:	/* near jump relative */
629 		p->ainsn.emulate_op = kprobe_emulate_jmp;
630 		if (insn->immediate.nbytes == 1)
631 			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
632 		else if (insn->immediate.nbytes == 2)
633 			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
634 		else
635 			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
636 		break;
637 	case 0x70 ... 0x7f:
638 		/* 1 byte conditional jump */
639 		p->ainsn.emulate_op = kprobe_emulate_jcc;
640 		p->ainsn.jcc.type = opcode & 0xf;
641 		p->ainsn.rel32 = insn->immediate.value;
642 		break;
643 	case 0x0f:
644 		opcode = insn->opcode.bytes[1];
645 		if ((opcode & 0xf0) == 0x80) {
646 			/* 2 bytes Conditional Jump */
647 			p->ainsn.emulate_op = kprobe_emulate_jcc;
648 			p->ainsn.jcc.type = opcode & 0xf;
649 			if (insn->immediate.nbytes == 2)
650 				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
651 			else
652 				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
653 		} else if (opcode == 0x01 &&
654 			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
655 			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
656 			/* VM extensions - not supported */
657 			return -EOPNOTSUPP;
658 		}
659 		break;
660 	case 0xe0:	/* Loop NZ */
661 	case 0xe1:	/* Loop */
662 	case 0xe2:	/* Loop */
663 	case 0xe3:	/* J*CXZ */
664 		p->ainsn.emulate_op = kprobe_emulate_loop;
665 		p->ainsn.loop.type = opcode & 0x3;
666 		p->ainsn.loop.asize = insn->addr_bytes * 8;
667 		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
668 		break;
669 	case 0xff:
670 		/*
671 		 * Since the 0xff is an extended group opcode, the instruction
672 		 * is determined by the MOD/RM byte.
673 		 */
674 		opcode = insn->modrm.bytes[0];
675 		switch (X86_MODRM_REG(opcode)) {
676 		case 0b010:	/* FF /2, call near, absolute indirect */
677 			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
678 			break;
679 		case 0b100:	/* FF /4, jmp near, absolute indirect */
680 			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
681 			break;
682 		case 0b011:	/* FF /3, call far, absolute indirect */
683 		case 0b101:	/* FF /5, jmp far, absolute indirect */
684 			return -EOPNOTSUPP;
685 		}
686 
687 		if (!p->ainsn.emulate_op)
688 			break;
689 
690 		if (insn->addr_bytes != sizeof(unsigned long))
691 			return -EOPNOTSUPP;	/* Don't support different size */
692 		if (X86_MODRM_MOD(opcode) != 3)
693 			return -EOPNOTSUPP;	/* TODO: support memory addressing */
694 
695 		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
696 #ifdef CONFIG_X86_64
697 		if (X86_REX_B(insn->rex_prefix.value))
698 			p->ainsn.indirect.reg += 8;
699 #endif
700 		break;
701 	default:
702 		break;
703 	}
704 	p->ainsn.size = insn->length;
705 
706 	return 0;
707 }
708 
709 static int arch_copy_kprobe(struct kprobe *p)
710 {
711 	struct insn insn;
712 	kprobe_opcode_t buf[MAX_INSN_SIZE];
713 	int ret, len;
714 
715 	/* Copy an instruction with recovering if other optprobe modifies it.*/
716 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
717 	if (!len)
718 		return -EINVAL;
719 
720 	/* Analyze the opcode and setup emulate functions */
721 	ret = prepare_emulation(p, &insn);
722 	if (ret < 0)
723 		return ret;
724 
725 	/* Add int3 for single-step or booster jmp */
726 	len = prepare_singlestep(buf, p, &insn);
727 	if (len < 0)
728 		return len;
729 
730 	/* Also, displacement change doesn't affect the first byte */
731 	p->opcode = buf[0];
732 
733 	p->ainsn.tp_len = len;
734 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
735 
736 	/* OK, write back the instruction(s) into ROX insn buffer */
737 	text_poke(p->ainsn.insn, buf, len);
738 
739 	return 0;
740 }
741 
742 int arch_prepare_kprobe(struct kprobe *p)
743 {
744 	int ret;
745 
746 	if (alternatives_text_reserved(p->addr, p->addr))
747 		return -EINVAL;
748 
749 	if (!can_probe((unsigned long)p->addr))
750 		return -EILSEQ;
751 
752 	memset(&p->ainsn, 0, sizeof(p->ainsn));
753 
754 	/* insn: must be on special executable page on x86. */
755 	p->ainsn.insn = get_insn_slot();
756 	if (!p->ainsn.insn)
757 		return -ENOMEM;
758 
759 	ret = arch_copy_kprobe(p);
760 	if (ret) {
761 		free_insn_slot(p->ainsn.insn, 0);
762 		p->ainsn.insn = NULL;
763 	}
764 
765 	return ret;
766 }
767 
768 void arch_arm_kprobe(struct kprobe *p)
769 {
770 	u8 int3 = INT3_INSN_OPCODE;
771 
772 	text_poke(p->addr, &int3, 1);
773 	text_poke_sync();
774 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
775 }
776 
777 void arch_disarm_kprobe(struct kprobe *p)
778 {
779 	u8 int3 = INT3_INSN_OPCODE;
780 
781 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
782 	text_poke(p->addr, &p->opcode, 1);
783 	text_poke_sync();
784 }
785 
786 void arch_remove_kprobe(struct kprobe *p)
787 {
788 	if (p->ainsn.insn) {
789 		/* Record the perf event before freeing the slot */
790 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
791 				     p->ainsn.tp_len, NULL, 0);
792 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
793 		p->ainsn.insn = NULL;
794 	}
795 }
796 
797 static nokprobe_inline void
798 save_previous_kprobe(struct kprobe_ctlblk *kcb)
799 {
800 	kcb->prev_kprobe.kp = kprobe_running();
801 	kcb->prev_kprobe.status = kcb->kprobe_status;
802 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
803 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
804 }
805 
806 static nokprobe_inline void
807 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
808 {
809 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
810 	kcb->kprobe_status = kcb->prev_kprobe.status;
811 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
812 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
813 }
814 
815 static nokprobe_inline void
816 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
817 		   struct kprobe_ctlblk *kcb)
818 {
819 	__this_cpu_write(current_kprobe, p);
820 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
821 		= (regs->flags & X86_EFLAGS_IF);
822 }
823 
824 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
825 			       struct kprobe_ctlblk *kcb)
826 {
827 	/* Restore back the original saved kprobes variables and continue. */
828 	if (kcb->kprobe_status == KPROBE_REENTER) {
829 		/* This will restore both kcb and current_kprobe */
830 		restore_previous_kprobe(kcb);
831 	} else {
832 		/*
833 		 * Always update the kcb status because
834 		 * reset_curent_kprobe() doesn't update kcb.
835 		 */
836 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
837 		if (cur->post_handler)
838 			cur->post_handler(cur, regs, 0);
839 		reset_current_kprobe();
840 	}
841 }
842 NOKPROBE_SYMBOL(kprobe_post_process);
843 
844 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
845 			     struct kprobe_ctlblk *kcb, int reenter)
846 {
847 	if (setup_detour_execution(p, regs, reenter))
848 		return;
849 
850 #if !defined(CONFIG_PREEMPTION)
851 	if (p->ainsn.boostable) {
852 		/* Boost up -- we can execute copied instructions directly */
853 		if (!reenter)
854 			reset_current_kprobe();
855 		/*
856 		 * Reentering boosted probe doesn't reset current_kprobe,
857 		 * nor set current_kprobe, because it doesn't use single
858 		 * stepping.
859 		 */
860 		regs->ip = (unsigned long)p->ainsn.insn;
861 		return;
862 	}
863 #endif
864 	if (reenter) {
865 		save_previous_kprobe(kcb);
866 		set_current_kprobe(p, regs, kcb);
867 		kcb->kprobe_status = KPROBE_REENTER;
868 	} else
869 		kcb->kprobe_status = KPROBE_HIT_SS;
870 
871 	if (p->ainsn.emulate_op) {
872 		p->ainsn.emulate_op(p, regs);
873 		kprobe_post_process(p, regs, kcb);
874 		return;
875 	}
876 
877 	/* Disable interrupt, and set ip register on trampoline */
878 	regs->flags &= ~X86_EFLAGS_IF;
879 	regs->ip = (unsigned long)p->ainsn.insn;
880 }
881 NOKPROBE_SYMBOL(setup_singlestep);
882 
883 /*
884  * Called after single-stepping.  p->addr is the address of the
885  * instruction whose first byte has been replaced by the "int3"
886  * instruction.  To avoid the SMP problems that can occur when we
887  * temporarily put back the original opcode to single-step, we
888  * single-stepped a copy of the instruction.  The address of this
889  * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
890  * right after the copied instruction.
891  * Different from the trap single-step, "int3" single-step can not
892  * handle the instruction which changes the ip register, e.g. jmp,
893  * call, conditional jmp, and the instructions which changes the IF
894  * flags because interrupt must be disabled around the single-stepping.
895  * Such instructions are software emulated, but others are single-stepped
896  * using "int3".
897  *
898  * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
899  * be adjusted, so that we can resume execution on correct code.
900  */
901 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
902 			      struct kprobe_ctlblk *kcb)
903 {
904 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
905 	unsigned long orig_ip = (unsigned long)p->addr;
906 
907 	/* Restore saved interrupt flag and ip register */
908 	regs->flags |= kcb->kprobe_saved_flags;
909 	/* Note that regs->ip is executed int3 so must be a step back */
910 	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
911 }
912 NOKPROBE_SYMBOL(resume_singlestep);
913 
914 /*
915  * We have reentered the kprobe_handler(), since another probe was hit while
916  * within the handler. We save the original kprobes variables and just single
917  * step on the instruction of the new probe without calling any user handlers.
918  */
919 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
920 			  struct kprobe_ctlblk *kcb)
921 {
922 	switch (kcb->kprobe_status) {
923 	case KPROBE_HIT_SSDONE:
924 	case KPROBE_HIT_ACTIVE:
925 	case KPROBE_HIT_SS:
926 		kprobes_inc_nmissed_count(p);
927 		setup_singlestep(p, regs, kcb, 1);
928 		break;
929 	case KPROBE_REENTER:
930 		/* A probe has been hit in the codepath leading up to, or just
931 		 * after, single-stepping of a probed instruction. This entire
932 		 * codepath should strictly reside in .kprobes.text section.
933 		 * Raise a BUG or we'll continue in an endless reentering loop
934 		 * and eventually a stack overflow.
935 		 */
936 		pr_err("Unrecoverable kprobe detected.\n");
937 		dump_kprobe(p);
938 		BUG();
939 	default:
940 		/* impossible cases */
941 		WARN_ON(1);
942 		return 0;
943 	}
944 
945 	return 1;
946 }
947 NOKPROBE_SYMBOL(reenter_kprobe);
948 
949 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
950 {
951 	return (kcb->kprobe_status == KPROBE_HIT_SS ||
952 		kcb->kprobe_status == KPROBE_REENTER);
953 }
954 
955 /*
956  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
957  * remain disabled throughout this function.
958  */
959 int kprobe_int3_handler(struct pt_regs *regs)
960 {
961 	kprobe_opcode_t *addr;
962 	struct kprobe *p;
963 	struct kprobe_ctlblk *kcb;
964 
965 	if (user_mode(regs))
966 		return 0;
967 
968 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
969 	/*
970 	 * We don't want to be preempted for the entire duration of kprobe
971 	 * processing. Since int3 and debug trap disables irqs and we clear
972 	 * IF while singlestepping, it must be no preemptible.
973 	 */
974 
975 	kcb = get_kprobe_ctlblk();
976 	p = get_kprobe(addr);
977 
978 	if (p) {
979 		if (kprobe_running()) {
980 			if (reenter_kprobe(p, regs, kcb))
981 				return 1;
982 		} else {
983 			set_current_kprobe(p, regs, kcb);
984 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
985 
986 			/*
987 			 * If we have no pre-handler or it returned 0, we
988 			 * continue with normal processing.  If we have a
989 			 * pre-handler and it returned non-zero, that means
990 			 * user handler setup registers to exit to another
991 			 * instruction, we must skip the single stepping.
992 			 */
993 			if (!p->pre_handler || !p->pre_handler(p, regs))
994 				setup_singlestep(p, regs, kcb, 0);
995 			else
996 				reset_current_kprobe();
997 			return 1;
998 		}
999 	} else if (kprobe_is_ss(kcb)) {
1000 		p = kprobe_running();
1001 		if ((unsigned long)p->ainsn.insn < regs->ip &&
1002 		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
1003 			/* Most provably this is the second int3 for singlestep */
1004 			resume_singlestep(p, regs, kcb);
1005 			kprobe_post_process(p, regs, kcb);
1006 			return 1;
1007 		}
1008 	} /* else: not a kprobe fault; let the kernel handle it */
1009 
1010 	return 0;
1011 }
1012 NOKPROBE_SYMBOL(kprobe_int3_handler);
1013 
1014 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1015 {
1016 	struct kprobe *cur = kprobe_running();
1017 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1018 
1019 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1020 		/* This must happen on single-stepping */
1021 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1022 			kcb->kprobe_status != KPROBE_REENTER);
1023 		/*
1024 		 * We are here because the instruction being single
1025 		 * stepped caused a page fault. We reset the current
1026 		 * kprobe and the ip points back to the probe address
1027 		 * and allow the page fault handler to continue as a
1028 		 * normal page fault.
1029 		 */
1030 		regs->ip = (unsigned long)cur->addr;
1031 
1032 		/*
1033 		 * If the IF flag was set before the kprobe hit,
1034 		 * don't touch it:
1035 		 */
1036 		regs->flags |= kcb->kprobe_old_flags;
1037 
1038 		if (kcb->kprobe_status == KPROBE_REENTER)
1039 			restore_previous_kprobe(kcb);
1040 		else
1041 			reset_current_kprobe();
1042 	}
1043 
1044 	return 0;
1045 }
1046 NOKPROBE_SYMBOL(kprobe_fault_handler);
1047 
1048 int __init arch_populate_kprobe_blacklist(void)
1049 {
1050 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1051 					 (unsigned long)__entry_text_end);
1052 }
1053 
1054 int __init arch_init_kprobes(void)
1055 {
1056 	return 0;
1057 }
1058 
1059 int arch_trampoline_kprobe(struct kprobe *p)
1060 {
1061 	return 0;
1062 }
1063