xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
45 
46 #include <asm/apicdef.h>
47 #include <asm/system.h>
48 
49 #include <mach_ipi.h>
50 
51 /*
52  * Put the error code here just in case the user cares:
53  */
54 static int gdb_x86errcode;
55 
56 /*
57  * Likewise, the vector number here (since GDB only gets the signal
58  * number through the usual means, and that's not very specific):
59  */
60 static int gdb_x86vector = -1;
61 
62 /**
63  *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
64  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
65  *	@regs: The &struct pt_regs of the current process.
66  *
67  *	Convert the pt_regs in @regs into the format for registers that
68  *	GDB expects, stored in @gdb_regs.
69  */
70 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
71 {
72 	gdb_regs[GDB_AX]	= regs->ax;
73 	gdb_regs[GDB_BX]	= regs->bx;
74 	gdb_regs[GDB_CX]	= regs->cx;
75 	gdb_regs[GDB_DX]	= regs->dx;
76 	gdb_regs[GDB_SI]	= regs->si;
77 	gdb_regs[GDB_DI]	= regs->di;
78 	gdb_regs[GDB_BP]	= regs->bp;
79 	gdb_regs[GDB_PS]	= regs->flags;
80 	gdb_regs[GDB_PC]	= regs->ip;
81 #ifdef CONFIG_X86_32
82 	gdb_regs[GDB_DS]	= regs->ds;
83 	gdb_regs[GDB_ES]	= regs->es;
84 	gdb_regs[GDB_CS]	= regs->cs;
85 	gdb_regs[GDB_SS]	= __KERNEL_DS;
86 	gdb_regs[GDB_FS]	= 0xFFFF;
87 	gdb_regs[GDB_GS]	= 0xFFFF;
88 #else
89 	gdb_regs[GDB_R8]	= regs->r8;
90 	gdb_regs[GDB_R9]	= regs->r9;
91 	gdb_regs[GDB_R10]	= regs->r10;
92 	gdb_regs[GDB_R11]	= regs->r11;
93 	gdb_regs[GDB_R12]	= regs->r12;
94 	gdb_regs[GDB_R13]	= regs->r13;
95 	gdb_regs[GDB_R14]	= regs->r14;
96 	gdb_regs[GDB_R15]	= regs->r15;
97 #endif
98 	gdb_regs[GDB_SP]	= regs->sp;
99 }
100 
101 /**
102  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
103  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
104  *	@p: The &struct task_struct of the desired process.
105  *
106  *	Convert the register values of the sleeping process in @p to
107  *	the format that GDB expects.
108  *	This function is called when kgdb does not have access to the
109  *	&struct pt_regs and therefore it should fill the gdb registers
110  *	@gdb_regs with what has	been saved in &struct thread_struct
111  *	thread field during switch_to.
112  */
113 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
114 {
115 	gdb_regs[GDB_AX]	= 0;
116 	gdb_regs[GDB_BX]	= 0;
117 	gdb_regs[GDB_CX]	= 0;
118 	gdb_regs[GDB_DX]	= 0;
119 	gdb_regs[GDB_SI]	= 0;
120 	gdb_regs[GDB_DI]	= 0;
121 	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
122 #ifdef CONFIG_X86_32
123 	gdb_regs[GDB_DS]	= __KERNEL_DS;
124 	gdb_regs[GDB_ES]	= __KERNEL_DS;
125 	gdb_regs[GDB_PS]	= 0;
126 	gdb_regs[GDB_CS]	= __KERNEL_CS;
127 	gdb_regs[GDB_PC]	= p->thread.ip;
128 	gdb_regs[GDB_SS]	= __KERNEL_DS;
129 	gdb_regs[GDB_FS]	= 0xFFFF;
130 	gdb_regs[GDB_GS]	= 0xFFFF;
131 #else
132 	gdb_regs[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
133 	gdb_regs[GDB_PC]	= 0;
134 	gdb_regs[GDB_R8]	= 0;
135 	gdb_regs[GDB_R9]	= 0;
136 	gdb_regs[GDB_R10]	= 0;
137 	gdb_regs[GDB_R11]	= 0;
138 	gdb_regs[GDB_R12]	= 0;
139 	gdb_regs[GDB_R13]	= 0;
140 	gdb_regs[GDB_R14]	= 0;
141 	gdb_regs[GDB_R15]	= 0;
142 #endif
143 	gdb_regs[GDB_SP]	= p->thread.sp;
144 }
145 
146 /**
147  *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
148  *	@gdb_regs: A pointer to hold the registers we've received from GDB.
149  *	@regs: A pointer to a &struct pt_regs to hold these values in.
150  *
151  *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
152  *	in @regs.
153  */
154 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
155 {
156 	regs->ax		= gdb_regs[GDB_AX];
157 	regs->bx		= gdb_regs[GDB_BX];
158 	regs->cx		= gdb_regs[GDB_CX];
159 	regs->dx		= gdb_regs[GDB_DX];
160 	regs->si		= gdb_regs[GDB_SI];
161 	regs->di		= gdb_regs[GDB_DI];
162 	regs->bp		= gdb_regs[GDB_BP];
163 	regs->flags		= gdb_regs[GDB_PS];
164 	regs->ip		= gdb_regs[GDB_PC];
165 #ifdef CONFIG_X86_32
166 	regs->ds		= gdb_regs[GDB_DS];
167 	regs->es		= gdb_regs[GDB_ES];
168 	regs->cs		= gdb_regs[GDB_CS];
169 #else
170 	regs->r8		= gdb_regs[GDB_R8];
171 	regs->r9		= gdb_regs[GDB_R9];
172 	regs->r10		= gdb_regs[GDB_R10];
173 	regs->r11		= gdb_regs[GDB_R11];
174 	regs->r12		= gdb_regs[GDB_R12];
175 	regs->r13		= gdb_regs[GDB_R13];
176 	regs->r14		= gdb_regs[GDB_R14];
177 	regs->r15		= gdb_regs[GDB_R15];
178 #endif
179 }
180 
181 static struct hw_breakpoint {
182 	unsigned		enabled;
183 	unsigned		type;
184 	unsigned		len;
185 	unsigned long		addr;
186 } breakinfo[4];
187 
188 static void kgdb_correct_hw_break(void)
189 {
190 	unsigned long dr7;
191 	int correctit = 0;
192 	int breakbit;
193 	int breakno;
194 
195 	get_debugreg(dr7, 7);
196 	for (breakno = 0; breakno < 4; breakno++) {
197 		breakbit = 2 << (breakno << 1);
198 		if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
199 			correctit = 1;
200 			dr7 |= breakbit;
201 			dr7 &= ~(0xf0000 << (breakno << 2));
202 			dr7 |= ((breakinfo[breakno].len << 2) |
203 				 breakinfo[breakno].type) <<
204 			       ((breakno << 2) + 16);
205 			if (breakno >= 0 && breakno <= 3)
206 				set_debugreg(breakinfo[breakno].addr, breakno);
207 
208 		} else {
209 			if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
210 				correctit = 1;
211 				dr7 &= ~breakbit;
212 				dr7 &= ~(0xf0000 << (breakno << 2));
213 			}
214 		}
215 	}
216 	if (correctit)
217 		set_debugreg(dr7, 7);
218 }
219 
220 static int
221 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
222 {
223 	int i;
224 
225 	for (i = 0; i < 4; i++)
226 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
227 			break;
228 	if (i == 4)
229 		return -1;
230 
231 	breakinfo[i].enabled = 0;
232 
233 	return 0;
234 }
235 
236 static void kgdb_remove_all_hw_break(void)
237 {
238 	int i;
239 
240 	for (i = 0; i < 4; i++)
241 		memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
242 }
243 
244 static int
245 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
246 {
247 	unsigned type;
248 	int i;
249 
250 	for (i = 0; i < 4; i++)
251 		if (!breakinfo[i].enabled)
252 			break;
253 	if (i == 4)
254 		return -1;
255 
256 	switch (bptype) {
257 	case BP_HARDWARE_BREAKPOINT:
258 		type = 0;
259 		len  = 1;
260 		break;
261 	case BP_WRITE_WATCHPOINT:
262 		type = 1;
263 		break;
264 	case BP_ACCESS_WATCHPOINT:
265 		type = 3;
266 		break;
267 	default:
268 		return -1;
269 	}
270 
271 	if (len == 1 || len == 2 || len == 4)
272 		breakinfo[i].len  = len - 1;
273 	else
274 		return -1;
275 
276 	breakinfo[i].enabled = 1;
277 	breakinfo[i].addr = addr;
278 	breakinfo[i].type = type;
279 
280 	return 0;
281 }
282 
283 /**
284  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
285  *	@regs: Current &struct pt_regs.
286  *
287  *	This function will be called if the particular architecture must
288  *	disable hardware debugging while it is processing gdb packets or
289  *	handling exception.
290  */
291 void kgdb_disable_hw_debug(struct pt_regs *regs)
292 {
293 	/* Disable hardware debugging while we are in kgdb: */
294 	set_debugreg(0UL, 7);
295 }
296 
297 /**
298  *	kgdb_post_primary_code - Save error vector/code numbers.
299  *	@regs: Original pt_regs.
300  *	@e_vector: Original error vector.
301  *	@err_code: Original error code.
302  *
303  *	This is needed on architectures which support SMP and KGDB.
304  *	This function is called after all the slave cpus have been put
305  *	to a know spin state and the primary CPU has control over KGDB.
306  */
307 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
308 {
309 	/* primary processor is completely in the debugger */
310 	gdb_x86vector = e_vector;
311 	gdb_x86errcode = err_code;
312 }
313 
314 #ifdef CONFIG_SMP
315 /**
316  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
317  *	@flags: Current IRQ state
318  *
319  *	On SMP systems, we need to get the attention of the other CPUs
320  *	and get them be in a known state.  This should do what is needed
321  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
322  *	the NMI approach is not used for rounding up all the CPUs. For example,
323  *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
324  *	this case, we have to make sure that interrupts are enabled before
325  *	calling smp_call_function(). The argument to this function is
326  *	the flags that will be used when restoring the interrupts. There is
327  *	local_irq_save() call before kgdb_roundup_cpus().
328  *
329  *	On non-SMP systems, this is not called.
330  */
331 void kgdb_roundup_cpus(unsigned long flags)
332 {
333 	send_IPI_allbutself(APIC_DM_NMI);
334 }
335 #endif
336 
337 /**
338  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
339  *	@vector: The error vector of the exception that happened.
340  *	@signo: The signal number of the exception that happened.
341  *	@err_code: The error code of the exception that happened.
342  *	@remcom_in_buffer: The buffer of the packet we have read.
343  *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
344  *	@regs: The &struct pt_regs of the current process.
345  *
346  *	This function MUST handle the 'c' and 's' command packets,
347  *	as well packets to set / remove a hardware breakpoint, if used.
348  *	If there are additional packets which the hardware needs to handle,
349  *	they are handled here.  The code should return -1 if it wants to
350  *	process more packets, and a %0 or %1 if it wants to exit from the
351  *	kgdb callback.
352  */
353 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
354 			       char *remcomInBuffer, char *remcomOutBuffer,
355 			       struct pt_regs *linux_regs)
356 {
357 	unsigned long addr;
358 	unsigned long dr6;
359 	char *ptr;
360 	int newPC;
361 
362 	switch (remcomInBuffer[0]) {
363 	case 'c':
364 	case 's':
365 		/* try to read optional parameter, pc unchanged if no parm */
366 		ptr = &remcomInBuffer[1];
367 		if (kgdb_hex2long(&ptr, &addr))
368 			linux_regs->ip = addr;
369 	case 'D':
370 	case 'k':
371 		newPC = linux_regs->ip;
372 
373 		/* clear the trace bit */
374 		linux_regs->flags &= ~X86_EFLAGS_TF;
375 		atomic_set(&kgdb_cpu_doing_single_step, -1);
376 
377 		/* set the trace bit if we're stepping */
378 		if (remcomInBuffer[0] == 's') {
379 			linux_regs->flags |= X86_EFLAGS_TF;
380 			kgdb_single_step = 1;
381 			if (kgdb_contthread) {
382 				atomic_set(&kgdb_cpu_doing_single_step,
383 					   raw_smp_processor_id());
384 			}
385 		}
386 
387 		get_debugreg(dr6, 6);
388 		if (!(dr6 & 0x4000)) {
389 			int breakno;
390 
391 			for (breakno = 0; breakno < 4; breakno++) {
392 				if (dr6 & (1 << breakno) &&
393 				    breakinfo[breakno].type == 0) {
394 					/* Set restore flag: */
395 					linux_regs->flags |= X86_EFLAGS_RF;
396 					break;
397 				}
398 			}
399 		}
400 		set_debugreg(0UL, 6);
401 		kgdb_correct_hw_break();
402 
403 		return 0;
404 	}
405 
406 	/* this means that we do not want to exit from the handler: */
407 	return -1;
408 }
409 
410 static inline int
411 single_step_cont(struct pt_regs *regs, struct die_args *args)
412 {
413 	/*
414 	 * Single step exception from kernel space to user space so
415 	 * eat the exception and continue the process:
416 	 */
417 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
418 			"resuming...\n");
419 	kgdb_arch_handle_exception(args->trapnr, args->signr,
420 				   args->err, "c", "", regs);
421 
422 	return NOTIFY_STOP;
423 }
424 
425 static int was_in_debug_nmi[NR_CPUS];
426 
427 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
428 {
429 	struct pt_regs *regs = args->regs;
430 
431 	switch (cmd) {
432 	case DIE_NMI:
433 		if (atomic_read(&kgdb_active) != -1) {
434 			/* KGDB CPU roundup */
435 			kgdb_nmicallback(raw_smp_processor_id(), regs);
436 			was_in_debug_nmi[raw_smp_processor_id()] = 1;
437 			touch_nmi_watchdog();
438 			return NOTIFY_STOP;
439 		}
440 		return NOTIFY_DONE;
441 
442 	case DIE_NMI_IPI:
443 		if (atomic_read(&kgdb_active) != -1) {
444 			/* KGDB CPU roundup */
445 			kgdb_nmicallback(raw_smp_processor_id(), regs);
446 			was_in_debug_nmi[raw_smp_processor_id()] = 1;
447 			touch_nmi_watchdog();
448 		}
449 		return NOTIFY_DONE;
450 
451 	case DIE_NMIUNKNOWN:
452 		if (was_in_debug_nmi[raw_smp_processor_id()]) {
453 			was_in_debug_nmi[raw_smp_processor_id()] = 0;
454 			return NOTIFY_STOP;
455 		}
456 		return NOTIFY_DONE;
457 
458 	case DIE_NMIWATCHDOG:
459 		if (atomic_read(&kgdb_active) != -1) {
460 			/* KGDB CPU roundup: */
461 			kgdb_nmicallback(raw_smp_processor_id(), regs);
462 			return NOTIFY_STOP;
463 		}
464 		/* Enter debugger: */
465 		break;
466 
467 	case DIE_DEBUG:
468 		if (atomic_read(&kgdb_cpu_doing_single_step) ==
469 			raw_smp_processor_id() &&
470 			user_mode(regs))
471 			return single_step_cont(regs, args);
472 		/* fall through */
473 	default:
474 		if (user_mode(regs))
475 			return NOTIFY_DONE;
476 	}
477 
478 	if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
479 		return NOTIFY_DONE;
480 
481 	/* Must touch watchdog before return to normal operation */
482 	touch_nmi_watchdog();
483 	return NOTIFY_STOP;
484 }
485 
486 static int
487 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
488 {
489 	unsigned long flags;
490 	int ret;
491 
492 	local_irq_save(flags);
493 	ret = __kgdb_notify(ptr, cmd);
494 	local_irq_restore(flags);
495 
496 	return ret;
497 }
498 
499 static struct notifier_block kgdb_notifier = {
500 	.notifier_call	= kgdb_notify,
501 
502 	/*
503 	 * Lowest-prio notifier priority, we want to be notified last:
504 	 */
505 	.priority	= -INT_MAX,
506 };
507 
508 /**
509  *	kgdb_arch_init - Perform any architecture specific initalization.
510  *
511  *	This function will handle the initalization of any architecture
512  *	specific callbacks.
513  */
514 int kgdb_arch_init(void)
515 {
516 	return register_die_notifier(&kgdb_notifier);
517 }
518 
519 /**
520  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
521  *
522  *	This function will handle the uninitalization of any architecture
523  *	specific callbacks, for dynamic registration and unregistration.
524  */
525 void kgdb_arch_exit(void)
526 {
527 	unregister_die_notifier(&kgdb_notifier);
528 }
529 
530 /**
531  *
532  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
533  *	@exception: Exception vector number
534  *	@regs: Current &struct pt_regs.
535  *
536  *	On some architectures we need to skip a breakpoint exception when
537  *	it occurs after a breakpoint has been removed.
538  *
539  * Skip an int3 exception when it occurs after a breakpoint has been
540  * removed. Backtrack eip by 1 since the int3 would have caused it to
541  * increment by 1.
542  */
543 int kgdb_skipexception(int exception, struct pt_regs *regs)
544 {
545 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
546 		regs->ip -= 1;
547 		return 1;
548 	}
549 	return 0;
550 }
551 
552 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
553 {
554 	if (exception == 3)
555 		return instruction_pointer(regs) - 1;
556 	return instruction_pointer(regs);
557 }
558 
559 struct kgdb_arch arch_kgdb_ops = {
560 	/* Breakpoint instruction: */
561 	.gdb_bpt_instr		= { 0xcc },
562 	.flags			= KGDB_HW_BREAKPOINT,
563 	.set_hw_breakpoint	= kgdb_set_hw_break,
564 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
565 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
566 	.correct_hw_break	= kgdb_correct_hw_break,
567 };
568