1 /* 2 * This program is free software; you can redistribute it and/or modify it 3 * under the terms of the GNU General Public License as published by the 4 * Free Software Foundation; either version 2, or (at your option) any 5 * later version. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 * 12 */ 13 14 /* 15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com> 16 * Copyright (C) 2000-2001 VERITAS Software Corporation. 17 * Copyright (C) 2002 Andi Kleen, SuSE Labs 18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd. 19 * Copyright (C) 2007 MontaVista Software, Inc. 20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc. 21 */ 22 /**************************************************************************** 23 * Contributor: Lake Stevens Instrument Division$ 24 * Written by: Glenn Engel $ 25 * Updated by: Amit Kale<akale@veritas.com> 26 * Updated by: Tom Rini <trini@kernel.crashing.org> 27 * Updated by: Jason Wessel <jason.wessel@windriver.com> 28 * Modified for 386 by Jim Kingdon, Cygnus Support. 29 * Origianl kgdb, compatibility with 2.1.xx kernel by 30 * David Grothe <dave@gcom.com> 31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com> 32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston 33 */ 34 #include <linux/spinlock.h> 35 #include <linux/kdebug.h> 36 #include <linux/string.h> 37 #include <linux/kernel.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/delay.h> 41 #include <linux/kgdb.h> 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/nmi.h> 45 46 #include <asm/apicdef.h> 47 #include <asm/system.h> 48 49 #include <asm/apic.h> 50 51 /* 52 * Put the error code here just in case the user cares: 53 */ 54 static int gdb_x86errcode; 55 56 /* 57 * Likewise, the vector number here (since GDB only gets the signal 58 * number through the usual means, and that's not very specific): 59 */ 60 static int gdb_x86vector = -1; 61 62 /** 63 * pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs 64 * @gdb_regs: A pointer to hold the registers in the order GDB wants. 65 * @regs: The &struct pt_regs of the current process. 66 * 67 * Convert the pt_regs in @regs into the format for registers that 68 * GDB expects, stored in @gdb_regs. 69 */ 70 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) 71 { 72 #ifndef CONFIG_X86_32 73 u32 *gdb_regs32 = (u32 *)gdb_regs; 74 #endif 75 gdb_regs[GDB_AX] = regs->ax; 76 gdb_regs[GDB_BX] = regs->bx; 77 gdb_regs[GDB_CX] = regs->cx; 78 gdb_regs[GDB_DX] = regs->dx; 79 gdb_regs[GDB_SI] = regs->si; 80 gdb_regs[GDB_DI] = regs->di; 81 gdb_regs[GDB_BP] = regs->bp; 82 gdb_regs[GDB_PC] = regs->ip; 83 #ifdef CONFIG_X86_32 84 gdb_regs[GDB_PS] = regs->flags; 85 gdb_regs[GDB_DS] = regs->ds; 86 gdb_regs[GDB_ES] = regs->es; 87 gdb_regs[GDB_CS] = regs->cs; 88 gdb_regs[GDB_SS] = __KERNEL_DS; 89 gdb_regs[GDB_FS] = 0xFFFF; 90 gdb_regs[GDB_GS] = 0xFFFF; 91 gdb_regs[GDB_SP] = (int)®s->sp; 92 #else 93 gdb_regs[GDB_R8] = regs->r8; 94 gdb_regs[GDB_R9] = regs->r9; 95 gdb_regs[GDB_R10] = regs->r10; 96 gdb_regs[GDB_R11] = regs->r11; 97 gdb_regs[GDB_R12] = regs->r12; 98 gdb_regs[GDB_R13] = regs->r13; 99 gdb_regs[GDB_R14] = regs->r14; 100 gdb_regs[GDB_R15] = regs->r15; 101 gdb_regs32[GDB_PS] = regs->flags; 102 gdb_regs32[GDB_CS] = regs->cs; 103 gdb_regs32[GDB_SS] = regs->ss; 104 gdb_regs[GDB_SP] = regs->sp; 105 #endif 106 } 107 108 /** 109 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs 110 * @gdb_regs: A pointer to hold the registers in the order GDB wants. 111 * @p: The &struct task_struct of the desired process. 112 * 113 * Convert the register values of the sleeping process in @p to 114 * the format that GDB expects. 115 * This function is called when kgdb does not have access to the 116 * &struct pt_regs and therefore it should fill the gdb registers 117 * @gdb_regs with what has been saved in &struct thread_struct 118 * thread field during switch_to. 119 */ 120 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) 121 { 122 #ifndef CONFIG_X86_32 123 u32 *gdb_regs32 = (u32 *)gdb_regs; 124 #endif 125 gdb_regs[GDB_AX] = 0; 126 gdb_regs[GDB_BX] = 0; 127 gdb_regs[GDB_CX] = 0; 128 gdb_regs[GDB_DX] = 0; 129 gdb_regs[GDB_SI] = 0; 130 gdb_regs[GDB_DI] = 0; 131 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp; 132 #ifdef CONFIG_X86_32 133 gdb_regs[GDB_DS] = __KERNEL_DS; 134 gdb_regs[GDB_ES] = __KERNEL_DS; 135 gdb_regs[GDB_PS] = 0; 136 gdb_regs[GDB_CS] = __KERNEL_CS; 137 gdb_regs[GDB_PC] = p->thread.ip; 138 gdb_regs[GDB_SS] = __KERNEL_DS; 139 gdb_regs[GDB_FS] = 0xFFFF; 140 gdb_regs[GDB_GS] = 0xFFFF; 141 #else 142 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8); 143 gdb_regs32[GDB_CS] = __KERNEL_CS; 144 gdb_regs32[GDB_SS] = __KERNEL_DS; 145 gdb_regs[GDB_PC] = 0; 146 gdb_regs[GDB_R8] = 0; 147 gdb_regs[GDB_R9] = 0; 148 gdb_regs[GDB_R10] = 0; 149 gdb_regs[GDB_R11] = 0; 150 gdb_regs[GDB_R12] = 0; 151 gdb_regs[GDB_R13] = 0; 152 gdb_regs[GDB_R14] = 0; 153 gdb_regs[GDB_R15] = 0; 154 #endif 155 gdb_regs[GDB_SP] = p->thread.sp; 156 } 157 158 /** 159 * gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs. 160 * @gdb_regs: A pointer to hold the registers we've received from GDB. 161 * @regs: A pointer to a &struct pt_regs to hold these values in. 162 * 163 * Convert the GDB regs in @gdb_regs into the pt_regs, and store them 164 * in @regs. 165 */ 166 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) 167 { 168 #ifndef CONFIG_X86_32 169 u32 *gdb_regs32 = (u32 *)gdb_regs; 170 #endif 171 regs->ax = gdb_regs[GDB_AX]; 172 regs->bx = gdb_regs[GDB_BX]; 173 regs->cx = gdb_regs[GDB_CX]; 174 regs->dx = gdb_regs[GDB_DX]; 175 regs->si = gdb_regs[GDB_SI]; 176 regs->di = gdb_regs[GDB_DI]; 177 regs->bp = gdb_regs[GDB_BP]; 178 regs->ip = gdb_regs[GDB_PC]; 179 #ifdef CONFIG_X86_32 180 regs->flags = gdb_regs[GDB_PS]; 181 regs->ds = gdb_regs[GDB_DS]; 182 regs->es = gdb_regs[GDB_ES]; 183 regs->cs = gdb_regs[GDB_CS]; 184 #else 185 regs->r8 = gdb_regs[GDB_R8]; 186 regs->r9 = gdb_regs[GDB_R9]; 187 regs->r10 = gdb_regs[GDB_R10]; 188 regs->r11 = gdb_regs[GDB_R11]; 189 regs->r12 = gdb_regs[GDB_R12]; 190 regs->r13 = gdb_regs[GDB_R13]; 191 regs->r14 = gdb_regs[GDB_R14]; 192 regs->r15 = gdb_regs[GDB_R15]; 193 regs->flags = gdb_regs32[GDB_PS]; 194 regs->cs = gdb_regs32[GDB_CS]; 195 regs->ss = gdb_regs32[GDB_SS]; 196 #endif 197 } 198 199 static struct hw_breakpoint { 200 unsigned enabled; 201 unsigned type; 202 unsigned len; 203 unsigned long addr; 204 } breakinfo[4]; 205 206 static void kgdb_correct_hw_break(void) 207 { 208 unsigned long dr7; 209 int correctit = 0; 210 int breakbit; 211 int breakno; 212 213 get_debugreg(dr7, 7); 214 for (breakno = 0; breakno < 4; breakno++) { 215 breakbit = 2 << (breakno << 1); 216 if (!(dr7 & breakbit) && breakinfo[breakno].enabled) { 217 correctit = 1; 218 dr7 |= breakbit; 219 dr7 &= ~(0xf0000 << (breakno << 2)); 220 dr7 |= ((breakinfo[breakno].len << 2) | 221 breakinfo[breakno].type) << 222 ((breakno << 2) + 16); 223 if (breakno >= 0 && breakno <= 3) 224 set_debugreg(breakinfo[breakno].addr, breakno); 225 226 } else { 227 if ((dr7 & breakbit) && !breakinfo[breakno].enabled) { 228 correctit = 1; 229 dr7 &= ~breakbit; 230 dr7 &= ~(0xf0000 << (breakno << 2)); 231 } 232 } 233 } 234 if (correctit) 235 set_debugreg(dr7, 7); 236 } 237 238 static int 239 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) 240 { 241 int i; 242 243 for (i = 0; i < 4; i++) 244 if (breakinfo[i].addr == addr && breakinfo[i].enabled) 245 break; 246 if (i == 4) 247 return -1; 248 249 breakinfo[i].enabled = 0; 250 251 return 0; 252 } 253 254 static void kgdb_remove_all_hw_break(void) 255 { 256 int i; 257 258 for (i = 0; i < 4; i++) 259 memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint)); 260 } 261 262 static int 263 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) 264 { 265 unsigned type; 266 int i; 267 268 for (i = 0; i < 4; i++) 269 if (!breakinfo[i].enabled) 270 break; 271 if (i == 4) 272 return -1; 273 274 switch (bptype) { 275 case BP_HARDWARE_BREAKPOINT: 276 type = 0; 277 len = 1; 278 break; 279 case BP_WRITE_WATCHPOINT: 280 type = 1; 281 break; 282 case BP_ACCESS_WATCHPOINT: 283 type = 3; 284 break; 285 default: 286 return -1; 287 } 288 289 if (len == 1 || len == 2 || len == 4) 290 breakinfo[i].len = len - 1; 291 else 292 return -1; 293 294 breakinfo[i].enabled = 1; 295 breakinfo[i].addr = addr; 296 breakinfo[i].type = type; 297 298 return 0; 299 } 300 301 /** 302 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. 303 * @regs: Current &struct pt_regs. 304 * 305 * This function will be called if the particular architecture must 306 * disable hardware debugging while it is processing gdb packets or 307 * handling exception. 308 */ 309 void kgdb_disable_hw_debug(struct pt_regs *regs) 310 { 311 /* Disable hardware debugging while we are in kgdb: */ 312 set_debugreg(0UL, 7); 313 } 314 315 /** 316 * kgdb_post_primary_code - Save error vector/code numbers. 317 * @regs: Original pt_regs. 318 * @e_vector: Original error vector. 319 * @err_code: Original error code. 320 * 321 * This is needed on architectures which support SMP and KGDB. 322 * This function is called after all the slave cpus have been put 323 * to a know spin state and the primary CPU has control over KGDB. 324 */ 325 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code) 326 { 327 /* primary processor is completely in the debugger */ 328 gdb_x86vector = e_vector; 329 gdb_x86errcode = err_code; 330 } 331 332 #ifdef CONFIG_SMP 333 /** 334 * kgdb_roundup_cpus - Get other CPUs into a holding pattern 335 * @flags: Current IRQ state 336 * 337 * On SMP systems, we need to get the attention of the other CPUs 338 * and get them be in a known state. This should do what is needed 339 * to get the other CPUs to call kgdb_wait(). Note that on some arches, 340 * the NMI approach is not used for rounding up all the CPUs. For example, 341 * in case of MIPS, smp_call_function() is used to roundup CPUs. In 342 * this case, we have to make sure that interrupts are enabled before 343 * calling smp_call_function(). The argument to this function is 344 * the flags that will be used when restoring the interrupts. There is 345 * local_irq_save() call before kgdb_roundup_cpus(). 346 * 347 * On non-SMP systems, this is not called. 348 */ 349 void kgdb_roundup_cpus(unsigned long flags) 350 { 351 apic->send_IPI_allbutself(APIC_DM_NMI); 352 } 353 #endif 354 355 /** 356 * kgdb_arch_handle_exception - Handle architecture specific GDB packets. 357 * @vector: The error vector of the exception that happened. 358 * @signo: The signal number of the exception that happened. 359 * @err_code: The error code of the exception that happened. 360 * @remcom_in_buffer: The buffer of the packet we have read. 361 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into. 362 * @regs: The &struct pt_regs of the current process. 363 * 364 * This function MUST handle the 'c' and 's' command packets, 365 * as well packets to set / remove a hardware breakpoint, if used. 366 * If there are additional packets which the hardware needs to handle, 367 * they are handled here. The code should return -1 if it wants to 368 * process more packets, and a %0 or %1 if it wants to exit from the 369 * kgdb callback. 370 */ 371 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, 372 char *remcomInBuffer, char *remcomOutBuffer, 373 struct pt_regs *linux_regs) 374 { 375 unsigned long addr; 376 unsigned long dr6; 377 char *ptr; 378 int newPC; 379 380 switch (remcomInBuffer[0]) { 381 case 'c': 382 case 's': 383 /* try to read optional parameter, pc unchanged if no parm */ 384 ptr = &remcomInBuffer[1]; 385 if (kgdb_hex2long(&ptr, &addr)) 386 linux_regs->ip = addr; 387 case 'D': 388 case 'k': 389 newPC = linux_regs->ip; 390 391 /* clear the trace bit */ 392 linux_regs->flags &= ~X86_EFLAGS_TF; 393 atomic_set(&kgdb_cpu_doing_single_step, -1); 394 395 /* set the trace bit if we're stepping */ 396 if (remcomInBuffer[0] == 's') { 397 linux_regs->flags |= X86_EFLAGS_TF; 398 kgdb_single_step = 1; 399 atomic_set(&kgdb_cpu_doing_single_step, 400 raw_smp_processor_id()); 401 } 402 403 get_debugreg(dr6, 6); 404 if (!(dr6 & 0x4000)) { 405 int breakno; 406 407 for (breakno = 0; breakno < 4; breakno++) { 408 if (dr6 & (1 << breakno) && 409 breakinfo[breakno].type == 0) { 410 /* Set restore flag: */ 411 linux_regs->flags |= X86_EFLAGS_RF; 412 break; 413 } 414 } 415 } 416 set_debugreg(0UL, 6); 417 kgdb_correct_hw_break(); 418 419 return 0; 420 } 421 422 /* this means that we do not want to exit from the handler: */ 423 return -1; 424 } 425 426 static inline int 427 single_step_cont(struct pt_regs *regs, struct die_args *args) 428 { 429 /* 430 * Single step exception from kernel space to user space so 431 * eat the exception and continue the process: 432 */ 433 printk(KERN_ERR "KGDB: trap/step from kernel to user space, " 434 "resuming...\n"); 435 kgdb_arch_handle_exception(args->trapnr, args->signr, 436 args->err, "c", "", regs); 437 438 return NOTIFY_STOP; 439 } 440 441 static int was_in_debug_nmi[NR_CPUS]; 442 443 static int __kgdb_notify(struct die_args *args, unsigned long cmd) 444 { 445 struct pt_regs *regs = args->regs; 446 447 switch (cmd) { 448 case DIE_NMI: 449 if (atomic_read(&kgdb_active) != -1) { 450 /* KGDB CPU roundup */ 451 kgdb_nmicallback(raw_smp_processor_id(), regs); 452 was_in_debug_nmi[raw_smp_processor_id()] = 1; 453 touch_nmi_watchdog(); 454 return NOTIFY_STOP; 455 } 456 return NOTIFY_DONE; 457 458 case DIE_NMI_IPI: 459 /* Just ignore, we will handle the roundup on DIE_NMI. */ 460 return NOTIFY_DONE; 461 462 case DIE_NMIUNKNOWN: 463 if (was_in_debug_nmi[raw_smp_processor_id()]) { 464 was_in_debug_nmi[raw_smp_processor_id()] = 0; 465 return NOTIFY_STOP; 466 } 467 return NOTIFY_DONE; 468 469 case DIE_NMIWATCHDOG: 470 if (atomic_read(&kgdb_active) != -1) { 471 /* KGDB CPU roundup: */ 472 kgdb_nmicallback(raw_smp_processor_id(), regs); 473 return NOTIFY_STOP; 474 } 475 /* Enter debugger: */ 476 break; 477 478 case DIE_DEBUG: 479 if (atomic_read(&kgdb_cpu_doing_single_step) == 480 raw_smp_processor_id()) { 481 if (user_mode(regs)) 482 return single_step_cont(regs, args); 483 break; 484 } else if (test_thread_flag(TIF_SINGLESTEP)) 485 /* This means a user thread is single stepping 486 * a system call which should be ignored 487 */ 488 return NOTIFY_DONE; 489 /* fall through */ 490 default: 491 if (user_mode(regs)) 492 return NOTIFY_DONE; 493 } 494 495 if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs)) 496 return NOTIFY_DONE; 497 498 /* Must touch watchdog before return to normal operation */ 499 touch_nmi_watchdog(); 500 return NOTIFY_STOP; 501 } 502 503 static int 504 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr) 505 { 506 unsigned long flags; 507 int ret; 508 509 local_irq_save(flags); 510 ret = __kgdb_notify(ptr, cmd); 511 local_irq_restore(flags); 512 513 return ret; 514 } 515 516 static struct notifier_block kgdb_notifier = { 517 .notifier_call = kgdb_notify, 518 519 /* 520 * Lowest-prio notifier priority, we want to be notified last: 521 */ 522 .priority = -INT_MAX, 523 }; 524 525 /** 526 * kgdb_arch_init - Perform any architecture specific initalization. 527 * 528 * This function will handle the initalization of any architecture 529 * specific callbacks. 530 */ 531 int kgdb_arch_init(void) 532 { 533 return register_die_notifier(&kgdb_notifier); 534 } 535 536 /** 537 * kgdb_arch_exit - Perform any architecture specific uninitalization. 538 * 539 * This function will handle the uninitalization of any architecture 540 * specific callbacks, for dynamic registration and unregistration. 541 */ 542 void kgdb_arch_exit(void) 543 { 544 unregister_die_notifier(&kgdb_notifier); 545 } 546 547 /** 548 * 549 * kgdb_skipexception - Bail out of KGDB when we've been triggered. 550 * @exception: Exception vector number 551 * @regs: Current &struct pt_regs. 552 * 553 * On some architectures we need to skip a breakpoint exception when 554 * it occurs after a breakpoint has been removed. 555 * 556 * Skip an int3 exception when it occurs after a breakpoint has been 557 * removed. Backtrack eip by 1 since the int3 would have caused it to 558 * increment by 1. 559 */ 560 int kgdb_skipexception(int exception, struct pt_regs *regs) 561 { 562 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) { 563 regs->ip -= 1; 564 return 1; 565 } 566 return 0; 567 } 568 569 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs) 570 { 571 if (exception == 3) 572 return instruction_pointer(regs) - 1; 573 return instruction_pointer(regs); 574 } 575 576 struct kgdb_arch arch_kgdb_ops = { 577 /* Breakpoint instruction: */ 578 .gdb_bpt_instr = { 0xcc }, 579 .flags = KGDB_HW_BREAKPOINT, 580 .set_hw_breakpoint = kgdb_set_hw_break, 581 .remove_hw_breakpoint = kgdb_remove_hw_break, 582 .remove_all_hw_break = kgdb_remove_all_hw_break, 583 .correct_hw_break = kgdb_correct_hw_break, 584 }; 585