xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision e8e0929d)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
45 
46 #include <asm/apicdef.h>
47 #include <asm/system.h>
48 
49 #include <asm/apic.h>
50 
51 /*
52  * Put the error code here just in case the user cares:
53  */
54 static int gdb_x86errcode;
55 
56 /*
57  * Likewise, the vector number here (since GDB only gets the signal
58  * number through the usual means, and that's not very specific):
59  */
60 static int gdb_x86vector = -1;
61 
62 /**
63  *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
64  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
65  *	@regs: The &struct pt_regs of the current process.
66  *
67  *	Convert the pt_regs in @regs into the format for registers that
68  *	GDB expects, stored in @gdb_regs.
69  */
70 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
71 {
72 #ifndef CONFIG_X86_32
73 	u32 *gdb_regs32 = (u32 *)gdb_regs;
74 #endif
75 	gdb_regs[GDB_AX]	= regs->ax;
76 	gdb_regs[GDB_BX]	= regs->bx;
77 	gdb_regs[GDB_CX]	= regs->cx;
78 	gdb_regs[GDB_DX]	= regs->dx;
79 	gdb_regs[GDB_SI]	= regs->si;
80 	gdb_regs[GDB_DI]	= regs->di;
81 	gdb_regs[GDB_BP]	= regs->bp;
82 	gdb_regs[GDB_PC]	= regs->ip;
83 #ifdef CONFIG_X86_32
84 	gdb_regs[GDB_PS]	= regs->flags;
85 	gdb_regs[GDB_DS]	= regs->ds;
86 	gdb_regs[GDB_ES]	= regs->es;
87 	gdb_regs[GDB_CS]	= regs->cs;
88 	gdb_regs[GDB_SS]	= __KERNEL_DS;
89 	gdb_regs[GDB_FS]	= 0xFFFF;
90 	gdb_regs[GDB_GS]	= 0xFFFF;
91 	gdb_regs[GDB_SP]	= (int)&regs->sp;
92 #else
93 	gdb_regs[GDB_R8]	= regs->r8;
94 	gdb_regs[GDB_R9]	= regs->r9;
95 	gdb_regs[GDB_R10]	= regs->r10;
96 	gdb_regs[GDB_R11]	= regs->r11;
97 	gdb_regs[GDB_R12]	= regs->r12;
98 	gdb_regs[GDB_R13]	= regs->r13;
99 	gdb_regs[GDB_R14]	= regs->r14;
100 	gdb_regs[GDB_R15]	= regs->r15;
101 	gdb_regs32[GDB_PS]	= regs->flags;
102 	gdb_regs32[GDB_CS]	= regs->cs;
103 	gdb_regs32[GDB_SS]	= regs->ss;
104 	gdb_regs[GDB_SP]	= regs->sp;
105 #endif
106 }
107 
108 /**
109  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
110  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
111  *	@p: The &struct task_struct of the desired process.
112  *
113  *	Convert the register values of the sleeping process in @p to
114  *	the format that GDB expects.
115  *	This function is called when kgdb does not have access to the
116  *	&struct pt_regs and therefore it should fill the gdb registers
117  *	@gdb_regs with what has	been saved in &struct thread_struct
118  *	thread field during switch_to.
119  */
120 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
121 {
122 #ifndef CONFIG_X86_32
123 	u32 *gdb_regs32 = (u32 *)gdb_regs;
124 #endif
125 	gdb_regs[GDB_AX]	= 0;
126 	gdb_regs[GDB_BX]	= 0;
127 	gdb_regs[GDB_CX]	= 0;
128 	gdb_regs[GDB_DX]	= 0;
129 	gdb_regs[GDB_SI]	= 0;
130 	gdb_regs[GDB_DI]	= 0;
131 	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
132 #ifdef CONFIG_X86_32
133 	gdb_regs[GDB_DS]	= __KERNEL_DS;
134 	gdb_regs[GDB_ES]	= __KERNEL_DS;
135 	gdb_regs[GDB_PS]	= 0;
136 	gdb_regs[GDB_CS]	= __KERNEL_CS;
137 	gdb_regs[GDB_PC]	= p->thread.ip;
138 	gdb_regs[GDB_SS]	= __KERNEL_DS;
139 	gdb_regs[GDB_FS]	= 0xFFFF;
140 	gdb_regs[GDB_GS]	= 0xFFFF;
141 #else
142 	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
143 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
144 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
145 	gdb_regs[GDB_PC]	= 0;
146 	gdb_regs[GDB_R8]	= 0;
147 	gdb_regs[GDB_R9]	= 0;
148 	gdb_regs[GDB_R10]	= 0;
149 	gdb_regs[GDB_R11]	= 0;
150 	gdb_regs[GDB_R12]	= 0;
151 	gdb_regs[GDB_R13]	= 0;
152 	gdb_regs[GDB_R14]	= 0;
153 	gdb_regs[GDB_R15]	= 0;
154 #endif
155 	gdb_regs[GDB_SP]	= p->thread.sp;
156 }
157 
158 /**
159  *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
160  *	@gdb_regs: A pointer to hold the registers we've received from GDB.
161  *	@regs: A pointer to a &struct pt_regs to hold these values in.
162  *
163  *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
164  *	in @regs.
165  */
166 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
167 {
168 #ifndef CONFIG_X86_32
169 	u32 *gdb_regs32 = (u32 *)gdb_regs;
170 #endif
171 	regs->ax		= gdb_regs[GDB_AX];
172 	regs->bx		= gdb_regs[GDB_BX];
173 	regs->cx		= gdb_regs[GDB_CX];
174 	regs->dx		= gdb_regs[GDB_DX];
175 	regs->si		= gdb_regs[GDB_SI];
176 	regs->di		= gdb_regs[GDB_DI];
177 	regs->bp		= gdb_regs[GDB_BP];
178 	regs->ip		= gdb_regs[GDB_PC];
179 #ifdef CONFIG_X86_32
180 	regs->flags		= gdb_regs[GDB_PS];
181 	regs->ds		= gdb_regs[GDB_DS];
182 	regs->es		= gdb_regs[GDB_ES];
183 	regs->cs		= gdb_regs[GDB_CS];
184 #else
185 	regs->r8		= gdb_regs[GDB_R8];
186 	regs->r9		= gdb_regs[GDB_R9];
187 	regs->r10		= gdb_regs[GDB_R10];
188 	regs->r11		= gdb_regs[GDB_R11];
189 	regs->r12		= gdb_regs[GDB_R12];
190 	regs->r13		= gdb_regs[GDB_R13];
191 	regs->r14		= gdb_regs[GDB_R14];
192 	regs->r15		= gdb_regs[GDB_R15];
193 	regs->flags		= gdb_regs32[GDB_PS];
194 	regs->cs		= gdb_regs32[GDB_CS];
195 	regs->ss		= gdb_regs32[GDB_SS];
196 #endif
197 }
198 
199 static struct hw_breakpoint {
200 	unsigned		enabled;
201 	unsigned		type;
202 	unsigned		len;
203 	unsigned long		addr;
204 } breakinfo[4];
205 
206 static void kgdb_correct_hw_break(void)
207 {
208 	unsigned long dr7;
209 	int correctit = 0;
210 	int breakbit;
211 	int breakno;
212 
213 	get_debugreg(dr7, 7);
214 	for (breakno = 0; breakno < 4; breakno++) {
215 		breakbit = 2 << (breakno << 1);
216 		if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
217 			correctit = 1;
218 			dr7 |= breakbit;
219 			dr7 &= ~(0xf0000 << (breakno << 2));
220 			dr7 |= ((breakinfo[breakno].len << 2) |
221 				 breakinfo[breakno].type) <<
222 			       ((breakno << 2) + 16);
223 			if (breakno >= 0 && breakno <= 3)
224 				set_debugreg(breakinfo[breakno].addr, breakno);
225 
226 		} else {
227 			if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
228 				correctit = 1;
229 				dr7 &= ~breakbit;
230 				dr7 &= ~(0xf0000 << (breakno << 2));
231 			}
232 		}
233 	}
234 	if (correctit)
235 		set_debugreg(dr7, 7);
236 }
237 
238 static int
239 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
240 {
241 	int i;
242 
243 	for (i = 0; i < 4; i++)
244 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
245 			break;
246 	if (i == 4)
247 		return -1;
248 
249 	breakinfo[i].enabled = 0;
250 
251 	return 0;
252 }
253 
254 static void kgdb_remove_all_hw_break(void)
255 {
256 	int i;
257 
258 	for (i = 0; i < 4; i++)
259 		memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
260 }
261 
262 static int
263 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
264 {
265 	unsigned type;
266 	int i;
267 
268 	for (i = 0; i < 4; i++)
269 		if (!breakinfo[i].enabled)
270 			break;
271 	if (i == 4)
272 		return -1;
273 
274 	switch (bptype) {
275 	case BP_HARDWARE_BREAKPOINT:
276 		type = 0;
277 		len  = 1;
278 		break;
279 	case BP_WRITE_WATCHPOINT:
280 		type = 1;
281 		break;
282 	case BP_ACCESS_WATCHPOINT:
283 		type = 3;
284 		break;
285 	default:
286 		return -1;
287 	}
288 
289 	if (len == 1 || len == 2 || len == 4)
290 		breakinfo[i].len  = len - 1;
291 	else
292 		return -1;
293 
294 	breakinfo[i].enabled = 1;
295 	breakinfo[i].addr = addr;
296 	breakinfo[i].type = type;
297 
298 	return 0;
299 }
300 
301 /**
302  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
303  *	@regs: Current &struct pt_regs.
304  *
305  *	This function will be called if the particular architecture must
306  *	disable hardware debugging while it is processing gdb packets or
307  *	handling exception.
308  */
309 void kgdb_disable_hw_debug(struct pt_regs *regs)
310 {
311 	/* Disable hardware debugging while we are in kgdb: */
312 	set_debugreg(0UL, 7);
313 }
314 
315 /**
316  *	kgdb_post_primary_code - Save error vector/code numbers.
317  *	@regs: Original pt_regs.
318  *	@e_vector: Original error vector.
319  *	@err_code: Original error code.
320  *
321  *	This is needed on architectures which support SMP and KGDB.
322  *	This function is called after all the slave cpus have been put
323  *	to a know spin state and the primary CPU has control over KGDB.
324  */
325 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
326 {
327 	/* primary processor is completely in the debugger */
328 	gdb_x86vector = e_vector;
329 	gdb_x86errcode = err_code;
330 }
331 
332 #ifdef CONFIG_SMP
333 /**
334  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
335  *	@flags: Current IRQ state
336  *
337  *	On SMP systems, we need to get the attention of the other CPUs
338  *	and get them be in a known state.  This should do what is needed
339  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
340  *	the NMI approach is not used for rounding up all the CPUs. For example,
341  *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
342  *	this case, we have to make sure that interrupts are enabled before
343  *	calling smp_call_function(). The argument to this function is
344  *	the flags that will be used when restoring the interrupts. There is
345  *	local_irq_save() call before kgdb_roundup_cpus().
346  *
347  *	On non-SMP systems, this is not called.
348  */
349 void kgdb_roundup_cpus(unsigned long flags)
350 {
351 	apic->send_IPI_allbutself(APIC_DM_NMI);
352 }
353 #endif
354 
355 /**
356  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
357  *	@vector: The error vector of the exception that happened.
358  *	@signo: The signal number of the exception that happened.
359  *	@err_code: The error code of the exception that happened.
360  *	@remcom_in_buffer: The buffer of the packet we have read.
361  *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
362  *	@regs: The &struct pt_regs of the current process.
363  *
364  *	This function MUST handle the 'c' and 's' command packets,
365  *	as well packets to set / remove a hardware breakpoint, if used.
366  *	If there are additional packets which the hardware needs to handle,
367  *	they are handled here.  The code should return -1 if it wants to
368  *	process more packets, and a %0 or %1 if it wants to exit from the
369  *	kgdb callback.
370  */
371 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
372 			       char *remcomInBuffer, char *remcomOutBuffer,
373 			       struct pt_regs *linux_regs)
374 {
375 	unsigned long addr;
376 	unsigned long dr6;
377 	char *ptr;
378 	int newPC;
379 
380 	switch (remcomInBuffer[0]) {
381 	case 'c':
382 	case 's':
383 		/* try to read optional parameter, pc unchanged if no parm */
384 		ptr = &remcomInBuffer[1];
385 		if (kgdb_hex2long(&ptr, &addr))
386 			linux_regs->ip = addr;
387 	case 'D':
388 	case 'k':
389 		newPC = linux_regs->ip;
390 
391 		/* clear the trace bit */
392 		linux_regs->flags &= ~X86_EFLAGS_TF;
393 		atomic_set(&kgdb_cpu_doing_single_step, -1);
394 
395 		/* set the trace bit if we're stepping */
396 		if (remcomInBuffer[0] == 's') {
397 			linux_regs->flags |= X86_EFLAGS_TF;
398 			kgdb_single_step = 1;
399 			atomic_set(&kgdb_cpu_doing_single_step,
400 				   raw_smp_processor_id());
401 		}
402 
403 		get_debugreg(dr6, 6);
404 		if (!(dr6 & 0x4000)) {
405 			int breakno;
406 
407 			for (breakno = 0; breakno < 4; breakno++) {
408 				if (dr6 & (1 << breakno) &&
409 				    breakinfo[breakno].type == 0) {
410 					/* Set restore flag: */
411 					linux_regs->flags |= X86_EFLAGS_RF;
412 					break;
413 				}
414 			}
415 		}
416 		set_debugreg(0UL, 6);
417 		kgdb_correct_hw_break();
418 
419 		return 0;
420 	}
421 
422 	/* this means that we do not want to exit from the handler: */
423 	return -1;
424 }
425 
426 static inline int
427 single_step_cont(struct pt_regs *regs, struct die_args *args)
428 {
429 	/*
430 	 * Single step exception from kernel space to user space so
431 	 * eat the exception and continue the process:
432 	 */
433 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
434 			"resuming...\n");
435 	kgdb_arch_handle_exception(args->trapnr, args->signr,
436 				   args->err, "c", "", regs);
437 
438 	return NOTIFY_STOP;
439 }
440 
441 static int was_in_debug_nmi[NR_CPUS];
442 
443 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
444 {
445 	struct pt_regs *regs = args->regs;
446 
447 	switch (cmd) {
448 	case DIE_NMI:
449 		if (atomic_read(&kgdb_active) != -1) {
450 			/* KGDB CPU roundup */
451 			kgdb_nmicallback(raw_smp_processor_id(), regs);
452 			was_in_debug_nmi[raw_smp_processor_id()] = 1;
453 			touch_nmi_watchdog();
454 			return NOTIFY_STOP;
455 		}
456 		return NOTIFY_DONE;
457 
458 	case DIE_NMI_IPI:
459 		/* Just ignore, we will handle the roundup on DIE_NMI. */
460 		return NOTIFY_DONE;
461 
462 	case DIE_NMIUNKNOWN:
463 		if (was_in_debug_nmi[raw_smp_processor_id()]) {
464 			was_in_debug_nmi[raw_smp_processor_id()] = 0;
465 			return NOTIFY_STOP;
466 		}
467 		return NOTIFY_DONE;
468 
469 	case DIE_NMIWATCHDOG:
470 		if (atomic_read(&kgdb_active) != -1) {
471 			/* KGDB CPU roundup: */
472 			kgdb_nmicallback(raw_smp_processor_id(), regs);
473 			return NOTIFY_STOP;
474 		}
475 		/* Enter debugger: */
476 		break;
477 
478 	case DIE_DEBUG:
479 		if (atomic_read(&kgdb_cpu_doing_single_step) ==
480 		    raw_smp_processor_id()) {
481 			if (user_mode(regs))
482 				return single_step_cont(regs, args);
483 			break;
484 		} else if (test_thread_flag(TIF_SINGLESTEP))
485 			/* This means a user thread is single stepping
486 			 * a system call which should be ignored
487 			 */
488 			return NOTIFY_DONE;
489 		/* fall through */
490 	default:
491 		if (user_mode(regs))
492 			return NOTIFY_DONE;
493 	}
494 
495 	if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
496 		return NOTIFY_DONE;
497 
498 	/* Must touch watchdog before return to normal operation */
499 	touch_nmi_watchdog();
500 	return NOTIFY_STOP;
501 }
502 
503 static int
504 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
505 {
506 	unsigned long flags;
507 	int ret;
508 
509 	local_irq_save(flags);
510 	ret = __kgdb_notify(ptr, cmd);
511 	local_irq_restore(flags);
512 
513 	return ret;
514 }
515 
516 static struct notifier_block kgdb_notifier = {
517 	.notifier_call	= kgdb_notify,
518 
519 	/*
520 	 * Lowest-prio notifier priority, we want to be notified last:
521 	 */
522 	.priority	= -INT_MAX,
523 };
524 
525 /**
526  *	kgdb_arch_init - Perform any architecture specific initalization.
527  *
528  *	This function will handle the initalization of any architecture
529  *	specific callbacks.
530  */
531 int kgdb_arch_init(void)
532 {
533 	return register_die_notifier(&kgdb_notifier);
534 }
535 
536 /**
537  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
538  *
539  *	This function will handle the uninitalization of any architecture
540  *	specific callbacks, for dynamic registration and unregistration.
541  */
542 void kgdb_arch_exit(void)
543 {
544 	unregister_die_notifier(&kgdb_notifier);
545 }
546 
547 /**
548  *
549  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
550  *	@exception: Exception vector number
551  *	@regs: Current &struct pt_regs.
552  *
553  *	On some architectures we need to skip a breakpoint exception when
554  *	it occurs after a breakpoint has been removed.
555  *
556  * Skip an int3 exception when it occurs after a breakpoint has been
557  * removed. Backtrack eip by 1 since the int3 would have caused it to
558  * increment by 1.
559  */
560 int kgdb_skipexception(int exception, struct pt_regs *regs)
561 {
562 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
563 		regs->ip -= 1;
564 		return 1;
565 	}
566 	return 0;
567 }
568 
569 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
570 {
571 	if (exception == 3)
572 		return instruction_pointer(regs) - 1;
573 	return instruction_pointer(regs);
574 }
575 
576 struct kgdb_arch arch_kgdb_ops = {
577 	/* Breakpoint instruction: */
578 	.gdb_bpt_instr		= { 0xcc },
579 	.flags			= KGDB_HW_BREAKPOINT,
580 	.set_hw_breakpoint	= kgdb_set_hw_break,
581 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
582 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
583 	.correct_hw_break	= kgdb_correct_hw_break,
584 };
585