xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision d40605b6d088b20827e442903022c65f0f165c84)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  */
4 
5 /*
6  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
7  * Copyright (C) 2000-2001 VERITAS Software Corporation.
8  * Copyright (C) 2002 Andi Kleen, SuSE Labs
9  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
10  * Copyright (C) 2007 MontaVista Software, Inc.
11  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
12  */
13 /****************************************************************************
14  *  Contributor:     Lake Stevens Instrument Division$
15  *  Written by:      Glenn Engel $
16  *  Updated by:	     Amit Kale<akale@veritas.com>
17  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
18  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
19  *  Modified for 386 by Jim Kingdon, Cygnus Support.
20  *  Origianl kgdb, compatibility with 2.1.xx kernel by
21  *  David Grothe <dave@gcom.com>
22  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
23  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
24  */
25 #include <linux/spinlock.h>
26 #include <linux/kdebug.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/ptrace.h>
30 #include <linux/sched.h>
31 #include <linux/delay.h>
32 #include <linux/kgdb.h>
33 #include <linux/smp.h>
34 #include <linux/nmi.h>
35 #include <linux/hw_breakpoint.h>
36 #include <linux/uaccess.h>
37 #include <linux/memory.h>
38 
39 #include <asm/text-patching.h>
40 #include <asm/debugreg.h>
41 #include <asm/apicdef.h>
42 #include <asm/apic.h>
43 #include <asm/nmi.h>
44 #include <asm/switch_to.h>
45 
46 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
47 {
48 #ifdef CONFIG_X86_32
49 	{ "ax", 4, offsetof(struct pt_regs, ax) },
50 	{ "cx", 4, offsetof(struct pt_regs, cx) },
51 	{ "dx", 4, offsetof(struct pt_regs, dx) },
52 	{ "bx", 4, offsetof(struct pt_regs, bx) },
53 	{ "sp", 4, offsetof(struct pt_regs, sp) },
54 	{ "bp", 4, offsetof(struct pt_regs, bp) },
55 	{ "si", 4, offsetof(struct pt_regs, si) },
56 	{ "di", 4, offsetof(struct pt_regs, di) },
57 	{ "ip", 4, offsetof(struct pt_regs, ip) },
58 	{ "flags", 4, offsetof(struct pt_regs, flags) },
59 	{ "cs", 4, offsetof(struct pt_regs, cs) },
60 	{ "ss", 4, offsetof(struct pt_regs, ss) },
61 	{ "ds", 4, offsetof(struct pt_regs, ds) },
62 	{ "es", 4, offsetof(struct pt_regs, es) },
63 #else
64 	{ "ax", 8, offsetof(struct pt_regs, ax) },
65 	{ "bx", 8, offsetof(struct pt_regs, bx) },
66 	{ "cx", 8, offsetof(struct pt_regs, cx) },
67 	{ "dx", 8, offsetof(struct pt_regs, dx) },
68 	{ "si", 8, offsetof(struct pt_regs, si) },
69 	{ "di", 8, offsetof(struct pt_regs, di) },
70 	{ "bp", 8, offsetof(struct pt_regs, bp) },
71 	{ "sp", 8, offsetof(struct pt_regs, sp) },
72 	{ "r8", 8, offsetof(struct pt_regs, r8) },
73 	{ "r9", 8, offsetof(struct pt_regs, r9) },
74 	{ "r10", 8, offsetof(struct pt_regs, r10) },
75 	{ "r11", 8, offsetof(struct pt_regs, r11) },
76 	{ "r12", 8, offsetof(struct pt_regs, r12) },
77 	{ "r13", 8, offsetof(struct pt_regs, r13) },
78 	{ "r14", 8, offsetof(struct pt_regs, r14) },
79 	{ "r15", 8, offsetof(struct pt_regs, r15) },
80 	{ "ip", 8, offsetof(struct pt_regs, ip) },
81 	{ "flags", 4, offsetof(struct pt_regs, flags) },
82 	{ "cs", 4, offsetof(struct pt_regs, cs) },
83 	{ "ss", 4, offsetof(struct pt_regs, ss) },
84 	{ "ds", 4, -1 },
85 	{ "es", 4, -1 },
86 #endif
87 	{ "fs", 4, -1 },
88 	{ "gs", 4, -1 },
89 };
90 
91 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
92 {
93 	if (
94 #ifdef CONFIG_X86_32
95 	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
96 #endif
97 	    regno == GDB_SP || regno == GDB_ORIG_AX)
98 		return 0;
99 
100 	if (dbg_reg_def[regno].offset != -1)
101 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
102 		       dbg_reg_def[regno].size);
103 	return 0;
104 }
105 
106 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
107 {
108 	if (regno == GDB_ORIG_AX) {
109 		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
110 		return "orig_ax";
111 	}
112 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
113 		return NULL;
114 
115 	if (dbg_reg_def[regno].offset != -1)
116 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
117 		       dbg_reg_def[regno].size);
118 
119 #ifdef CONFIG_X86_32
120 	switch (regno) {
121 	case GDB_SS:
122 		if (!user_mode(regs))
123 			*(unsigned long *)mem = __KERNEL_DS;
124 		break;
125 	case GDB_SP:
126 		if (!user_mode(regs))
127 			*(unsigned long *)mem = kernel_stack_pointer(regs);
128 		break;
129 	case GDB_GS:
130 	case GDB_FS:
131 		*(unsigned long *)mem = 0xFFFF;
132 		break;
133 	}
134 #endif
135 	return dbg_reg_def[regno].name;
136 }
137 
138 /**
139  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
140  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
141  *	@p: The &struct task_struct of the desired process.
142  *
143  *	Convert the register values of the sleeping process in @p to
144  *	the format that GDB expects.
145  *	This function is called when kgdb does not have access to the
146  *	&struct pt_regs and therefore it should fill the gdb registers
147  *	@gdb_regs with what has	been saved in &struct thread_struct
148  *	thread field during switch_to.
149  */
150 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
151 {
152 #ifndef CONFIG_X86_32
153 	u32 *gdb_regs32 = (u32 *)gdb_regs;
154 #endif
155 	gdb_regs[GDB_AX]	= 0;
156 	gdb_regs[GDB_BX]	= 0;
157 	gdb_regs[GDB_CX]	= 0;
158 	gdb_regs[GDB_DX]	= 0;
159 	gdb_regs[GDB_SI]	= 0;
160 	gdb_regs[GDB_DI]	= 0;
161 	gdb_regs[GDB_BP]	= ((struct inactive_task_frame *)p->thread.sp)->bp;
162 #ifdef CONFIG_X86_32
163 	gdb_regs[GDB_DS]	= __KERNEL_DS;
164 	gdb_regs[GDB_ES]	= __KERNEL_DS;
165 	gdb_regs[GDB_PS]	= 0;
166 	gdb_regs[GDB_CS]	= __KERNEL_CS;
167 	gdb_regs[GDB_SS]	= __KERNEL_DS;
168 	gdb_regs[GDB_FS]	= 0xFFFF;
169 	gdb_regs[GDB_GS]	= 0xFFFF;
170 #else
171 	gdb_regs32[GDB_PS]	= 0;
172 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
173 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
174 	gdb_regs[GDB_R8]	= 0;
175 	gdb_regs[GDB_R9]	= 0;
176 	gdb_regs[GDB_R10]	= 0;
177 	gdb_regs[GDB_R11]	= 0;
178 	gdb_regs[GDB_R12]	= 0;
179 	gdb_regs[GDB_R13]	= 0;
180 	gdb_regs[GDB_R14]	= 0;
181 	gdb_regs[GDB_R15]	= 0;
182 #endif
183 	gdb_regs[GDB_PC]	= 0;
184 	gdb_regs[GDB_SP]	= p->thread.sp;
185 }
186 
187 static struct hw_breakpoint {
188 	unsigned		enabled;
189 	unsigned long		addr;
190 	int			len;
191 	int			type;
192 	struct perf_event	* __percpu *pev;
193 } breakinfo[HBP_NUM];
194 
195 static unsigned long early_dr7;
196 
197 static void kgdb_correct_hw_break(void)
198 {
199 	int breakno;
200 
201 	for (breakno = 0; breakno < HBP_NUM; breakno++) {
202 		struct perf_event *bp;
203 		struct arch_hw_breakpoint *info;
204 		int val;
205 		int cpu = raw_smp_processor_id();
206 		if (!breakinfo[breakno].enabled)
207 			continue;
208 		if (dbg_is_early) {
209 			set_debugreg(breakinfo[breakno].addr, breakno);
210 			early_dr7 |= encode_dr7(breakno,
211 						breakinfo[breakno].len,
212 						breakinfo[breakno].type);
213 			set_debugreg(early_dr7, 7);
214 			continue;
215 		}
216 		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
217 		info = counter_arch_bp(bp);
218 		if (bp->attr.disabled != 1)
219 			continue;
220 		bp->attr.bp_addr = breakinfo[breakno].addr;
221 		bp->attr.bp_len = breakinfo[breakno].len;
222 		bp->attr.bp_type = breakinfo[breakno].type;
223 		info->address = breakinfo[breakno].addr;
224 		info->len = breakinfo[breakno].len;
225 		info->type = breakinfo[breakno].type;
226 		val = arch_install_hw_breakpoint(bp);
227 		if (!val)
228 			bp->attr.disabled = 0;
229 	}
230 	if (!dbg_is_early)
231 		hw_breakpoint_restore();
232 }
233 
234 static int hw_break_reserve_slot(int breakno)
235 {
236 	int cpu;
237 	int cnt = 0;
238 	struct perf_event **pevent;
239 
240 	if (dbg_is_early)
241 		return 0;
242 
243 	for_each_online_cpu(cpu) {
244 		cnt++;
245 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
246 		if (dbg_reserve_bp_slot(*pevent))
247 			goto fail;
248 	}
249 
250 	return 0;
251 
252 fail:
253 	for_each_online_cpu(cpu) {
254 		cnt--;
255 		if (!cnt)
256 			break;
257 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
258 		dbg_release_bp_slot(*pevent);
259 	}
260 	return -1;
261 }
262 
263 static int hw_break_release_slot(int breakno)
264 {
265 	struct perf_event **pevent;
266 	int cpu;
267 
268 	if (dbg_is_early)
269 		return 0;
270 
271 	for_each_online_cpu(cpu) {
272 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
273 		if (dbg_release_bp_slot(*pevent))
274 			/*
275 			 * The debugger is responsible for handing the retry on
276 			 * remove failure.
277 			 */
278 			return -1;
279 	}
280 	return 0;
281 }
282 
283 static int
284 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
285 {
286 	int i;
287 
288 	for (i = 0; i < HBP_NUM; i++)
289 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
290 			break;
291 	if (i == HBP_NUM)
292 		return -1;
293 
294 	if (hw_break_release_slot(i)) {
295 		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
296 		return -1;
297 	}
298 	breakinfo[i].enabled = 0;
299 
300 	return 0;
301 }
302 
303 static void kgdb_remove_all_hw_break(void)
304 {
305 	int i;
306 	int cpu = raw_smp_processor_id();
307 	struct perf_event *bp;
308 
309 	for (i = 0; i < HBP_NUM; i++) {
310 		if (!breakinfo[i].enabled)
311 			continue;
312 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
313 		if (!bp->attr.disabled) {
314 			arch_uninstall_hw_breakpoint(bp);
315 			bp->attr.disabled = 1;
316 			continue;
317 		}
318 		if (dbg_is_early)
319 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
320 						 breakinfo[i].type);
321 		else if (hw_break_release_slot(i))
322 			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
323 			       breakinfo[i].addr);
324 		breakinfo[i].enabled = 0;
325 	}
326 }
327 
328 static int
329 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
330 {
331 	int i;
332 
333 	for (i = 0; i < HBP_NUM; i++)
334 		if (!breakinfo[i].enabled)
335 			break;
336 	if (i == HBP_NUM)
337 		return -1;
338 
339 	switch (bptype) {
340 	case BP_HARDWARE_BREAKPOINT:
341 		len = 1;
342 		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
343 		break;
344 	case BP_WRITE_WATCHPOINT:
345 		breakinfo[i].type = X86_BREAKPOINT_WRITE;
346 		break;
347 	case BP_ACCESS_WATCHPOINT:
348 		breakinfo[i].type = X86_BREAKPOINT_RW;
349 		break;
350 	default:
351 		return -1;
352 	}
353 	switch (len) {
354 	case 1:
355 		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
356 		break;
357 	case 2:
358 		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
359 		break;
360 	case 4:
361 		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
362 		break;
363 #ifdef CONFIG_X86_64
364 	case 8:
365 		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
366 		break;
367 #endif
368 	default:
369 		return -1;
370 	}
371 	breakinfo[i].addr = addr;
372 	if (hw_break_reserve_slot(i)) {
373 		breakinfo[i].addr = 0;
374 		return -1;
375 	}
376 	breakinfo[i].enabled = 1;
377 
378 	return 0;
379 }
380 
381 /**
382  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
383  *	@regs: Current &struct pt_regs.
384  *
385  *	This function will be called if the particular architecture must
386  *	disable hardware debugging while it is processing gdb packets or
387  *	handling exception.
388  */
389 static void kgdb_disable_hw_debug(struct pt_regs *regs)
390 {
391 	int i;
392 	int cpu = raw_smp_processor_id();
393 	struct perf_event *bp;
394 
395 	/* Disable hardware debugging while we are in kgdb: */
396 	set_debugreg(0UL, 7);
397 	for (i = 0; i < HBP_NUM; i++) {
398 		if (!breakinfo[i].enabled)
399 			continue;
400 		if (dbg_is_early) {
401 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
402 						 breakinfo[i].type);
403 			continue;
404 		}
405 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
406 		if (bp->attr.disabled == 1)
407 			continue;
408 		arch_uninstall_hw_breakpoint(bp);
409 		bp->attr.disabled = 1;
410 	}
411 }
412 
413 #ifdef CONFIG_SMP
414 /**
415  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
416  *
417  *	On SMP systems, we need to get the attention of the other CPUs
418  *	and get them be in a known state.  This should do what is needed
419  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
420  *	the NMI approach is not used for rounding up all the CPUs. For example,
421  *	in case of MIPS, smp_call_function() is used to roundup CPUs.
422  *
423  *	On non-SMP systems, this is not called.
424  */
425 void kgdb_roundup_cpus(void)
426 {
427 	apic->send_IPI_allbutself(APIC_DM_NMI);
428 }
429 #endif
430 
431 /**
432  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
433  *	@e_vector: The error vector of the exception that happened.
434  *	@signo: The signal number of the exception that happened.
435  *	@err_code: The error code of the exception that happened.
436  *	@remcomInBuffer: The buffer of the packet we have read.
437  *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
438  *	@linux_regs: The &struct pt_regs of the current process.
439  *
440  *	This function MUST handle the 'c' and 's' command packets,
441  *	as well packets to set / remove a hardware breakpoint, if used.
442  *	If there are additional packets which the hardware needs to handle,
443  *	they are handled here.  The code should return -1 if it wants to
444  *	process more packets, and a %0 or %1 if it wants to exit from the
445  *	kgdb callback.
446  */
447 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
448 			       char *remcomInBuffer, char *remcomOutBuffer,
449 			       struct pt_regs *linux_regs)
450 {
451 	unsigned long addr;
452 	char *ptr;
453 
454 	switch (remcomInBuffer[0]) {
455 	case 'c':
456 	case 's':
457 		/* try to read optional parameter, pc unchanged if no parm */
458 		ptr = &remcomInBuffer[1];
459 		if (kgdb_hex2long(&ptr, &addr))
460 			linux_regs->ip = addr;
461 		/* fall through */
462 	case 'D':
463 	case 'k':
464 		/* clear the trace bit */
465 		linux_regs->flags &= ~X86_EFLAGS_TF;
466 		atomic_set(&kgdb_cpu_doing_single_step, -1);
467 
468 		/* set the trace bit if we're stepping */
469 		if (remcomInBuffer[0] == 's') {
470 			linux_regs->flags |= X86_EFLAGS_TF;
471 			atomic_set(&kgdb_cpu_doing_single_step,
472 				   raw_smp_processor_id());
473 		}
474 
475 		return 0;
476 	}
477 
478 	/* this means that we do not want to exit from the handler: */
479 	return -1;
480 }
481 
482 static inline int
483 single_step_cont(struct pt_regs *regs, struct die_args *args)
484 {
485 	/*
486 	 * Single step exception from kernel space to user space so
487 	 * eat the exception and continue the process:
488 	 */
489 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
490 			"resuming...\n");
491 	kgdb_arch_handle_exception(args->trapnr, args->signr,
492 				   args->err, "c", "", regs);
493 	/*
494 	 * Reset the BS bit in dr6 (pointed by args->err) to
495 	 * denote completion of processing
496 	 */
497 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
498 
499 	return NOTIFY_STOP;
500 }
501 
502 static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
503 
504 static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
505 {
506 	int cpu;
507 
508 	switch (cmd) {
509 	case NMI_LOCAL:
510 		if (atomic_read(&kgdb_active) != -1) {
511 			/* KGDB CPU roundup */
512 			cpu = raw_smp_processor_id();
513 			kgdb_nmicallback(cpu, regs);
514 			set_bit(cpu, was_in_debug_nmi);
515 			touch_nmi_watchdog();
516 
517 			return NMI_HANDLED;
518 		}
519 		break;
520 
521 	case NMI_UNKNOWN:
522 		cpu = raw_smp_processor_id();
523 
524 		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
525 			return NMI_HANDLED;
526 
527 		break;
528 	default:
529 		/* do nothing */
530 		break;
531 	}
532 	return NMI_DONE;
533 }
534 
535 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
536 {
537 	struct pt_regs *regs = args->regs;
538 
539 	switch (cmd) {
540 	case DIE_DEBUG:
541 		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
542 			if (user_mode(regs))
543 				return single_step_cont(regs, args);
544 			break;
545 		} else if (test_thread_flag(TIF_SINGLESTEP))
546 			/* This means a user thread is single stepping
547 			 * a system call which should be ignored
548 			 */
549 			return NOTIFY_DONE;
550 		/* fall through */
551 	default:
552 		if (user_mode(regs))
553 			return NOTIFY_DONE;
554 	}
555 
556 	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
557 		return NOTIFY_DONE;
558 
559 	/* Must touch watchdog before return to normal operation */
560 	touch_nmi_watchdog();
561 	return NOTIFY_STOP;
562 }
563 
564 int kgdb_ll_trap(int cmd, const char *str,
565 		 struct pt_regs *regs, long err, int trap, int sig)
566 {
567 	struct die_args args = {
568 		.regs	= regs,
569 		.str	= str,
570 		.err	= err,
571 		.trapnr	= trap,
572 		.signr	= sig,
573 
574 	};
575 
576 	if (!kgdb_io_module_registered)
577 		return NOTIFY_DONE;
578 
579 	return __kgdb_notify(&args, cmd);
580 }
581 
582 static int
583 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
584 {
585 	unsigned long flags;
586 	int ret;
587 
588 	local_irq_save(flags);
589 	ret = __kgdb_notify(ptr, cmd);
590 	local_irq_restore(flags);
591 
592 	return ret;
593 }
594 
595 static struct notifier_block kgdb_notifier = {
596 	.notifier_call	= kgdb_notify,
597 };
598 
599 /**
600  *	kgdb_arch_init - Perform any architecture specific initialization.
601  *
602  *	This function will handle the initialization of any architecture
603  *	specific callbacks.
604  */
605 int kgdb_arch_init(void)
606 {
607 	int retval;
608 
609 	retval = register_die_notifier(&kgdb_notifier);
610 	if (retval)
611 		goto out;
612 
613 	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
614 					0, "kgdb");
615 	if (retval)
616 		goto out1;
617 
618 	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
619 					0, "kgdb");
620 
621 	if (retval)
622 		goto out2;
623 
624 	return retval;
625 
626 out2:
627 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
628 out1:
629 	unregister_die_notifier(&kgdb_notifier);
630 out:
631 	return retval;
632 }
633 
634 static void kgdb_hw_overflow_handler(struct perf_event *event,
635 		struct perf_sample_data *data, struct pt_regs *regs)
636 {
637 	struct task_struct *tsk = current;
638 	int i;
639 
640 	for (i = 0; i < 4; i++)
641 		if (breakinfo[i].enabled)
642 			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
643 }
644 
645 void kgdb_arch_late(void)
646 {
647 	int i, cpu;
648 	struct perf_event_attr attr;
649 	struct perf_event **pevent;
650 
651 	/*
652 	 * Pre-allocate the hw breakpoint structions in the non-atomic
653 	 * portion of kgdb because this operation requires mutexs to
654 	 * complete.
655 	 */
656 	hw_breakpoint_init(&attr);
657 	attr.bp_addr = (unsigned long)kgdb_arch_init;
658 	attr.bp_len = HW_BREAKPOINT_LEN_1;
659 	attr.bp_type = HW_BREAKPOINT_W;
660 	attr.disabled = 1;
661 	for (i = 0; i < HBP_NUM; i++) {
662 		if (breakinfo[i].pev)
663 			continue;
664 		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
665 		if (IS_ERR((void * __force)breakinfo[i].pev)) {
666 			printk(KERN_ERR "kgdb: Could not allocate hw"
667 			       "breakpoints\nDisabling the kernel debugger\n");
668 			breakinfo[i].pev = NULL;
669 			kgdb_arch_exit();
670 			return;
671 		}
672 		for_each_online_cpu(cpu) {
673 			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
674 			pevent[0]->hw.sample_period = 1;
675 			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
676 			if (pevent[0]->destroy != NULL) {
677 				pevent[0]->destroy = NULL;
678 				release_bp_slot(*pevent);
679 			}
680 		}
681 	}
682 }
683 
684 /**
685  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
686  *
687  *	This function will handle the uninitalization of any architecture
688  *	specific callbacks, for dynamic registration and unregistration.
689  */
690 void kgdb_arch_exit(void)
691 {
692 	int i;
693 	for (i = 0; i < 4; i++) {
694 		if (breakinfo[i].pev) {
695 			unregister_wide_hw_breakpoint(breakinfo[i].pev);
696 			breakinfo[i].pev = NULL;
697 		}
698 	}
699 	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
700 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
701 	unregister_die_notifier(&kgdb_notifier);
702 }
703 
704 /**
705  *
706  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
707  *	@exception: Exception vector number
708  *	@regs: Current &struct pt_regs.
709  *
710  *	On some architectures we need to skip a breakpoint exception when
711  *	it occurs after a breakpoint has been removed.
712  *
713  * Skip an int3 exception when it occurs after a breakpoint has been
714  * removed. Backtrack eip by 1 since the int3 would have caused it to
715  * increment by 1.
716  */
717 int kgdb_skipexception(int exception, struct pt_regs *regs)
718 {
719 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
720 		regs->ip -= 1;
721 		return 1;
722 	}
723 	return 0;
724 }
725 
726 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
727 {
728 	if (exception == 3)
729 		return instruction_pointer(regs) - 1;
730 	return instruction_pointer(regs);
731 }
732 
733 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
734 {
735 	regs->ip = ip;
736 }
737 
738 int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
739 {
740 	int err;
741 
742 	bpt->type = BP_BREAKPOINT;
743 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
744 				BREAK_INSTR_SIZE);
745 	if (err)
746 		return err;
747 	err = probe_kernel_write((char *)bpt->bpt_addr,
748 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
749 	if (!err)
750 		return err;
751 	/*
752 	 * It is safe to call text_poke_kgdb() because normal kernel execution
753 	 * is stopped on all cores, so long as the text_mutex is not locked.
754 	 */
755 	if (mutex_is_locked(&text_mutex))
756 		return -EBUSY;
757 	text_poke_kgdb((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
758 		       BREAK_INSTR_SIZE);
759 	bpt->type = BP_POKE_BREAKPOINT;
760 
761 	return 0;
762 }
763 
764 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
765 {
766 	if (bpt->type != BP_POKE_BREAKPOINT)
767 		goto knl_write;
768 	/*
769 	 * It is safe to call text_poke_kgdb() because normal kernel execution
770 	 * is stopped on all cores, so long as the text_mutex is not locked.
771 	 */
772 	if (mutex_is_locked(&text_mutex))
773 		goto knl_write;
774 	text_poke_kgdb((void *)bpt->bpt_addr, bpt->saved_instr,
775 		       BREAK_INSTR_SIZE);
776 	return 0;
777 
778 knl_write:
779 	return probe_kernel_write((char *)bpt->bpt_addr,
780 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
781 }
782 
783 const struct kgdb_arch arch_kgdb_ops = {
784 	/* Breakpoint instruction: */
785 	.gdb_bpt_instr		= { 0xcc },
786 	.flags			= KGDB_HW_BREAKPOINT,
787 	.set_hw_breakpoint	= kgdb_set_hw_break,
788 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
789 	.disable_hw_break	= kgdb_disable_hw_debug,
790 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
791 	.correct_hw_break	= kgdb_correct_hw_break,
792 };
793