xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision a09d2831)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
45 
46 #include <asm/debugreg.h>
47 #include <asm/apicdef.h>
48 #include <asm/system.h>
49 
50 #include <asm/apic.h>
51 
52 /*
53  * Put the error code here just in case the user cares:
54  */
55 static int gdb_x86errcode;
56 
57 /*
58  * Likewise, the vector number here (since GDB only gets the signal
59  * number through the usual means, and that's not very specific):
60  */
61 static int gdb_x86vector = -1;
62 
63 /**
64  *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
65  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
66  *	@regs: The &struct pt_regs of the current process.
67  *
68  *	Convert the pt_regs in @regs into the format for registers that
69  *	GDB expects, stored in @gdb_regs.
70  */
71 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
72 {
73 #ifndef CONFIG_X86_32
74 	u32 *gdb_regs32 = (u32 *)gdb_regs;
75 #endif
76 	gdb_regs[GDB_AX]	= regs->ax;
77 	gdb_regs[GDB_BX]	= regs->bx;
78 	gdb_regs[GDB_CX]	= regs->cx;
79 	gdb_regs[GDB_DX]	= regs->dx;
80 	gdb_regs[GDB_SI]	= regs->si;
81 	gdb_regs[GDB_DI]	= regs->di;
82 	gdb_regs[GDB_BP]	= regs->bp;
83 	gdb_regs[GDB_PC]	= regs->ip;
84 #ifdef CONFIG_X86_32
85 	gdb_regs[GDB_PS]	= regs->flags;
86 	gdb_regs[GDB_DS]	= regs->ds;
87 	gdb_regs[GDB_ES]	= regs->es;
88 	gdb_regs[GDB_CS]	= regs->cs;
89 	gdb_regs[GDB_FS]	= 0xFFFF;
90 	gdb_regs[GDB_GS]	= 0xFFFF;
91 	if (user_mode_vm(regs)) {
92 		gdb_regs[GDB_SS] = regs->ss;
93 		gdb_regs[GDB_SP] = regs->sp;
94 	} else {
95 		gdb_regs[GDB_SS] = __KERNEL_DS;
96 		gdb_regs[GDB_SP] = kernel_stack_pointer(regs);
97 	}
98 #else
99 	gdb_regs[GDB_R8]	= regs->r8;
100 	gdb_regs[GDB_R9]	= regs->r9;
101 	gdb_regs[GDB_R10]	= regs->r10;
102 	gdb_regs[GDB_R11]	= regs->r11;
103 	gdb_regs[GDB_R12]	= regs->r12;
104 	gdb_regs[GDB_R13]	= regs->r13;
105 	gdb_regs[GDB_R14]	= regs->r14;
106 	gdb_regs[GDB_R15]	= regs->r15;
107 	gdb_regs32[GDB_PS]	= regs->flags;
108 	gdb_regs32[GDB_CS]	= regs->cs;
109 	gdb_regs32[GDB_SS]	= regs->ss;
110 	gdb_regs[GDB_SP]	= kernel_stack_pointer(regs);
111 #endif
112 }
113 
114 /**
115  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
116  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
117  *	@p: The &struct task_struct of the desired process.
118  *
119  *	Convert the register values of the sleeping process in @p to
120  *	the format that GDB expects.
121  *	This function is called when kgdb does not have access to the
122  *	&struct pt_regs and therefore it should fill the gdb registers
123  *	@gdb_regs with what has	been saved in &struct thread_struct
124  *	thread field during switch_to.
125  */
126 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
127 {
128 #ifndef CONFIG_X86_32
129 	u32 *gdb_regs32 = (u32 *)gdb_regs;
130 #endif
131 	gdb_regs[GDB_AX]	= 0;
132 	gdb_regs[GDB_BX]	= 0;
133 	gdb_regs[GDB_CX]	= 0;
134 	gdb_regs[GDB_DX]	= 0;
135 	gdb_regs[GDB_SI]	= 0;
136 	gdb_regs[GDB_DI]	= 0;
137 	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
138 #ifdef CONFIG_X86_32
139 	gdb_regs[GDB_DS]	= __KERNEL_DS;
140 	gdb_regs[GDB_ES]	= __KERNEL_DS;
141 	gdb_regs[GDB_PS]	= 0;
142 	gdb_regs[GDB_CS]	= __KERNEL_CS;
143 	gdb_regs[GDB_PC]	= p->thread.ip;
144 	gdb_regs[GDB_SS]	= __KERNEL_DS;
145 	gdb_regs[GDB_FS]	= 0xFFFF;
146 	gdb_regs[GDB_GS]	= 0xFFFF;
147 #else
148 	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
149 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
150 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
151 	gdb_regs[GDB_PC]	= 0;
152 	gdb_regs[GDB_R8]	= 0;
153 	gdb_regs[GDB_R9]	= 0;
154 	gdb_regs[GDB_R10]	= 0;
155 	gdb_regs[GDB_R11]	= 0;
156 	gdb_regs[GDB_R12]	= 0;
157 	gdb_regs[GDB_R13]	= 0;
158 	gdb_regs[GDB_R14]	= 0;
159 	gdb_regs[GDB_R15]	= 0;
160 #endif
161 	gdb_regs[GDB_SP]	= p->thread.sp;
162 }
163 
164 /**
165  *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
166  *	@gdb_regs: A pointer to hold the registers we've received from GDB.
167  *	@regs: A pointer to a &struct pt_regs to hold these values in.
168  *
169  *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
170  *	in @regs.
171  */
172 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
173 {
174 #ifndef CONFIG_X86_32
175 	u32 *gdb_regs32 = (u32 *)gdb_regs;
176 #endif
177 	regs->ax		= gdb_regs[GDB_AX];
178 	regs->bx		= gdb_regs[GDB_BX];
179 	regs->cx		= gdb_regs[GDB_CX];
180 	regs->dx		= gdb_regs[GDB_DX];
181 	regs->si		= gdb_regs[GDB_SI];
182 	regs->di		= gdb_regs[GDB_DI];
183 	regs->bp		= gdb_regs[GDB_BP];
184 	regs->ip		= gdb_regs[GDB_PC];
185 #ifdef CONFIG_X86_32
186 	regs->flags		= gdb_regs[GDB_PS];
187 	regs->ds		= gdb_regs[GDB_DS];
188 	regs->es		= gdb_regs[GDB_ES];
189 	regs->cs		= gdb_regs[GDB_CS];
190 #else
191 	regs->r8		= gdb_regs[GDB_R8];
192 	regs->r9		= gdb_regs[GDB_R9];
193 	regs->r10		= gdb_regs[GDB_R10];
194 	regs->r11		= gdb_regs[GDB_R11];
195 	regs->r12		= gdb_regs[GDB_R12];
196 	regs->r13		= gdb_regs[GDB_R13];
197 	regs->r14		= gdb_regs[GDB_R14];
198 	regs->r15		= gdb_regs[GDB_R15];
199 	regs->flags		= gdb_regs32[GDB_PS];
200 	regs->cs		= gdb_regs32[GDB_CS];
201 	regs->ss		= gdb_regs32[GDB_SS];
202 #endif
203 }
204 
205 static struct hw_breakpoint {
206 	unsigned		enabled;
207 	unsigned		type;
208 	unsigned		len;
209 	unsigned long		addr;
210 } breakinfo[4];
211 
212 static void kgdb_correct_hw_break(void)
213 {
214 	unsigned long dr7;
215 	int correctit = 0;
216 	int breakbit;
217 	int breakno;
218 
219 	get_debugreg(dr7, 7);
220 	for (breakno = 0; breakno < 4; breakno++) {
221 		breakbit = 2 << (breakno << 1);
222 		if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
223 			correctit = 1;
224 			dr7 |= breakbit;
225 			dr7 &= ~(0xf0000 << (breakno << 2));
226 			dr7 |= ((breakinfo[breakno].len << 2) |
227 				 breakinfo[breakno].type) <<
228 			       ((breakno << 2) + 16);
229 			set_debugreg(breakinfo[breakno].addr, breakno);
230 
231 		} else {
232 			if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
233 				correctit = 1;
234 				dr7 &= ~breakbit;
235 				dr7 &= ~(0xf0000 << (breakno << 2));
236 			}
237 		}
238 	}
239 	if (correctit)
240 		set_debugreg(dr7, 7);
241 }
242 
243 static int
244 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
245 {
246 	int i;
247 
248 	for (i = 0; i < 4; i++)
249 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
250 			break;
251 	if (i == 4)
252 		return -1;
253 
254 	breakinfo[i].enabled = 0;
255 
256 	return 0;
257 }
258 
259 static void kgdb_remove_all_hw_break(void)
260 {
261 	int i;
262 
263 	for (i = 0; i < 4; i++)
264 		memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
265 }
266 
267 static int
268 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
269 {
270 	unsigned type;
271 	int i;
272 
273 	for (i = 0; i < 4; i++)
274 		if (!breakinfo[i].enabled)
275 			break;
276 	if (i == 4)
277 		return -1;
278 
279 	switch (bptype) {
280 	case BP_HARDWARE_BREAKPOINT:
281 		type = 0;
282 		len  = 1;
283 		break;
284 	case BP_WRITE_WATCHPOINT:
285 		type = 1;
286 		break;
287 	case BP_ACCESS_WATCHPOINT:
288 		type = 3;
289 		break;
290 	default:
291 		return -1;
292 	}
293 
294 	if (len == 1 || len == 2 || len == 4)
295 		breakinfo[i].len  = len - 1;
296 	else
297 		return -1;
298 
299 	breakinfo[i].enabled = 1;
300 	breakinfo[i].addr = addr;
301 	breakinfo[i].type = type;
302 
303 	return 0;
304 }
305 
306 /**
307  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
308  *	@regs: Current &struct pt_regs.
309  *
310  *	This function will be called if the particular architecture must
311  *	disable hardware debugging while it is processing gdb packets or
312  *	handling exception.
313  */
314 void kgdb_disable_hw_debug(struct pt_regs *regs)
315 {
316 	/* Disable hardware debugging while we are in kgdb: */
317 	set_debugreg(0UL, 7);
318 }
319 
320 /**
321  *	kgdb_post_primary_code - Save error vector/code numbers.
322  *	@regs: Original pt_regs.
323  *	@e_vector: Original error vector.
324  *	@err_code: Original error code.
325  *
326  *	This is needed on architectures which support SMP and KGDB.
327  *	This function is called after all the slave cpus have been put
328  *	to a know spin state and the primary CPU has control over KGDB.
329  */
330 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
331 {
332 	/* primary processor is completely in the debugger */
333 	gdb_x86vector = e_vector;
334 	gdb_x86errcode = err_code;
335 }
336 
337 #ifdef CONFIG_SMP
338 /**
339  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
340  *	@flags: Current IRQ state
341  *
342  *	On SMP systems, we need to get the attention of the other CPUs
343  *	and get them be in a known state.  This should do what is needed
344  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
345  *	the NMI approach is not used for rounding up all the CPUs. For example,
346  *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
347  *	this case, we have to make sure that interrupts are enabled before
348  *	calling smp_call_function(). The argument to this function is
349  *	the flags that will be used when restoring the interrupts. There is
350  *	local_irq_save() call before kgdb_roundup_cpus().
351  *
352  *	On non-SMP systems, this is not called.
353  */
354 void kgdb_roundup_cpus(unsigned long flags)
355 {
356 	apic->send_IPI_allbutself(APIC_DM_NMI);
357 }
358 #endif
359 
360 /**
361  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
362  *	@vector: The error vector of the exception that happened.
363  *	@signo: The signal number of the exception that happened.
364  *	@err_code: The error code of the exception that happened.
365  *	@remcom_in_buffer: The buffer of the packet we have read.
366  *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
367  *	@regs: The &struct pt_regs of the current process.
368  *
369  *	This function MUST handle the 'c' and 's' command packets,
370  *	as well packets to set / remove a hardware breakpoint, if used.
371  *	If there are additional packets which the hardware needs to handle,
372  *	they are handled here.  The code should return -1 if it wants to
373  *	process more packets, and a %0 or %1 if it wants to exit from the
374  *	kgdb callback.
375  */
376 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
377 			       char *remcomInBuffer, char *remcomOutBuffer,
378 			       struct pt_regs *linux_regs)
379 {
380 	unsigned long addr;
381 	unsigned long dr6;
382 	char *ptr;
383 	int newPC;
384 
385 	switch (remcomInBuffer[0]) {
386 	case 'c':
387 	case 's':
388 		/* try to read optional parameter, pc unchanged if no parm */
389 		ptr = &remcomInBuffer[1];
390 		if (kgdb_hex2long(&ptr, &addr))
391 			linux_regs->ip = addr;
392 	case 'D':
393 	case 'k':
394 		newPC = linux_regs->ip;
395 
396 		/* clear the trace bit */
397 		linux_regs->flags &= ~X86_EFLAGS_TF;
398 		atomic_set(&kgdb_cpu_doing_single_step, -1);
399 
400 		/* set the trace bit if we're stepping */
401 		if (remcomInBuffer[0] == 's') {
402 			linux_regs->flags |= X86_EFLAGS_TF;
403 			atomic_set(&kgdb_cpu_doing_single_step,
404 				   raw_smp_processor_id());
405 		}
406 
407 		get_debugreg(dr6, 6);
408 		if (!(dr6 & 0x4000)) {
409 			int breakno;
410 
411 			for (breakno = 0; breakno < 4; breakno++) {
412 				if (dr6 & (1 << breakno) &&
413 				    breakinfo[breakno].type == 0) {
414 					/* Set restore flag: */
415 					linux_regs->flags |= X86_EFLAGS_RF;
416 					break;
417 				}
418 			}
419 		}
420 		set_debugreg(0UL, 6);
421 		kgdb_correct_hw_break();
422 
423 		return 0;
424 	}
425 
426 	/* this means that we do not want to exit from the handler: */
427 	return -1;
428 }
429 
430 static inline int
431 single_step_cont(struct pt_regs *regs, struct die_args *args)
432 {
433 	/*
434 	 * Single step exception from kernel space to user space so
435 	 * eat the exception and continue the process:
436 	 */
437 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
438 			"resuming...\n");
439 	kgdb_arch_handle_exception(args->trapnr, args->signr,
440 				   args->err, "c", "", regs);
441 	/*
442 	 * Reset the BS bit in dr6 (pointed by args->err) to
443 	 * denote completion of processing
444 	 */
445 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
446 
447 	return NOTIFY_STOP;
448 }
449 
450 static int was_in_debug_nmi[NR_CPUS];
451 
452 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
453 {
454 	struct pt_regs *regs = args->regs;
455 
456 	switch (cmd) {
457 	case DIE_NMI:
458 		if (atomic_read(&kgdb_active) != -1) {
459 			/* KGDB CPU roundup */
460 			kgdb_nmicallback(raw_smp_processor_id(), regs);
461 			was_in_debug_nmi[raw_smp_processor_id()] = 1;
462 			touch_nmi_watchdog();
463 			return NOTIFY_STOP;
464 		}
465 		return NOTIFY_DONE;
466 
467 	case DIE_NMI_IPI:
468 		/* Just ignore, we will handle the roundup on DIE_NMI. */
469 		return NOTIFY_DONE;
470 
471 	case DIE_NMIUNKNOWN:
472 		if (was_in_debug_nmi[raw_smp_processor_id()]) {
473 			was_in_debug_nmi[raw_smp_processor_id()] = 0;
474 			return NOTIFY_STOP;
475 		}
476 		return NOTIFY_DONE;
477 
478 	case DIE_NMIWATCHDOG:
479 		if (atomic_read(&kgdb_active) != -1) {
480 			/* KGDB CPU roundup: */
481 			kgdb_nmicallback(raw_smp_processor_id(), regs);
482 			return NOTIFY_STOP;
483 		}
484 		/* Enter debugger: */
485 		break;
486 
487 	case DIE_DEBUG:
488 		if (atomic_read(&kgdb_cpu_doing_single_step) ==
489 		    raw_smp_processor_id()) {
490 			if (user_mode(regs))
491 				return single_step_cont(regs, args);
492 			break;
493 		} else if (test_thread_flag(TIF_SINGLESTEP))
494 			/* This means a user thread is single stepping
495 			 * a system call which should be ignored
496 			 */
497 			return NOTIFY_DONE;
498 		/* fall through */
499 	default:
500 		if (user_mode(regs))
501 			return NOTIFY_DONE;
502 	}
503 
504 	if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
505 		return NOTIFY_DONE;
506 
507 	/* Must touch watchdog before return to normal operation */
508 	touch_nmi_watchdog();
509 	return NOTIFY_STOP;
510 }
511 
512 static int
513 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
514 {
515 	unsigned long flags;
516 	int ret;
517 
518 	local_irq_save(flags);
519 	ret = __kgdb_notify(ptr, cmd);
520 	local_irq_restore(flags);
521 
522 	return ret;
523 }
524 
525 static struct notifier_block kgdb_notifier = {
526 	.notifier_call	= kgdb_notify,
527 
528 	/*
529 	 * Lowest-prio notifier priority, we want to be notified last:
530 	 */
531 	.priority	= -INT_MAX,
532 };
533 
534 /**
535  *	kgdb_arch_init - Perform any architecture specific initalization.
536  *
537  *	This function will handle the initalization of any architecture
538  *	specific callbacks.
539  */
540 int kgdb_arch_init(void)
541 {
542 	return register_die_notifier(&kgdb_notifier);
543 }
544 
545 /**
546  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
547  *
548  *	This function will handle the uninitalization of any architecture
549  *	specific callbacks, for dynamic registration and unregistration.
550  */
551 void kgdb_arch_exit(void)
552 {
553 	unregister_die_notifier(&kgdb_notifier);
554 }
555 
556 /**
557  *
558  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
559  *	@exception: Exception vector number
560  *	@regs: Current &struct pt_regs.
561  *
562  *	On some architectures we need to skip a breakpoint exception when
563  *	it occurs after a breakpoint has been removed.
564  *
565  * Skip an int3 exception when it occurs after a breakpoint has been
566  * removed. Backtrack eip by 1 since the int3 would have caused it to
567  * increment by 1.
568  */
569 int kgdb_skipexception(int exception, struct pt_regs *regs)
570 {
571 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
572 		regs->ip -= 1;
573 		return 1;
574 	}
575 	return 0;
576 }
577 
578 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
579 {
580 	if (exception == 3)
581 		return instruction_pointer(regs) - 1;
582 	return instruction_pointer(regs);
583 }
584 
585 struct kgdb_arch arch_kgdb_ops = {
586 	/* Breakpoint instruction: */
587 	.gdb_bpt_instr		= { 0xcc },
588 	.flags			= KGDB_HW_BREAKPOINT,
589 	.set_hw_breakpoint	= kgdb_set_hw_break,
590 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
591 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
592 	.correct_hw_break	= kgdb_correct_hw_break,
593 };
594