1 /* 2 * This program is free software; you can redistribute it and/or modify it 3 * under the terms of the GNU General Public License as published by the 4 * Free Software Foundation; either version 2, or (at your option) any 5 * later version. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 * 12 */ 13 14 /* 15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com> 16 * Copyright (C) 2000-2001 VERITAS Software Corporation. 17 * Copyright (C) 2002 Andi Kleen, SuSE Labs 18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd. 19 * Copyright (C) 2007 MontaVista Software, Inc. 20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc. 21 */ 22 /**************************************************************************** 23 * Contributor: Lake Stevens Instrument Division$ 24 * Written by: Glenn Engel $ 25 * Updated by: Amit Kale<akale@veritas.com> 26 * Updated by: Tom Rini <trini@kernel.crashing.org> 27 * Updated by: Jason Wessel <jason.wessel@windriver.com> 28 * Modified for 386 by Jim Kingdon, Cygnus Support. 29 * Origianl kgdb, compatibility with 2.1.xx kernel by 30 * David Grothe <dave@gcom.com> 31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com> 32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston 33 */ 34 #include <linux/spinlock.h> 35 #include <linux/kdebug.h> 36 #include <linux/string.h> 37 #include <linux/kernel.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/delay.h> 41 #include <linux/kgdb.h> 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/nmi.h> 45 46 #include <asm/apicdef.h> 47 #include <asm/system.h> 48 49 #include <mach_ipi.h> 50 51 /* 52 * Put the error code here just in case the user cares: 53 */ 54 static int gdb_x86errcode; 55 56 /* 57 * Likewise, the vector number here (since GDB only gets the signal 58 * number through the usual means, and that's not very specific): 59 */ 60 static int gdb_x86vector = -1; 61 62 /** 63 * pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs 64 * @gdb_regs: A pointer to hold the registers in the order GDB wants. 65 * @regs: The &struct pt_regs of the current process. 66 * 67 * Convert the pt_regs in @regs into the format for registers that 68 * GDB expects, stored in @gdb_regs. 69 */ 70 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) 71 { 72 #ifndef CONFIG_X86_32 73 u32 *gdb_regs32 = (u32 *)gdb_regs; 74 #endif 75 gdb_regs[GDB_AX] = regs->ax; 76 gdb_regs[GDB_BX] = regs->bx; 77 gdb_regs[GDB_CX] = regs->cx; 78 gdb_regs[GDB_DX] = regs->dx; 79 gdb_regs[GDB_SI] = regs->si; 80 gdb_regs[GDB_DI] = regs->di; 81 gdb_regs[GDB_BP] = regs->bp; 82 gdb_regs[GDB_PC] = regs->ip; 83 #ifdef CONFIG_X86_32 84 gdb_regs[GDB_PS] = regs->flags; 85 gdb_regs[GDB_DS] = regs->ds; 86 gdb_regs[GDB_ES] = regs->es; 87 gdb_regs[GDB_CS] = regs->cs; 88 gdb_regs[GDB_SS] = __KERNEL_DS; 89 gdb_regs[GDB_FS] = 0xFFFF; 90 gdb_regs[GDB_GS] = 0xFFFF; 91 #else 92 gdb_regs[GDB_R8] = regs->r8; 93 gdb_regs[GDB_R9] = regs->r9; 94 gdb_regs[GDB_R10] = regs->r10; 95 gdb_regs[GDB_R11] = regs->r11; 96 gdb_regs[GDB_R12] = regs->r12; 97 gdb_regs[GDB_R13] = regs->r13; 98 gdb_regs[GDB_R14] = regs->r14; 99 gdb_regs[GDB_R15] = regs->r15; 100 gdb_regs32[GDB_PS] = regs->flags; 101 gdb_regs32[GDB_CS] = regs->cs; 102 gdb_regs32[GDB_SS] = regs->ss; 103 #endif 104 gdb_regs[GDB_SP] = regs->sp; 105 } 106 107 /** 108 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs 109 * @gdb_regs: A pointer to hold the registers in the order GDB wants. 110 * @p: The &struct task_struct of the desired process. 111 * 112 * Convert the register values of the sleeping process in @p to 113 * the format that GDB expects. 114 * This function is called when kgdb does not have access to the 115 * &struct pt_regs and therefore it should fill the gdb registers 116 * @gdb_regs with what has been saved in &struct thread_struct 117 * thread field during switch_to. 118 */ 119 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) 120 { 121 #ifndef CONFIG_X86_32 122 u32 *gdb_regs32 = (u32 *)gdb_regs; 123 #endif 124 gdb_regs[GDB_AX] = 0; 125 gdb_regs[GDB_BX] = 0; 126 gdb_regs[GDB_CX] = 0; 127 gdb_regs[GDB_DX] = 0; 128 gdb_regs[GDB_SI] = 0; 129 gdb_regs[GDB_DI] = 0; 130 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp; 131 #ifdef CONFIG_X86_32 132 gdb_regs[GDB_DS] = __KERNEL_DS; 133 gdb_regs[GDB_ES] = __KERNEL_DS; 134 gdb_regs[GDB_PS] = 0; 135 gdb_regs[GDB_CS] = __KERNEL_CS; 136 gdb_regs[GDB_PC] = p->thread.ip; 137 gdb_regs[GDB_SS] = __KERNEL_DS; 138 gdb_regs[GDB_FS] = 0xFFFF; 139 gdb_regs[GDB_GS] = 0xFFFF; 140 #else 141 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8); 142 gdb_regs32[GDB_CS] = __KERNEL_CS; 143 gdb_regs32[GDB_SS] = __KERNEL_DS; 144 gdb_regs[GDB_PC] = p->thread.ip; 145 gdb_regs[GDB_R8] = 0; 146 gdb_regs[GDB_R9] = 0; 147 gdb_regs[GDB_R10] = 0; 148 gdb_regs[GDB_R11] = 0; 149 gdb_regs[GDB_R12] = 0; 150 gdb_regs[GDB_R13] = 0; 151 gdb_regs[GDB_R14] = 0; 152 gdb_regs[GDB_R15] = 0; 153 #endif 154 gdb_regs[GDB_SP] = p->thread.sp; 155 } 156 157 /** 158 * gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs. 159 * @gdb_regs: A pointer to hold the registers we've received from GDB. 160 * @regs: A pointer to a &struct pt_regs to hold these values in. 161 * 162 * Convert the GDB regs in @gdb_regs into the pt_regs, and store them 163 * in @regs. 164 */ 165 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) 166 { 167 #ifndef CONFIG_X86_32 168 u32 *gdb_regs32 = (u32 *)gdb_regs; 169 #endif 170 regs->ax = gdb_regs[GDB_AX]; 171 regs->bx = gdb_regs[GDB_BX]; 172 regs->cx = gdb_regs[GDB_CX]; 173 regs->dx = gdb_regs[GDB_DX]; 174 regs->si = gdb_regs[GDB_SI]; 175 regs->di = gdb_regs[GDB_DI]; 176 regs->bp = gdb_regs[GDB_BP]; 177 regs->ip = gdb_regs[GDB_PC]; 178 #ifdef CONFIG_X86_32 179 regs->flags = gdb_regs[GDB_PS]; 180 regs->ds = gdb_regs[GDB_DS]; 181 regs->es = gdb_regs[GDB_ES]; 182 regs->cs = gdb_regs[GDB_CS]; 183 #else 184 regs->r8 = gdb_regs[GDB_R8]; 185 regs->r9 = gdb_regs[GDB_R9]; 186 regs->r10 = gdb_regs[GDB_R10]; 187 regs->r11 = gdb_regs[GDB_R11]; 188 regs->r12 = gdb_regs[GDB_R12]; 189 regs->r13 = gdb_regs[GDB_R13]; 190 regs->r14 = gdb_regs[GDB_R14]; 191 regs->r15 = gdb_regs[GDB_R15]; 192 regs->flags = gdb_regs32[GDB_PS]; 193 regs->cs = gdb_regs32[GDB_CS]; 194 regs->ss = gdb_regs32[GDB_SS]; 195 #endif 196 } 197 198 static struct hw_breakpoint { 199 unsigned enabled; 200 unsigned type; 201 unsigned len; 202 unsigned long addr; 203 } breakinfo[4]; 204 205 static void kgdb_correct_hw_break(void) 206 { 207 unsigned long dr7; 208 int correctit = 0; 209 int breakbit; 210 int breakno; 211 212 get_debugreg(dr7, 7); 213 for (breakno = 0; breakno < 4; breakno++) { 214 breakbit = 2 << (breakno << 1); 215 if (!(dr7 & breakbit) && breakinfo[breakno].enabled) { 216 correctit = 1; 217 dr7 |= breakbit; 218 dr7 &= ~(0xf0000 << (breakno << 2)); 219 dr7 |= ((breakinfo[breakno].len << 2) | 220 breakinfo[breakno].type) << 221 ((breakno << 2) + 16); 222 if (breakno >= 0 && breakno <= 3) 223 set_debugreg(breakinfo[breakno].addr, breakno); 224 225 } else { 226 if ((dr7 & breakbit) && !breakinfo[breakno].enabled) { 227 correctit = 1; 228 dr7 &= ~breakbit; 229 dr7 &= ~(0xf0000 << (breakno << 2)); 230 } 231 } 232 } 233 if (correctit) 234 set_debugreg(dr7, 7); 235 } 236 237 static int 238 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) 239 { 240 int i; 241 242 for (i = 0; i < 4; i++) 243 if (breakinfo[i].addr == addr && breakinfo[i].enabled) 244 break; 245 if (i == 4) 246 return -1; 247 248 breakinfo[i].enabled = 0; 249 250 return 0; 251 } 252 253 static void kgdb_remove_all_hw_break(void) 254 { 255 int i; 256 257 for (i = 0; i < 4; i++) 258 memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint)); 259 } 260 261 static int 262 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) 263 { 264 unsigned type; 265 int i; 266 267 for (i = 0; i < 4; i++) 268 if (!breakinfo[i].enabled) 269 break; 270 if (i == 4) 271 return -1; 272 273 switch (bptype) { 274 case BP_HARDWARE_BREAKPOINT: 275 type = 0; 276 len = 1; 277 break; 278 case BP_WRITE_WATCHPOINT: 279 type = 1; 280 break; 281 case BP_ACCESS_WATCHPOINT: 282 type = 3; 283 break; 284 default: 285 return -1; 286 } 287 288 if (len == 1 || len == 2 || len == 4) 289 breakinfo[i].len = len - 1; 290 else 291 return -1; 292 293 breakinfo[i].enabled = 1; 294 breakinfo[i].addr = addr; 295 breakinfo[i].type = type; 296 297 return 0; 298 } 299 300 /** 301 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. 302 * @regs: Current &struct pt_regs. 303 * 304 * This function will be called if the particular architecture must 305 * disable hardware debugging while it is processing gdb packets or 306 * handling exception. 307 */ 308 void kgdb_disable_hw_debug(struct pt_regs *regs) 309 { 310 /* Disable hardware debugging while we are in kgdb: */ 311 set_debugreg(0UL, 7); 312 } 313 314 /** 315 * kgdb_post_primary_code - Save error vector/code numbers. 316 * @regs: Original pt_regs. 317 * @e_vector: Original error vector. 318 * @err_code: Original error code. 319 * 320 * This is needed on architectures which support SMP and KGDB. 321 * This function is called after all the slave cpus have been put 322 * to a know spin state and the primary CPU has control over KGDB. 323 */ 324 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code) 325 { 326 /* primary processor is completely in the debugger */ 327 gdb_x86vector = e_vector; 328 gdb_x86errcode = err_code; 329 } 330 331 #ifdef CONFIG_SMP 332 /** 333 * kgdb_roundup_cpus - Get other CPUs into a holding pattern 334 * @flags: Current IRQ state 335 * 336 * On SMP systems, we need to get the attention of the other CPUs 337 * and get them be in a known state. This should do what is needed 338 * to get the other CPUs to call kgdb_wait(). Note that on some arches, 339 * the NMI approach is not used for rounding up all the CPUs. For example, 340 * in case of MIPS, smp_call_function() is used to roundup CPUs. In 341 * this case, we have to make sure that interrupts are enabled before 342 * calling smp_call_function(). The argument to this function is 343 * the flags that will be used when restoring the interrupts. There is 344 * local_irq_save() call before kgdb_roundup_cpus(). 345 * 346 * On non-SMP systems, this is not called. 347 */ 348 void kgdb_roundup_cpus(unsigned long flags) 349 { 350 send_IPI_allbutself(APIC_DM_NMI); 351 } 352 #endif 353 354 /** 355 * kgdb_arch_handle_exception - Handle architecture specific GDB packets. 356 * @vector: The error vector of the exception that happened. 357 * @signo: The signal number of the exception that happened. 358 * @err_code: The error code of the exception that happened. 359 * @remcom_in_buffer: The buffer of the packet we have read. 360 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into. 361 * @regs: The &struct pt_regs of the current process. 362 * 363 * This function MUST handle the 'c' and 's' command packets, 364 * as well packets to set / remove a hardware breakpoint, if used. 365 * If there are additional packets which the hardware needs to handle, 366 * they are handled here. The code should return -1 if it wants to 367 * process more packets, and a %0 or %1 if it wants to exit from the 368 * kgdb callback. 369 */ 370 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, 371 char *remcomInBuffer, char *remcomOutBuffer, 372 struct pt_regs *linux_regs) 373 { 374 unsigned long addr; 375 unsigned long dr6; 376 char *ptr; 377 int newPC; 378 379 switch (remcomInBuffer[0]) { 380 case 'c': 381 case 's': 382 /* try to read optional parameter, pc unchanged if no parm */ 383 ptr = &remcomInBuffer[1]; 384 if (kgdb_hex2long(&ptr, &addr)) 385 linux_regs->ip = addr; 386 case 'D': 387 case 'k': 388 newPC = linux_regs->ip; 389 390 /* clear the trace bit */ 391 linux_regs->flags &= ~X86_EFLAGS_TF; 392 atomic_set(&kgdb_cpu_doing_single_step, -1); 393 394 /* set the trace bit if we're stepping */ 395 if (remcomInBuffer[0] == 's') { 396 linux_regs->flags |= X86_EFLAGS_TF; 397 kgdb_single_step = 1; 398 atomic_set(&kgdb_cpu_doing_single_step, 399 raw_smp_processor_id()); 400 } 401 402 get_debugreg(dr6, 6); 403 if (!(dr6 & 0x4000)) { 404 int breakno; 405 406 for (breakno = 0; breakno < 4; breakno++) { 407 if (dr6 & (1 << breakno) && 408 breakinfo[breakno].type == 0) { 409 /* Set restore flag: */ 410 linux_regs->flags |= X86_EFLAGS_RF; 411 break; 412 } 413 } 414 } 415 set_debugreg(0UL, 6); 416 kgdb_correct_hw_break(); 417 418 return 0; 419 } 420 421 /* this means that we do not want to exit from the handler: */ 422 return -1; 423 } 424 425 static inline int 426 single_step_cont(struct pt_regs *regs, struct die_args *args) 427 { 428 /* 429 * Single step exception from kernel space to user space so 430 * eat the exception and continue the process: 431 */ 432 printk(KERN_ERR "KGDB: trap/step from kernel to user space, " 433 "resuming...\n"); 434 kgdb_arch_handle_exception(args->trapnr, args->signr, 435 args->err, "c", "", regs); 436 437 return NOTIFY_STOP; 438 } 439 440 static int was_in_debug_nmi[NR_CPUS]; 441 442 static int __kgdb_notify(struct die_args *args, unsigned long cmd) 443 { 444 struct pt_regs *regs = args->regs; 445 446 switch (cmd) { 447 case DIE_NMI: 448 if (atomic_read(&kgdb_active) != -1) { 449 /* KGDB CPU roundup */ 450 kgdb_nmicallback(raw_smp_processor_id(), regs); 451 was_in_debug_nmi[raw_smp_processor_id()] = 1; 452 touch_nmi_watchdog(); 453 return NOTIFY_STOP; 454 } 455 return NOTIFY_DONE; 456 457 case DIE_NMI_IPI: 458 /* Just ignore, we will handle the roundup on DIE_NMI. */ 459 return NOTIFY_DONE; 460 461 case DIE_NMIUNKNOWN: 462 if (was_in_debug_nmi[raw_smp_processor_id()]) { 463 was_in_debug_nmi[raw_smp_processor_id()] = 0; 464 return NOTIFY_STOP; 465 } 466 return NOTIFY_DONE; 467 468 case DIE_NMIWATCHDOG: 469 if (atomic_read(&kgdb_active) != -1) { 470 /* KGDB CPU roundup: */ 471 kgdb_nmicallback(raw_smp_processor_id(), regs); 472 return NOTIFY_STOP; 473 } 474 /* Enter debugger: */ 475 break; 476 477 case DIE_DEBUG: 478 if (atomic_read(&kgdb_cpu_doing_single_step) == 479 raw_smp_processor_id()) { 480 if (user_mode(regs)) 481 return single_step_cont(regs, args); 482 break; 483 } else if (test_thread_flag(TIF_SINGLESTEP)) 484 /* This means a user thread is single stepping 485 * a system call which should be ignored 486 */ 487 return NOTIFY_DONE; 488 /* fall through */ 489 default: 490 if (user_mode(regs)) 491 return NOTIFY_DONE; 492 } 493 494 if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs)) 495 return NOTIFY_DONE; 496 497 /* Must touch watchdog before return to normal operation */ 498 touch_nmi_watchdog(); 499 return NOTIFY_STOP; 500 } 501 502 static int 503 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr) 504 { 505 unsigned long flags; 506 int ret; 507 508 local_irq_save(flags); 509 ret = __kgdb_notify(ptr, cmd); 510 local_irq_restore(flags); 511 512 return ret; 513 } 514 515 static struct notifier_block kgdb_notifier = { 516 .notifier_call = kgdb_notify, 517 518 /* 519 * Lowest-prio notifier priority, we want to be notified last: 520 */ 521 .priority = -INT_MAX, 522 }; 523 524 /** 525 * kgdb_arch_init - Perform any architecture specific initalization. 526 * 527 * This function will handle the initalization of any architecture 528 * specific callbacks. 529 */ 530 int kgdb_arch_init(void) 531 { 532 return register_die_notifier(&kgdb_notifier); 533 } 534 535 /** 536 * kgdb_arch_exit - Perform any architecture specific uninitalization. 537 * 538 * This function will handle the uninitalization of any architecture 539 * specific callbacks, for dynamic registration and unregistration. 540 */ 541 void kgdb_arch_exit(void) 542 { 543 unregister_die_notifier(&kgdb_notifier); 544 } 545 546 /** 547 * 548 * kgdb_skipexception - Bail out of KGDB when we've been triggered. 549 * @exception: Exception vector number 550 * @regs: Current &struct pt_regs. 551 * 552 * On some architectures we need to skip a breakpoint exception when 553 * it occurs after a breakpoint has been removed. 554 * 555 * Skip an int3 exception when it occurs after a breakpoint has been 556 * removed. Backtrack eip by 1 since the int3 would have caused it to 557 * increment by 1. 558 */ 559 int kgdb_skipexception(int exception, struct pt_regs *regs) 560 { 561 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) { 562 regs->ip -= 1; 563 return 1; 564 } 565 return 0; 566 } 567 568 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs) 569 { 570 if (exception == 3) 571 return instruction_pointer(regs) - 1; 572 return instruction_pointer(regs); 573 } 574 575 struct kgdb_arch arch_kgdb_ops = { 576 /* Breakpoint instruction: */ 577 .gdb_bpt_instr = { 0xcc }, 578 .flags = KGDB_HW_BREAKPOINT, 579 .set_hw_breakpoint = kgdb_set_hw_break, 580 .remove_hw_breakpoint = kgdb_remove_hw_break, 581 .remove_all_hw_break = kgdb_remove_all_hw_break, 582 .correct_hw_break = kgdb_correct_hw_break, 583 }; 584