xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision 8b030a57)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/smp.h>
43 #include <linux/nmi.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/uaccess.h>
46 #include <linux/memory.h>
47 
48 #include <asm/text-patching.h>
49 #include <asm/debugreg.h>
50 #include <asm/apicdef.h>
51 #include <asm/apic.h>
52 #include <asm/nmi.h>
53 #include <asm/switch_to.h>
54 
55 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
56 {
57 #ifdef CONFIG_X86_32
58 	{ "ax", 4, offsetof(struct pt_regs, ax) },
59 	{ "cx", 4, offsetof(struct pt_regs, cx) },
60 	{ "dx", 4, offsetof(struct pt_regs, dx) },
61 	{ "bx", 4, offsetof(struct pt_regs, bx) },
62 	{ "sp", 4, offsetof(struct pt_regs, sp) },
63 	{ "bp", 4, offsetof(struct pt_regs, bp) },
64 	{ "si", 4, offsetof(struct pt_regs, si) },
65 	{ "di", 4, offsetof(struct pt_regs, di) },
66 	{ "ip", 4, offsetof(struct pt_regs, ip) },
67 	{ "flags", 4, offsetof(struct pt_regs, flags) },
68 	{ "cs", 4, offsetof(struct pt_regs, cs) },
69 	{ "ss", 4, offsetof(struct pt_regs, ss) },
70 	{ "ds", 4, offsetof(struct pt_regs, ds) },
71 	{ "es", 4, offsetof(struct pt_regs, es) },
72 #else
73 	{ "ax", 8, offsetof(struct pt_regs, ax) },
74 	{ "bx", 8, offsetof(struct pt_regs, bx) },
75 	{ "cx", 8, offsetof(struct pt_regs, cx) },
76 	{ "dx", 8, offsetof(struct pt_regs, dx) },
77 	{ "si", 8, offsetof(struct pt_regs, si) },
78 	{ "di", 8, offsetof(struct pt_regs, di) },
79 	{ "bp", 8, offsetof(struct pt_regs, bp) },
80 	{ "sp", 8, offsetof(struct pt_regs, sp) },
81 	{ "r8", 8, offsetof(struct pt_regs, r8) },
82 	{ "r9", 8, offsetof(struct pt_regs, r9) },
83 	{ "r10", 8, offsetof(struct pt_regs, r10) },
84 	{ "r11", 8, offsetof(struct pt_regs, r11) },
85 	{ "r12", 8, offsetof(struct pt_regs, r12) },
86 	{ "r13", 8, offsetof(struct pt_regs, r13) },
87 	{ "r14", 8, offsetof(struct pt_regs, r14) },
88 	{ "r15", 8, offsetof(struct pt_regs, r15) },
89 	{ "ip", 8, offsetof(struct pt_regs, ip) },
90 	{ "flags", 4, offsetof(struct pt_regs, flags) },
91 	{ "cs", 4, offsetof(struct pt_regs, cs) },
92 	{ "ss", 4, offsetof(struct pt_regs, ss) },
93 	{ "ds", 4, -1 },
94 	{ "es", 4, -1 },
95 #endif
96 	{ "fs", 4, -1 },
97 	{ "gs", 4, -1 },
98 };
99 
100 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
101 {
102 	if (
103 #ifdef CONFIG_X86_32
104 	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
105 #endif
106 	    regno == GDB_SP || regno == GDB_ORIG_AX)
107 		return 0;
108 
109 	if (dbg_reg_def[regno].offset != -1)
110 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
111 		       dbg_reg_def[regno].size);
112 	return 0;
113 }
114 
115 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
116 {
117 	if (regno == GDB_ORIG_AX) {
118 		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
119 		return "orig_ax";
120 	}
121 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
122 		return NULL;
123 
124 	if (dbg_reg_def[regno].offset != -1)
125 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
126 		       dbg_reg_def[regno].size);
127 
128 #ifdef CONFIG_X86_32
129 	switch (regno) {
130 	case GDB_SS:
131 		if (!user_mode(regs))
132 			*(unsigned long *)mem = __KERNEL_DS;
133 		break;
134 	case GDB_SP:
135 		if (!user_mode(regs))
136 			*(unsigned long *)mem = kernel_stack_pointer(regs);
137 		break;
138 	case GDB_GS:
139 	case GDB_FS:
140 		*(unsigned long *)mem = 0xFFFF;
141 		break;
142 	}
143 #endif
144 	return dbg_reg_def[regno].name;
145 }
146 
147 /**
148  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
149  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
150  *	@p: The &struct task_struct of the desired process.
151  *
152  *	Convert the register values of the sleeping process in @p to
153  *	the format that GDB expects.
154  *	This function is called when kgdb does not have access to the
155  *	&struct pt_regs and therefore it should fill the gdb registers
156  *	@gdb_regs with what has	been saved in &struct thread_struct
157  *	thread field during switch_to.
158  */
159 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
160 {
161 #ifndef CONFIG_X86_32
162 	u32 *gdb_regs32 = (u32 *)gdb_regs;
163 #endif
164 	gdb_regs[GDB_AX]	= 0;
165 	gdb_regs[GDB_BX]	= 0;
166 	gdb_regs[GDB_CX]	= 0;
167 	gdb_regs[GDB_DX]	= 0;
168 	gdb_regs[GDB_SI]	= 0;
169 	gdb_regs[GDB_DI]	= 0;
170 	gdb_regs[GDB_BP]	= ((struct inactive_task_frame *)p->thread.sp)->bp;
171 #ifdef CONFIG_X86_32
172 	gdb_regs[GDB_DS]	= __KERNEL_DS;
173 	gdb_regs[GDB_ES]	= __KERNEL_DS;
174 	gdb_regs[GDB_PS]	= 0;
175 	gdb_regs[GDB_CS]	= __KERNEL_CS;
176 	gdb_regs[GDB_SS]	= __KERNEL_DS;
177 	gdb_regs[GDB_FS]	= 0xFFFF;
178 	gdb_regs[GDB_GS]	= 0xFFFF;
179 #else
180 	gdb_regs32[GDB_PS]	= 0;
181 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
182 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
183 	gdb_regs[GDB_R8]	= 0;
184 	gdb_regs[GDB_R9]	= 0;
185 	gdb_regs[GDB_R10]	= 0;
186 	gdb_regs[GDB_R11]	= 0;
187 	gdb_regs[GDB_R12]	= 0;
188 	gdb_regs[GDB_R13]	= 0;
189 	gdb_regs[GDB_R14]	= 0;
190 	gdb_regs[GDB_R15]	= 0;
191 #endif
192 	gdb_regs[GDB_PC]	= 0;
193 	gdb_regs[GDB_SP]	= p->thread.sp;
194 }
195 
196 static struct hw_breakpoint {
197 	unsigned		enabled;
198 	unsigned long		addr;
199 	int			len;
200 	int			type;
201 	struct perf_event	* __percpu *pev;
202 } breakinfo[HBP_NUM];
203 
204 static unsigned long early_dr7;
205 
206 static void kgdb_correct_hw_break(void)
207 {
208 	int breakno;
209 
210 	for (breakno = 0; breakno < HBP_NUM; breakno++) {
211 		struct perf_event *bp;
212 		struct arch_hw_breakpoint *info;
213 		int val;
214 		int cpu = raw_smp_processor_id();
215 		if (!breakinfo[breakno].enabled)
216 			continue;
217 		if (dbg_is_early) {
218 			set_debugreg(breakinfo[breakno].addr, breakno);
219 			early_dr7 |= encode_dr7(breakno,
220 						breakinfo[breakno].len,
221 						breakinfo[breakno].type);
222 			set_debugreg(early_dr7, 7);
223 			continue;
224 		}
225 		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
226 		info = counter_arch_bp(bp);
227 		if (bp->attr.disabled != 1)
228 			continue;
229 		bp->attr.bp_addr = breakinfo[breakno].addr;
230 		bp->attr.bp_len = breakinfo[breakno].len;
231 		bp->attr.bp_type = breakinfo[breakno].type;
232 		info->address = breakinfo[breakno].addr;
233 		info->len = breakinfo[breakno].len;
234 		info->type = breakinfo[breakno].type;
235 		val = arch_install_hw_breakpoint(bp);
236 		if (!val)
237 			bp->attr.disabled = 0;
238 	}
239 	if (!dbg_is_early)
240 		hw_breakpoint_restore();
241 }
242 
243 static int hw_break_reserve_slot(int breakno)
244 {
245 	int cpu;
246 	int cnt = 0;
247 	struct perf_event **pevent;
248 
249 	if (dbg_is_early)
250 		return 0;
251 
252 	for_each_online_cpu(cpu) {
253 		cnt++;
254 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
255 		if (dbg_reserve_bp_slot(*pevent))
256 			goto fail;
257 	}
258 
259 	return 0;
260 
261 fail:
262 	for_each_online_cpu(cpu) {
263 		cnt--;
264 		if (!cnt)
265 			break;
266 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
267 		dbg_release_bp_slot(*pevent);
268 	}
269 	return -1;
270 }
271 
272 static int hw_break_release_slot(int breakno)
273 {
274 	struct perf_event **pevent;
275 	int cpu;
276 
277 	if (dbg_is_early)
278 		return 0;
279 
280 	for_each_online_cpu(cpu) {
281 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
282 		if (dbg_release_bp_slot(*pevent))
283 			/*
284 			 * The debugger is responsible for handing the retry on
285 			 * remove failure.
286 			 */
287 			return -1;
288 	}
289 	return 0;
290 }
291 
292 static int
293 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
294 {
295 	int i;
296 
297 	for (i = 0; i < HBP_NUM; i++)
298 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
299 			break;
300 	if (i == HBP_NUM)
301 		return -1;
302 
303 	if (hw_break_release_slot(i)) {
304 		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
305 		return -1;
306 	}
307 	breakinfo[i].enabled = 0;
308 
309 	return 0;
310 }
311 
312 static void kgdb_remove_all_hw_break(void)
313 {
314 	int i;
315 	int cpu = raw_smp_processor_id();
316 	struct perf_event *bp;
317 
318 	for (i = 0; i < HBP_NUM; i++) {
319 		if (!breakinfo[i].enabled)
320 			continue;
321 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
322 		if (!bp->attr.disabled) {
323 			arch_uninstall_hw_breakpoint(bp);
324 			bp->attr.disabled = 1;
325 			continue;
326 		}
327 		if (dbg_is_early)
328 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
329 						 breakinfo[i].type);
330 		else if (hw_break_release_slot(i))
331 			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
332 			       breakinfo[i].addr);
333 		breakinfo[i].enabled = 0;
334 	}
335 }
336 
337 static int
338 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
339 {
340 	int i;
341 
342 	for (i = 0; i < HBP_NUM; i++)
343 		if (!breakinfo[i].enabled)
344 			break;
345 	if (i == HBP_NUM)
346 		return -1;
347 
348 	switch (bptype) {
349 	case BP_HARDWARE_BREAKPOINT:
350 		len = 1;
351 		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
352 		break;
353 	case BP_WRITE_WATCHPOINT:
354 		breakinfo[i].type = X86_BREAKPOINT_WRITE;
355 		break;
356 	case BP_ACCESS_WATCHPOINT:
357 		breakinfo[i].type = X86_BREAKPOINT_RW;
358 		break;
359 	default:
360 		return -1;
361 	}
362 	switch (len) {
363 	case 1:
364 		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
365 		break;
366 	case 2:
367 		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
368 		break;
369 	case 4:
370 		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
371 		break;
372 #ifdef CONFIG_X86_64
373 	case 8:
374 		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
375 		break;
376 #endif
377 	default:
378 		return -1;
379 	}
380 	breakinfo[i].addr = addr;
381 	if (hw_break_reserve_slot(i)) {
382 		breakinfo[i].addr = 0;
383 		return -1;
384 	}
385 	breakinfo[i].enabled = 1;
386 
387 	return 0;
388 }
389 
390 /**
391  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
392  *	@regs: Current &struct pt_regs.
393  *
394  *	This function will be called if the particular architecture must
395  *	disable hardware debugging while it is processing gdb packets or
396  *	handling exception.
397  */
398 static void kgdb_disable_hw_debug(struct pt_regs *regs)
399 {
400 	int i;
401 	int cpu = raw_smp_processor_id();
402 	struct perf_event *bp;
403 
404 	/* Disable hardware debugging while we are in kgdb: */
405 	set_debugreg(0UL, 7);
406 	for (i = 0; i < HBP_NUM; i++) {
407 		if (!breakinfo[i].enabled)
408 			continue;
409 		if (dbg_is_early) {
410 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
411 						 breakinfo[i].type);
412 			continue;
413 		}
414 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
415 		if (bp->attr.disabled == 1)
416 			continue;
417 		arch_uninstall_hw_breakpoint(bp);
418 		bp->attr.disabled = 1;
419 	}
420 }
421 
422 #ifdef CONFIG_SMP
423 /**
424  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
425  *
426  *	On SMP systems, we need to get the attention of the other CPUs
427  *	and get them be in a known state.  This should do what is needed
428  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
429  *	the NMI approach is not used for rounding up all the CPUs. For example,
430  *	in case of MIPS, smp_call_function() is used to roundup CPUs.
431  *
432  *	On non-SMP systems, this is not called.
433  */
434 void kgdb_roundup_cpus(void)
435 {
436 	apic->send_IPI_allbutself(APIC_DM_NMI);
437 }
438 #endif
439 
440 /**
441  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
442  *	@e_vector: The error vector of the exception that happened.
443  *	@signo: The signal number of the exception that happened.
444  *	@err_code: The error code of the exception that happened.
445  *	@remcomInBuffer: The buffer of the packet we have read.
446  *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
447  *	@linux_regs: The &struct pt_regs of the current process.
448  *
449  *	This function MUST handle the 'c' and 's' command packets,
450  *	as well packets to set / remove a hardware breakpoint, if used.
451  *	If there are additional packets which the hardware needs to handle,
452  *	they are handled here.  The code should return -1 if it wants to
453  *	process more packets, and a %0 or %1 if it wants to exit from the
454  *	kgdb callback.
455  */
456 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
457 			       char *remcomInBuffer, char *remcomOutBuffer,
458 			       struct pt_regs *linux_regs)
459 {
460 	unsigned long addr;
461 	char *ptr;
462 
463 	switch (remcomInBuffer[0]) {
464 	case 'c':
465 	case 's':
466 		/* try to read optional parameter, pc unchanged if no parm */
467 		ptr = &remcomInBuffer[1];
468 		if (kgdb_hex2long(&ptr, &addr))
469 			linux_regs->ip = addr;
470 	case 'D':
471 	case 'k':
472 		/* clear the trace bit */
473 		linux_regs->flags &= ~X86_EFLAGS_TF;
474 		atomic_set(&kgdb_cpu_doing_single_step, -1);
475 
476 		/* set the trace bit if we're stepping */
477 		if (remcomInBuffer[0] == 's') {
478 			linux_regs->flags |= X86_EFLAGS_TF;
479 			atomic_set(&kgdb_cpu_doing_single_step,
480 				   raw_smp_processor_id());
481 		}
482 
483 		return 0;
484 	}
485 
486 	/* this means that we do not want to exit from the handler: */
487 	return -1;
488 }
489 
490 static inline int
491 single_step_cont(struct pt_regs *regs, struct die_args *args)
492 {
493 	/*
494 	 * Single step exception from kernel space to user space so
495 	 * eat the exception and continue the process:
496 	 */
497 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
498 			"resuming...\n");
499 	kgdb_arch_handle_exception(args->trapnr, args->signr,
500 				   args->err, "c", "", regs);
501 	/*
502 	 * Reset the BS bit in dr6 (pointed by args->err) to
503 	 * denote completion of processing
504 	 */
505 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
506 
507 	return NOTIFY_STOP;
508 }
509 
510 static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
511 
512 static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
513 {
514 	int cpu;
515 
516 	switch (cmd) {
517 	case NMI_LOCAL:
518 		if (atomic_read(&kgdb_active) != -1) {
519 			/* KGDB CPU roundup */
520 			cpu = raw_smp_processor_id();
521 			kgdb_nmicallback(cpu, regs);
522 			set_bit(cpu, was_in_debug_nmi);
523 			touch_nmi_watchdog();
524 
525 			return NMI_HANDLED;
526 		}
527 		break;
528 
529 	case NMI_UNKNOWN:
530 		cpu = raw_smp_processor_id();
531 
532 		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
533 			return NMI_HANDLED;
534 
535 		break;
536 	default:
537 		/* do nothing */
538 		break;
539 	}
540 	return NMI_DONE;
541 }
542 
543 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
544 {
545 	struct pt_regs *regs = args->regs;
546 
547 	switch (cmd) {
548 	case DIE_DEBUG:
549 		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
550 			if (user_mode(regs))
551 				return single_step_cont(regs, args);
552 			break;
553 		} else if (test_thread_flag(TIF_SINGLESTEP))
554 			/* This means a user thread is single stepping
555 			 * a system call which should be ignored
556 			 */
557 			return NOTIFY_DONE;
558 		/* fall through */
559 	default:
560 		if (user_mode(regs))
561 			return NOTIFY_DONE;
562 	}
563 
564 	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
565 		return NOTIFY_DONE;
566 
567 	/* Must touch watchdog before return to normal operation */
568 	touch_nmi_watchdog();
569 	return NOTIFY_STOP;
570 }
571 
572 int kgdb_ll_trap(int cmd, const char *str,
573 		 struct pt_regs *regs, long err, int trap, int sig)
574 {
575 	struct die_args args = {
576 		.regs	= regs,
577 		.str	= str,
578 		.err	= err,
579 		.trapnr	= trap,
580 		.signr	= sig,
581 
582 	};
583 
584 	if (!kgdb_io_module_registered)
585 		return NOTIFY_DONE;
586 
587 	return __kgdb_notify(&args, cmd);
588 }
589 
590 static int
591 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
592 {
593 	unsigned long flags;
594 	int ret;
595 
596 	local_irq_save(flags);
597 	ret = __kgdb_notify(ptr, cmd);
598 	local_irq_restore(flags);
599 
600 	return ret;
601 }
602 
603 static struct notifier_block kgdb_notifier = {
604 	.notifier_call	= kgdb_notify,
605 };
606 
607 /**
608  *	kgdb_arch_init - Perform any architecture specific initialization.
609  *
610  *	This function will handle the initialization of any architecture
611  *	specific callbacks.
612  */
613 int kgdb_arch_init(void)
614 {
615 	int retval;
616 
617 	retval = register_die_notifier(&kgdb_notifier);
618 	if (retval)
619 		goto out;
620 
621 	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
622 					0, "kgdb");
623 	if (retval)
624 		goto out1;
625 
626 	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
627 					0, "kgdb");
628 
629 	if (retval)
630 		goto out2;
631 
632 	return retval;
633 
634 out2:
635 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
636 out1:
637 	unregister_die_notifier(&kgdb_notifier);
638 out:
639 	return retval;
640 }
641 
642 static void kgdb_hw_overflow_handler(struct perf_event *event,
643 		struct perf_sample_data *data, struct pt_regs *regs)
644 {
645 	struct task_struct *tsk = current;
646 	int i;
647 
648 	for (i = 0; i < 4; i++)
649 		if (breakinfo[i].enabled)
650 			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
651 }
652 
653 void kgdb_arch_late(void)
654 {
655 	int i, cpu;
656 	struct perf_event_attr attr;
657 	struct perf_event **pevent;
658 
659 	/*
660 	 * Pre-allocate the hw breakpoint structions in the non-atomic
661 	 * portion of kgdb because this operation requires mutexs to
662 	 * complete.
663 	 */
664 	hw_breakpoint_init(&attr);
665 	attr.bp_addr = (unsigned long)kgdb_arch_init;
666 	attr.bp_len = HW_BREAKPOINT_LEN_1;
667 	attr.bp_type = HW_BREAKPOINT_W;
668 	attr.disabled = 1;
669 	for (i = 0; i < HBP_NUM; i++) {
670 		if (breakinfo[i].pev)
671 			continue;
672 		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
673 		if (IS_ERR((void * __force)breakinfo[i].pev)) {
674 			printk(KERN_ERR "kgdb: Could not allocate hw"
675 			       "breakpoints\nDisabling the kernel debugger\n");
676 			breakinfo[i].pev = NULL;
677 			kgdb_arch_exit();
678 			return;
679 		}
680 		for_each_online_cpu(cpu) {
681 			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
682 			pevent[0]->hw.sample_period = 1;
683 			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
684 			if (pevent[0]->destroy != NULL) {
685 				pevent[0]->destroy = NULL;
686 				release_bp_slot(*pevent);
687 			}
688 		}
689 	}
690 }
691 
692 /**
693  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
694  *
695  *	This function will handle the uninitalization of any architecture
696  *	specific callbacks, for dynamic registration and unregistration.
697  */
698 void kgdb_arch_exit(void)
699 {
700 	int i;
701 	for (i = 0; i < 4; i++) {
702 		if (breakinfo[i].pev) {
703 			unregister_wide_hw_breakpoint(breakinfo[i].pev);
704 			breakinfo[i].pev = NULL;
705 		}
706 	}
707 	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
708 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
709 	unregister_die_notifier(&kgdb_notifier);
710 }
711 
712 /**
713  *
714  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
715  *	@exception: Exception vector number
716  *	@regs: Current &struct pt_regs.
717  *
718  *	On some architectures we need to skip a breakpoint exception when
719  *	it occurs after a breakpoint has been removed.
720  *
721  * Skip an int3 exception when it occurs after a breakpoint has been
722  * removed. Backtrack eip by 1 since the int3 would have caused it to
723  * increment by 1.
724  */
725 int kgdb_skipexception(int exception, struct pt_regs *regs)
726 {
727 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
728 		regs->ip -= 1;
729 		return 1;
730 	}
731 	return 0;
732 }
733 
734 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
735 {
736 	if (exception == 3)
737 		return instruction_pointer(regs) - 1;
738 	return instruction_pointer(regs);
739 }
740 
741 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
742 {
743 	regs->ip = ip;
744 }
745 
746 int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
747 {
748 	int err;
749 	char opc[BREAK_INSTR_SIZE];
750 
751 	bpt->type = BP_BREAKPOINT;
752 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
753 				BREAK_INSTR_SIZE);
754 	if (err)
755 		return err;
756 	err = probe_kernel_write((char *)bpt->bpt_addr,
757 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
758 	if (!err)
759 		return err;
760 	/*
761 	 * It is safe to call text_poke() because normal kernel execution
762 	 * is stopped on all cores, so long as the text_mutex is not locked.
763 	 */
764 	if (mutex_is_locked(&text_mutex))
765 		return -EBUSY;
766 	text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
767 		  BREAK_INSTR_SIZE);
768 	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
769 	if (err)
770 		return err;
771 	if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
772 		return -EINVAL;
773 	bpt->type = BP_POKE_BREAKPOINT;
774 
775 	return err;
776 }
777 
778 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
779 {
780 	int err;
781 	char opc[BREAK_INSTR_SIZE];
782 
783 	if (bpt->type != BP_POKE_BREAKPOINT)
784 		goto knl_write;
785 	/*
786 	 * It is safe to call text_poke() because normal kernel execution
787 	 * is stopped on all cores, so long as the text_mutex is not locked.
788 	 */
789 	if (mutex_is_locked(&text_mutex))
790 		goto knl_write;
791 	text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
792 	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
793 	if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
794 		goto knl_write;
795 	return err;
796 
797 knl_write:
798 	return probe_kernel_write((char *)bpt->bpt_addr,
799 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
800 }
801 
802 const struct kgdb_arch arch_kgdb_ops = {
803 	/* Breakpoint instruction: */
804 	.gdb_bpt_instr		= { 0xcc },
805 	.flags			= KGDB_HW_BREAKPOINT,
806 	.set_hw_breakpoint	= kgdb_set_hw_break,
807 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
808 	.disable_hw_break	= kgdb_disable_hw_debug,
809 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
810 	.correct_hw_break	= kgdb_correct_hw_break,
811 };
812