xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision 56d06fa2)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/smp.h>
43 #include <linux/nmi.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/uaccess.h>
46 #include <linux/memory.h>
47 
48 #include <asm/debugreg.h>
49 #include <asm/apicdef.h>
50 #include <asm/apic.h>
51 #include <asm/nmi.h>
52 
53 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54 {
55 #ifdef CONFIG_X86_32
56 	{ "ax", 4, offsetof(struct pt_regs, ax) },
57 	{ "cx", 4, offsetof(struct pt_regs, cx) },
58 	{ "dx", 4, offsetof(struct pt_regs, dx) },
59 	{ "bx", 4, offsetof(struct pt_regs, bx) },
60 	{ "sp", 4, offsetof(struct pt_regs, sp) },
61 	{ "bp", 4, offsetof(struct pt_regs, bp) },
62 	{ "si", 4, offsetof(struct pt_regs, si) },
63 	{ "di", 4, offsetof(struct pt_regs, di) },
64 	{ "ip", 4, offsetof(struct pt_regs, ip) },
65 	{ "flags", 4, offsetof(struct pt_regs, flags) },
66 	{ "cs", 4, offsetof(struct pt_regs, cs) },
67 	{ "ss", 4, offsetof(struct pt_regs, ss) },
68 	{ "ds", 4, offsetof(struct pt_regs, ds) },
69 	{ "es", 4, offsetof(struct pt_regs, es) },
70 #else
71 	{ "ax", 8, offsetof(struct pt_regs, ax) },
72 	{ "bx", 8, offsetof(struct pt_regs, bx) },
73 	{ "cx", 8, offsetof(struct pt_regs, cx) },
74 	{ "dx", 8, offsetof(struct pt_regs, dx) },
75 	{ "si", 8, offsetof(struct pt_regs, si) },
76 	{ "di", 8, offsetof(struct pt_regs, di) },
77 	{ "bp", 8, offsetof(struct pt_regs, bp) },
78 	{ "sp", 8, offsetof(struct pt_regs, sp) },
79 	{ "r8", 8, offsetof(struct pt_regs, r8) },
80 	{ "r9", 8, offsetof(struct pt_regs, r9) },
81 	{ "r10", 8, offsetof(struct pt_regs, r10) },
82 	{ "r11", 8, offsetof(struct pt_regs, r11) },
83 	{ "r12", 8, offsetof(struct pt_regs, r12) },
84 	{ "r13", 8, offsetof(struct pt_regs, r13) },
85 	{ "r14", 8, offsetof(struct pt_regs, r14) },
86 	{ "r15", 8, offsetof(struct pt_regs, r15) },
87 	{ "ip", 8, offsetof(struct pt_regs, ip) },
88 	{ "flags", 4, offsetof(struct pt_regs, flags) },
89 	{ "cs", 4, offsetof(struct pt_regs, cs) },
90 	{ "ss", 4, offsetof(struct pt_regs, ss) },
91 	{ "ds", 4, -1 },
92 	{ "es", 4, -1 },
93 #endif
94 	{ "fs", 4, -1 },
95 	{ "gs", 4, -1 },
96 };
97 
98 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
99 {
100 	if (
101 #ifdef CONFIG_X86_32
102 	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103 #endif
104 	    regno == GDB_SP || regno == GDB_ORIG_AX)
105 		return 0;
106 
107 	if (dbg_reg_def[regno].offset != -1)
108 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109 		       dbg_reg_def[regno].size);
110 	return 0;
111 }
112 
113 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114 {
115 	if (regno == GDB_ORIG_AX) {
116 		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
117 		return "orig_ax";
118 	}
119 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
120 		return NULL;
121 
122 	if (dbg_reg_def[regno].offset != -1)
123 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124 		       dbg_reg_def[regno].size);
125 
126 #ifdef CONFIG_X86_32
127 	switch (regno) {
128 	case GDB_SS:
129 		if (!user_mode(regs))
130 			*(unsigned long *)mem = __KERNEL_DS;
131 		break;
132 	case GDB_SP:
133 		if (!user_mode(regs))
134 			*(unsigned long *)mem = kernel_stack_pointer(regs);
135 		break;
136 	case GDB_GS:
137 	case GDB_FS:
138 		*(unsigned long *)mem = 0xFFFF;
139 		break;
140 	}
141 #endif
142 	return dbg_reg_def[regno].name;
143 }
144 
145 /**
146  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
148  *	@p: The &struct task_struct of the desired process.
149  *
150  *	Convert the register values of the sleeping process in @p to
151  *	the format that GDB expects.
152  *	This function is called when kgdb does not have access to the
153  *	&struct pt_regs and therefore it should fill the gdb registers
154  *	@gdb_regs with what has	been saved in &struct thread_struct
155  *	thread field during switch_to.
156  */
157 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158 {
159 #ifndef CONFIG_X86_32
160 	u32 *gdb_regs32 = (u32 *)gdb_regs;
161 #endif
162 	gdb_regs[GDB_AX]	= 0;
163 	gdb_regs[GDB_BX]	= 0;
164 	gdb_regs[GDB_CX]	= 0;
165 	gdb_regs[GDB_DX]	= 0;
166 	gdb_regs[GDB_SI]	= 0;
167 	gdb_regs[GDB_DI]	= 0;
168 	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
169 #ifdef CONFIG_X86_32
170 	gdb_regs[GDB_DS]	= __KERNEL_DS;
171 	gdb_regs[GDB_ES]	= __KERNEL_DS;
172 	gdb_regs[GDB_PS]	= 0;
173 	gdb_regs[GDB_CS]	= __KERNEL_CS;
174 	gdb_regs[GDB_PC]	= p->thread.ip;
175 	gdb_regs[GDB_SS]	= __KERNEL_DS;
176 	gdb_regs[GDB_FS]	= 0xFFFF;
177 	gdb_regs[GDB_GS]	= 0xFFFF;
178 #else
179 	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
180 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
181 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
182 	gdb_regs[GDB_PC]	= 0;
183 	gdb_regs[GDB_R8]	= 0;
184 	gdb_regs[GDB_R9]	= 0;
185 	gdb_regs[GDB_R10]	= 0;
186 	gdb_regs[GDB_R11]	= 0;
187 	gdb_regs[GDB_R12]	= 0;
188 	gdb_regs[GDB_R13]	= 0;
189 	gdb_regs[GDB_R14]	= 0;
190 	gdb_regs[GDB_R15]	= 0;
191 #endif
192 	gdb_regs[GDB_SP]	= p->thread.sp;
193 }
194 
195 static struct hw_breakpoint {
196 	unsigned		enabled;
197 	unsigned long		addr;
198 	int			len;
199 	int			type;
200 	struct perf_event	* __percpu *pev;
201 } breakinfo[HBP_NUM];
202 
203 static unsigned long early_dr7;
204 
205 static void kgdb_correct_hw_break(void)
206 {
207 	int breakno;
208 
209 	for (breakno = 0; breakno < HBP_NUM; breakno++) {
210 		struct perf_event *bp;
211 		struct arch_hw_breakpoint *info;
212 		int val;
213 		int cpu = raw_smp_processor_id();
214 		if (!breakinfo[breakno].enabled)
215 			continue;
216 		if (dbg_is_early) {
217 			set_debugreg(breakinfo[breakno].addr, breakno);
218 			early_dr7 |= encode_dr7(breakno,
219 						breakinfo[breakno].len,
220 						breakinfo[breakno].type);
221 			set_debugreg(early_dr7, 7);
222 			continue;
223 		}
224 		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225 		info = counter_arch_bp(bp);
226 		if (bp->attr.disabled != 1)
227 			continue;
228 		bp->attr.bp_addr = breakinfo[breakno].addr;
229 		bp->attr.bp_len = breakinfo[breakno].len;
230 		bp->attr.bp_type = breakinfo[breakno].type;
231 		info->address = breakinfo[breakno].addr;
232 		info->len = breakinfo[breakno].len;
233 		info->type = breakinfo[breakno].type;
234 		val = arch_install_hw_breakpoint(bp);
235 		if (!val)
236 			bp->attr.disabled = 0;
237 	}
238 	if (!dbg_is_early)
239 		hw_breakpoint_restore();
240 }
241 
242 static int hw_break_reserve_slot(int breakno)
243 {
244 	int cpu;
245 	int cnt = 0;
246 	struct perf_event **pevent;
247 
248 	if (dbg_is_early)
249 		return 0;
250 
251 	for_each_online_cpu(cpu) {
252 		cnt++;
253 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254 		if (dbg_reserve_bp_slot(*pevent))
255 			goto fail;
256 	}
257 
258 	return 0;
259 
260 fail:
261 	for_each_online_cpu(cpu) {
262 		cnt--;
263 		if (!cnt)
264 			break;
265 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266 		dbg_release_bp_slot(*pevent);
267 	}
268 	return -1;
269 }
270 
271 static int hw_break_release_slot(int breakno)
272 {
273 	struct perf_event **pevent;
274 	int cpu;
275 
276 	if (dbg_is_early)
277 		return 0;
278 
279 	for_each_online_cpu(cpu) {
280 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281 		if (dbg_release_bp_slot(*pevent))
282 			/*
283 			 * The debugger is responsible for handing the retry on
284 			 * remove failure.
285 			 */
286 			return -1;
287 	}
288 	return 0;
289 }
290 
291 static int
292 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293 {
294 	int i;
295 
296 	for (i = 0; i < HBP_NUM; i++)
297 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298 			break;
299 	if (i == HBP_NUM)
300 		return -1;
301 
302 	if (hw_break_release_slot(i)) {
303 		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304 		return -1;
305 	}
306 	breakinfo[i].enabled = 0;
307 
308 	return 0;
309 }
310 
311 static void kgdb_remove_all_hw_break(void)
312 {
313 	int i;
314 	int cpu = raw_smp_processor_id();
315 	struct perf_event *bp;
316 
317 	for (i = 0; i < HBP_NUM; i++) {
318 		if (!breakinfo[i].enabled)
319 			continue;
320 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321 		if (!bp->attr.disabled) {
322 			arch_uninstall_hw_breakpoint(bp);
323 			bp->attr.disabled = 1;
324 			continue;
325 		}
326 		if (dbg_is_early)
327 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328 						 breakinfo[i].type);
329 		else if (hw_break_release_slot(i))
330 			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331 			       breakinfo[i].addr);
332 		breakinfo[i].enabled = 0;
333 	}
334 }
335 
336 static int
337 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338 {
339 	int i;
340 
341 	for (i = 0; i < HBP_NUM; i++)
342 		if (!breakinfo[i].enabled)
343 			break;
344 	if (i == HBP_NUM)
345 		return -1;
346 
347 	switch (bptype) {
348 	case BP_HARDWARE_BREAKPOINT:
349 		len = 1;
350 		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351 		break;
352 	case BP_WRITE_WATCHPOINT:
353 		breakinfo[i].type = X86_BREAKPOINT_WRITE;
354 		break;
355 	case BP_ACCESS_WATCHPOINT:
356 		breakinfo[i].type = X86_BREAKPOINT_RW;
357 		break;
358 	default:
359 		return -1;
360 	}
361 	switch (len) {
362 	case 1:
363 		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364 		break;
365 	case 2:
366 		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367 		break;
368 	case 4:
369 		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370 		break;
371 #ifdef CONFIG_X86_64
372 	case 8:
373 		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374 		break;
375 #endif
376 	default:
377 		return -1;
378 	}
379 	breakinfo[i].addr = addr;
380 	if (hw_break_reserve_slot(i)) {
381 		breakinfo[i].addr = 0;
382 		return -1;
383 	}
384 	breakinfo[i].enabled = 1;
385 
386 	return 0;
387 }
388 
389 /**
390  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391  *	@regs: Current &struct pt_regs.
392  *
393  *	This function will be called if the particular architecture must
394  *	disable hardware debugging while it is processing gdb packets or
395  *	handling exception.
396  */
397 static void kgdb_disable_hw_debug(struct pt_regs *regs)
398 {
399 	int i;
400 	int cpu = raw_smp_processor_id();
401 	struct perf_event *bp;
402 
403 	/* Disable hardware debugging while we are in kgdb: */
404 	set_debugreg(0UL, 7);
405 	for (i = 0; i < HBP_NUM; i++) {
406 		if (!breakinfo[i].enabled)
407 			continue;
408 		if (dbg_is_early) {
409 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410 						 breakinfo[i].type);
411 			continue;
412 		}
413 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414 		if (bp->attr.disabled == 1)
415 			continue;
416 		arch_uninstall_hw_breakpoint(bp);
417 		bp->attr.disabled = 1;
418 	}
419 }
420 
421 #ifdef CONFIG_SMP
422 /**
423  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
424  *	@flags: Current IRQ state
425  *
426  *	On SMP systems, we need to get the attention of the other CPUs
427  *	and get them be in a known state.  This should do what is needed
428  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
429  *	the NMI approach is not used for rounding up all the CPUs. For example,
430  *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
431  *	this case, we have to make sure that interrupts are enabled before
432  *	calling smp_call_function(). The argument to this function is
433  *	the flags that will be used when restoring the interrupts. There is
434  *	local_irq_save() call before kgdb_roundup_cpus().
435  *
436  *	On non-SMP systems, this is not called.
437  */
438 void kgdb_roundup_cpus(unsigned long flags)
439 {
440 	apic->send_IPI_allbutself(APIC_DM_NMI);
441 }
442 #endif
443 
444 /**
445  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446  *	@e_vector: The error vector of the exception that happened.
447  *	@signo: The signal number of the exception that happened.
448  *	@err_code: The error code of the exception that happened.
449  *	@remcomInBuffer: The buffer of the packet we have read.
450  *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451  *	@linux_regs: The &struct pt_regs of the current process.
452  *
453  *	This function MUST handle the 'c' and 's' command packets,
454  *	as well packets to set / remove a hardware breakpoint, if used.
455  *	If there are additional packets which the hardware needs to handle,
456  *	they are handled here.  The code should return -1 if it wants to
457  *	process more packets, and a %0 or %1 if it wants to exit from the
458  *	kgdb callback.
459  */
460 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461 			       char *remcomInBuffer, char *remcomOutBuffer,
462 			       struct pt_regs *linux_regs)
463 {
464 	unsigned long addr;
465 	char *ptr;
466 
467 	switch (remcomInBuffer[0]) {
468 	case 'c':
469 	case 's':
470 		/* try to read optional parameter, pc unchanged if no parm */
471 		ptr = &remcomInBuffer[1];
472 		if (kgdb_hex2long(&ptr, &addr))
473 			linux_regs->ip = addr;
474 	case 'D':
475 	case 'k':
476 		/* clear the trace bit */
477 		linux_regs->flags &= ~X86_EFLAGS_TF;
478 		atomic_set(&kgdb_cpu_doing_single_step, -1);
479 
480 		/* set the trace bit if we're stepping */
481 		if (remcomInBuffer[0] == 's') {
482 			linux_regs->flags |= X86_EFLAGS_TF;
483 			atomic_set(&kgdb_cpu_doing_single_step,
484 				   raw_smp_processor_id());
485 		}
486 
487 		return 0;
488 	}
489 
490 	/* this means that we do not want to exit from the handler: */
491 	return -1;
492 }
493 
494 static inline int
495 single_step_cont(struct pt_regs *regs, struct die_args *args)
496 {
497 	/*
498 	 * Single step exception from kernel space to user space so
499 	 * eat the exception and continue the process:
500 	 */
501 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502 			"resuming...\n");
503 	kgdb_arch_handle_exception(args->trapnr, args->signr,
504 				   args->err, "c", "", regs);
505 	/*
506 	 * Reset the BS bit in dr6 (pointed by args->err) to
507 	 * denote completion of processing
508 	 */
509 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510 
511 	return NOTIFY_STOP;
512 }
513 
514 static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
515 
516 static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517 {
518 	int cpu;
519 
520 	switch (cmd) {
521 	case NMI_LOCAL:
522 		if (atomic_read(&kgdb_active) != -1) {
523 			/* KGDB CPU roundup */
524 			cpu = raw_smp_processor_id();
525 			kgdb_nmicallback(cpu, regs);
526 			set_bit(cpu, was_in_debug_nmi);
527 			touch_nmi_watchdog();
528 
529 			return NMI_HANDLED;
530 		}
531 		break;
532 
533 	case NMI_UNKNOWN:
534 		cpu = raw_smp_processor_id();
535 
536 		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
537 			return NMI_HANDLED;
538 
539 		break;
540 	default:
541 		/* do nothing */
542 		break;
543 	}
544 	return NMI_DONE;
545 }
546 
547 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
548 {
549 	struct pt_regs *regs = args->regs;
550 
551 	switch (cmd) {
552 	case DIE_DEBUG:
553 		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
554 			if (user_mode(regs))
555 				return single_step_cont(regs, args);
556 			break;
557 		} else if (test_thread_flag(TIF_SINGLESTEP))
558 			/* This means a user thread is single stepping
559 			 * a system call which should be ignored
560 			 */
561 			return NOTIFY_DONE;
562 		/* fall through */
563 	default:
564 		if (user_mode(regs))
565 			return NOTIFY_DONE;
566 	}
567 
568 	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
569 		return NOTIFY_DONE;
570 
571 	/* Must touch watchdog before return to normal operation */
572 	touch_nmi_watchdog();
573 	return NOTIFY_STOP;
574 }
575 
576 int kgdb_ll_trap(int cmd, const char *str,
577 		 struct pt_regs *regs, long err, int trap, int sig)
578 {
579 	struct die_args args = {
580 		.regs	= regs,
581 		.str	= str,
582 		.err	= err,
583 		.trapnr	= trap,
584 		.signr	= sig,
585 
586 	};
587 
588 	if (!kgdb_io_module_registered)
589 		return NOTIFY_DONE;
590 
591 	return __kgdb_notify(&args, cmd);
592 }
593 
594 static int
595 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
596 {
597 	unsigned long flags;
598 	int ret;
599 
600 	local_irq_save(flags);
601 	ret = __kgdb_notify(ptr, cmd);
602 	local_irq_restore(flags);
603 
604 	return ret;
605 }
606 
607 static struct notifier_block kgdb_notifier = {
608 	.notifier_call	= kgdb_notify,
609 };
610 
611 /**
612  *	kgdb_arch_init - Perform any architecture specific initialization.
613  *
614  *	This function will handle the initialization of any architecture
615  *	specific callbacks.
616  */
617 int kgdb_arch_init(void)
618 {
619 	int retval;
620 
621 	retval = register_die_notifier(&kgdb_notifier);
622 	if (retval)
623 		goto out;
624 
625 	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
626 					0, "kgdb");
627 	if (retval)
628 		goto out1;
629 
630 	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
631 					0, "kgdb");
632 
633 	if (retval)
634 		goto out2;
635 
636 	return retval;
637 
638 out2:
639 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
640 out1:
641 	unregister_die_notifier(&kgdb_notifier);
642 out:
643 	return retval;
644 }
645 
646 static void kgdb_hw_overflow_handler(struct perf_event *event,
647 		struct perf_sample_data *data, struct pt_regs *regs)
648 {
649 	struct task_struct *tsk = current;
650 	int i;
651 
652 	for (i = 0; i < 4; i++)
653 		if (breakinfo[i].enabled)
654 			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
655 }
656 
657 void kgdb_arch_late(void)
658 {
659 	int i, cpu;
660 	struct perf_event_attr attr;
661 	struct perf_event **pevent;
662 
663 	/*
664 	 * Pre-allocate the hw breakpoint structions in the non-atomic
665 	 * portion of kgdb because this operation requires mutexs to
666 	 * complete.
667 	 */
668 	hw_breakpoint_init(&attr);
669 	attr.bp_addr = (unsigned long)kgdb_arch_init;
670 	attr.bp_len = HW_BREAKPOINT_LEN_1;
671 	attr.bp_type = HW_BREAKPOINT_W;
672 	attr.disabled = 1;
673 	for (i = 0; i < HBP_NUM; i++) {
674 		if (breakinfo[i].pev)
675 			continue;
676 		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
677 		if (IS_ERR((void * __force)breakinfo[i].pev)) {
678 			printk(KERN_ERR "kgdb: Could not allocate hw"
679 			       "breakpoints\nDisabling the kernel debugger\n");
680 			breakinfo[i].pev = NULL;
681 			kgdb_arch_exit();
682 			return;
683 		}
684 		for_each_online_cpu(cpu) {
685 			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
686 			pevent[0]->hw.sample_period = 1;
687 			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
688 			if (pevent[0]->destroy != NULL) {
689 				pevent[0]->destroy = NULL;
690 				release_bp_slot(*pevent);
691 			}
692 		}
693 	}
694 }
695 
696 /**
697  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
698  *
699  *	This function will handle the uninitalization of any architecture
700  *	specific callbacks, for dynamic registration and unregistration.
701  */
702 void kgdb_arch_exit(void)
703 {
704 	int i;
705 	for (i = 0; i < 4; i++) {
706 		if (breakinfo[i].pev) {
707 			unregister_wide_hw_breakpoint(breakinfo[i].pev);
708 			breakinfo[i].pev = NULL;
709 		}
710 	}
711 	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
712 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
713 	unregister_die_notifier(&kgdb_notifier);
714 }
715 
716 /**
717  *
718  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
719  *	@exception: Exception vector number
720  *	@regs: Current &struct pt_regs.
721  *
722  *	On some architectures we need to skip a breakpoint exception when
723  *	it occurs after a breakpoint has been removed.
724  *
725  * Skip an int3 exception when it occurs after a breakpoint has been
726  * removed. Backtrack eip by 1 since the int3 would have caused it to
727  * increment by 1.
728  */
729 int kgdb_skipexception(int exception, struct pt_regs *regs)
730 {
731 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
732 		regs->ip -= 1;
733 		return 1;
734 	}
735 	return 0;
736 }
737 
738 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
739 {
740 	if (exception == 3)
741 		return instruction_pointer(regs) - 1;
742 	return instruction_pointer(regs);
743 }
744 
745 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
746 {
747 	regs->ip = ip;
748 }
749 
750 int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
751 {
752 	int err;
753 	char opc[BREAK_INSTR_SIZE];
754 
755 	bpt->type = BP_BREAKPOINT;
756 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
757 				BREAK_INSTR_SIZE);
758 	if (err)
759 		return err;
760 	err = probe_kernel_write((char *)bpt->bpt_addr,
761 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
762 	if (!err)
763 		return err;
764 	/*
765 	 * It is safe to call text_poke() because normal kernel execution
766 	 * is stopped on all cores, so long as the text_mutex is not locked.
767 	 */
768 	if (mutex_is_locked(&text_mutex))
769 		return -EBUSY;
770 	text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
771 		  BREAK_INSTR_SIZE);
772 	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
773 	if (err)
774 		return err;
775 	if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
776 		return -EINVAL;
777 	bpt->type = BP_POKE_BREAKPOINT;
778 
779 	return err;
780 }
781 
782 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
783 {
784 	int err;
785 	char opc[BREAK_INSTR_SIZE];
786 
787 	if (bpt->type != BP_POKE_BREAKPOINT)
788 		goto knl_write;
789 	/*
790 	 * It is safe to call text_poke() because normal kernel execution
791 	 * is stopped on all cores, so long as the text_mutex is not locked.
792 	 */
793 	if (mutex_is_locked(&text_mutex))
794 		goto knl_write;
795 	text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
796 	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
797 	if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
798 		goto knl_write;
799 	return err;
800 
801 knl_write:
802 	return probe_kernel_write((char *)bpt->bpt_addr,
803 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
804 }
805 
806 struct kgdb_arch arch_kgdb_ops = {
807 	/* Breakpoint instruction: */
808 	.gdb_bpt_instr		= { 0xcc },
809 	.flags			= KGDB_HW_BREAKPOINT,
810 	.set_hw_breakpoint	= kgdb_set_hw_break,
811 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
812 	.disable_hw_break	= kgdb_disable_hw_debug,
813 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
814 	.correct_hw_break	= kgdb_correct_hw_break,
815 };
816