xref: /openbmc/linux/arch/x86/kernel/kgdb.c (revision 06d5d6b7f9948a89543e1160ef852d57892c750d)
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License as published by the
4  * Free Software Foundation; either version 2, or (at your option) any
5  * later version.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10  * General Public License for more details.
11  *
12  */
13 
14 /*
15  * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16  * Copyright (C) 2000-2001 VERITAS Software Corporation.
17  * Copyright (C) 2002 Andi Kleen, SuSE Labs
18  * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19  * Copyright (C) 2007 MontaVista Software, Inc.
20  * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21  */
22 /****************************************************************************
23  *  Contributor:     Lake Stevens Instrument Division$
24  *  Written by:      Glenn Engel $
25  *  Updated by:	     Amit Kale<akale@veritas.com>
26  *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27  *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28  *  Modified for 386 by Jim Kingdon, Cygnus Support.
29  *  Origianl kgdb, compatibility with 2.1.xx kernel by
30  *  David Grothe <dave@gcom.com>
31  *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32  *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33  */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/smp.h>
43 #include <linux/nmi.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/uaccess.h>
46 #include <linux/memory.h>
47 
48 #include <asm/text-patching.h>
49 #include <asm/debugreg.h>
50 #include <asm/apicdef.h>
51 #include <asm/apic.h>
52 #include <asm/nmi.h>
53 #include <asm/switch_to.h>
54 
55 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
56 {
57 #ifdef CONFIG_X86_32
58 	{ "ax", 4, offsetof(struct pt_regs, ax) },
59 	{ "cx", 4, offsetof(struct pt_regs, cx) },
60 	{ "dx", 4, offsetof(struct pt_regs, dx) },
61 	{ "bx", 4, offsetof(struct pt_regs, bx) },
62 	{ "sp", 4, offsetof(struct pt_regs, sp) },
63 	{ "bp", 4, offsetof(struct pt_regs, bp) },
64 	{ "si", 4, offsetof(struct pt_regs, si) },
65 	{ "di", 4, offsetof(struct pt_regs, di) },
66 	{ "ip", 4, offsetof(struct pt_regs, ip) },
67 	{ "flags", 4, offsetof(struct pt_regs, flags) },
68 	{ "cs", 4, offsetof(struct pt_regs, cs) },
69 	{ "ss", 4, offsetof(struct pt_regs, ss) },
70 	{ "ds", 4, offsetof(struct pt_regs, ds) },
71 	{ "es", 4, offsetof(struct pt_regs, es) },
72 #else
73 	{ "ax", 8, offsetof(struct pt_regs, ax) },
74 	{ "bx", 8, offsetof(struct pt_regs, bx) },
75 	{ "cx", 8, offsetof(struct pt_regs, cx) },
76 	{ "dx", 8, offsetof(struct pt_regs, dx) },
77 	{ "si", 8, offsetof(struct pt_regs, si) },
78 	{ "di", 8, offsetof(struct pt_regs, di) },
79 	{ "bp", 8, offsetof(struct pt_regs, bp) },
80 	{ "sp", 8, offsetof(struct pt_regs, sp) },
81 	{ "r8", 8, offsetof(struct pt_regs, r8) },
82 	{ "r9", 8, offsetof(struct pt_regs, r9) },
83 	{ "r10", 8, offsetof(struct pt_regs, r10) },
84 	{ "r11", 8, offsetof(struct pt_regs, r11) },
85 	{ "r12", 8, offsetof(struct pt_regs, r12) },
86 	{ "r13", 8, offsetof(struct pt_regs, r13) },
87 	{ "r14", 8, offsetof(struct pt_regs, r14) },
88 	{ "r15", 8, offsetof(struct pt_regs, r15) },
89 	{ "ip", 8, offsetof(struct pt_regs, ip) },
90 	{ "flags", 4, offsetof(struct pt_regs, flags) },
91 	{ "cs", 4, offsetof(struct pt_regs, cs) },
92 	{ "ss", 4, offsetof(struct pt_regs, ss) },
93 	{ "ds", 4, -1 },
94 	{ "es", 4, -1 },
95 #endif
96 	{ "fs", 4, -1 },
97 	{ "gs", 4, -1 },
98 };
99 
100 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
101 {
102 	if (
103 #ifdef CONFIG_X86_32
104 	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
105 #endif
106 	    regno == GDB_SP || regno == GDB_ORIG_AX)
107 		return 0;
108 
109 	if (dbg_reg_def[regno].offset != -1)
110 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
111 		       dbg_reg_def[regno].size);
112 	return 0;
113 }
114 
115 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
116 {
117 	if (regno == GDB_ORIG_AX) {
118 		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
119 		return "orig_ax";
120 	}
121 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
122 		return NULL;
123 
124 	if (dbg_reg_def[regno].offset != -1)
125 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
126 		       dbg_reg_def[regno].size);
127 
128 #ifdef CONFIG_X86_32
129 	switch (regno) {
130 	case GDB_SS:
131 		if (!user_mode(regs))
132 			*(unsigned long *)mem = __KERNEL_DS;
133 		break;
134 	case GDB_SP:
135 		if (!user_mode(regs))
136 			*(unsigned long *)mem = kernel_stack_pointer(regs);
137 		break;
138 	case GDB_GS:
139 	case GDB_FS:
140 		*(unsigned long *)mem = 0xFFFF;
141 		break;
142 	}
143 #endif
144 	return dbg_reg_def[regno].name;
145 }
146 
147 /**
148  *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
149  *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
150  *	@p: The &struct task_struct of the desired process.
151  *
152  *	Convert the register values of the sleeping process in @p to
153  *	the format that GDB expects.
154  *	This function is called when kgdb does not have access to the
155  *	&struct pt_regs and therefore it should fill the gdb registers
156  *	@gdb_regs with what has	been saved in &struct thread_struct
157  *	thread field during switch_to.
158  */
159 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
160 {
161 #ifndef CONFIG_X86_32
162 	u32 *gdb_regs32 = (u32 *)gdb_regs;
163 #endif
164 	gdb_regs[GDB_AX]	= 0;
165 	gdb_regs[GDB_BX]	= 0;
166 	gdb_regs[GDB_CX]	= 0;
167 	gdb_regs[GDB_DX]	= 0;
168 	gdb_regs[GDB_SI]	= 0;
169 	gdb_regs[GDB_DI]	= 0;
170 	gdb_regs[GDB_BP]	= ((struct inactive_task_frame *)p->thread.sp)->bp;
171 #ifdef CONFIG_X86_32
172 	gdb_regs[GDB_DS]	= __KERNEL_DS;
173 	gdb_regs[GDB_ES]	= __KERNEL_DS;
174 	gdb_regs[GDB_PS]	= 0;
175 	gdb_regs[GDB_CS]	= __KERNEL_CS;
176 	gdb_regs[GDB_SS]	= __KERNEL_DS;
177 	gdb_regs[GDB_FS]	= 0xFFFF;
178 	gdb_regs[GDB_GS]	= 0xFFFF;
179 #else
180 	gdb_regs32[GDB_PS]	= 0;
181 	gdb_regs32[GDB_CS]	= __KERNEL_CS;
182 	gdb_regs32[GDB_SS]	= __KERNEL_DS;
183 	gdb_regs[GDB_R8]	= 0;
184 	gdb_regs[GDB_R9]	= 0;
185 	gdb_regs[GDB_R10]	= 0;
186 	gdb_regs[GDB_R11]	= 0;
187 	gdb_regs[GDB_R12]	= 0;
188 	gdb_regs[GDB_R13]	= 0;
189 	gdb_regs[GDB_R14]	= 0;
190 	gdb_regs[GDB_R15]	= 0;
191 #endif
192 	gdb_regs[GDB_PC]	= 0;
193 	gdb_regs[GDB_SP]	= p->thread.sp;
194 }
195 
196 static struct hw_breakpoint {
197 	unsigned		enabled;
198 	unsigned long		addr;
199 	int			len;
200 	int			type;
201 	struct perf_event	* __percpu *pev;
202 } breakinfo[HBP_NUM];
203 
204 static unsigned long early_dr7;
205 
206 static void kgdb_correct_hw_break(void)
207 {
208 	int breakno;
209 
210 	for (breakno = 0; breakno < HBP_NUM; breakno++) {
211 		struct perf_event *bp;
212 		struct arch_hw_breakpoint *info;
213 		int val;
214 		int cpu = raw_smp_processor_id();
215 		if (!breakinfo[breakno].enabled)
216 			continue;
217 		if (dbg_is_early) {
218 			set_debugreg(breakinfo[breakno].addr, breakno);
219 			early_dr7 |= encode_dr7(breakno,
220 						breakinfo[breakno].len,
221 						breakinfo[breakno].type);
222 			set_debugreg(early_dr7, 7);
223 			continue;
224 		}
225 		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
226 		info = counter_arch_bp(bp);
227 		if (bp->attr.disabled != 1)
228 			continue;
229 		bp->attr.bp_addr = breakinfo[breakno].addr;
230 		bp->attr.bp_len = breakinfo[breakno].len;
231 		bp->attr.bp_type = breakinfo[breakno].type;
232 		info->address = breakinfo[breakno].addr;
233 		info->len = breakinfo[breakno].len;
234 		info->type = breakinfo[breakno].type;
235 		val = arch_install_hw_breakpoint(bp);
236 		if (!val)
237 			bp->attr.disabled = 0;
238 	}
239 	if (!dbg_is_early)
240 		hw_breakpoint_restore();
241 }
242 
243 static int hw_break_reserve_slot(int breakno)
244 {
245 	int cpu;
246 	int cnt = 0;
247 	struct perf_event **pevent;
248 
249 	if (dbg_is_early)
250 		return 0;
251 
252 	for_each_online_cpu(cpu) {
253 		cnt++;
254 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
255 		if (dbg_reserve_bp_slot(*pevent))
256 			goto fail;
257 	}
258 
259 	return 0;
260 
261 fail:
262 	for_each_online_cpu(cpu) {
263 		cnt--;
264 		if (!cnt)
265 			break;
266 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
267 		dbg_release_bp_slot(*pevent);
268 	}
269 	return -1;
270 }
271 
272 static int hw_break_release_slot(int breakno)
273 {
274 	struct perf_event **pevent;
275 	int cpu;
276 
277 	if (dbg_is_early)
278 		return 0;
279 
280 	for_each_online_cpu(cpu) {
281 		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
282 		if (dbg_release_bp_slot(*pevent))
283 			/*
284 			 * The debugger is responsible for handing the retry on
285 			 * remove failure.
286 			 */
287 			return -1;
288 	}
289 	return 0;
290 }
291 
292 static int
293 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
294 {
295 	int i;
296 
297 	for (i = 0; i < HBP_NUM; i++)
298 		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
299 			break;
300 	if (i == HBP_NUM)
301 		return -1;
302 
303 	if (hw_break_release_slot(i)) {
304 		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
305 		return -1;
306 	}
307 	breakinfo[i].enabled = 0;
308 
309 	return 0;
310 }
311 
312 static void kgdb_remove_all_hw_break(void)
313 {
314 	int i;
315 	int cpu = raw_smp_processor_id();
316 	struct perf_event *bp;
317 
318 	for (i = 0; i < HBP_NUM; i++) {
319 		if (!breakinfo[i].enabled)
320 			continue;
321 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
322 		if (!bp->attr.disabled) {
323 			arch_uninstall_hw_breakpoint(bp);
324 			bp->attr.disabled = 1;
325 			continue;
326 		}
327 		if (dbg_is_early)
328 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
329 						 breakinfo[i].type);
330 		else if (hw_break_release_slot(i))
331 			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
332 			       breakinfo[i].addr);
333 		breakinfo[i].enabled = 0;
334 	}
335 }
336 
337 static int
338 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
339 {
340 	int i;
341 
342 	for (i = 0; i < HBP_NUM; i++)
343 		if (!breakinfo[i].enabled)
344 			break;
345 	if (i == HBP_NUM)
346 		return -1;
347 
348 	switch (bptype) {
349 	case BP_HARDWARE_BREAKPOINT:
350 		len = 1;
351 		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
352 		break;
353 	case BP_WRITE_WATCHPOINT:
354 		breakinfo[i].type = X86_BREAKPOINT_WRITE;
355 		break;
356 	case BP_ACCESS_WATCHPOINT:
357 		breakinfo[i].type = X86_BREAKPOINT_RW;
358 		break;
359 	default:
360 		return -1;
361 	}
362 	switch (len) {
363 	case 1:
364 		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
365 		break;
366 	case 2:
367 		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
368 		break;
369 	case 4:
370 		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
371 		break;
372 #ifdef CONFIG_X86_64
373 	case 8:
374 		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
375 		break;
376 #endif
377 	default:
378 		return -1;
379 	}
380 	breakinfo[i].addr = addr;
381 	if (hw_break_reserve_slot(i)) {
382 		breakinfo[i].addr = 0;
383 		return -1;
384 	}
385 	breakinfo[i].enabled = 1;
386 
387 	return 0;
388 }
389 
390 /**
391  *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
392  *	@regs: Current &struct pt_regs.
393  *
394  *	This function will be called if the particular architecture must
395  *	disable hardware debugging while it is processing gdb packets or
396  *	handling exception.
397  */
398 static void kgdb_disable_hw_debug(struct pt_regs *regs)
399 {
400 	int i;
401 	int cpu = raw_smp_processor_id();
402 	struct perf_event *bp;
403 
404 	/* Disable hardware debugging while we are in kgdb: */
405 	set_debugreg(0UL, 7);
406 	for (i = 0; i < HBP_NUM; i++) {
407 		if (!breakinfo[i].enabled)
408 			continue;
409 		if (dbg_is_early) {
410 			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
411 						 breakinfo[i].type);
412 			continue;
413 		}
414 		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
415 		if (bp->attr.disabled == 1)
416 			continue;
417 		arch_uninstall_hw_breakpoint(bp);
418 		bp->attr.disabled = 1;
419 	}
420 }
421 
422 #ifdef CONFIG_SMP
423 /**
424  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
425  *
426  *	On SMP systems, we need to get the attention of the other CPUs
427  *	and get them be in a known state.  This should do what is needed
428  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
429  *	the NMI approach is not used for rounding up all the CPUs. For example,
430  *	in case of MIPS, smp_call_function() is used to roundup CPUs.
431  *
432  *	On non-SMP systems, this is not called.
433  */
434 void kgdb_roundup_cpus(void)
435 {
436 	apic->send_IPI_allbutself(APIC_DM_NMI);
437 }
438 #endif
439 
440 /**
441  *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
442  *	@e_vector: The error vector of the exception that happened.
443  *	@signo: The signal number of the exception that happened.
444  *	@err_code: The error code of the exception that happened.
445  *	@remcomInBuffer: The buffer of the packet we have read.
446  *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
447  *	@linux_regs: The &struct pt_regs of the current process.
448  *
449  *	This function MUST handle the 'c' and 's' command packets,
450  *	as well packets to set / remove a hardware breakpoint, if used.
451  *	If there are additional packets which the hardware needs to handle,
452  *	they are handled here.  The code should return -1 if it wants to
453  *	process more packets, and a %0 or %1 if it wants to exit from the
454  *	kgdb callback.
455  */
456 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
457 			       char *remcomInBuffer, char *remcomOutBuffer,
458 			       struct pt_regs *linux_regs)
459 {
460 	unsigned long addr;
461 	char *ptr;
462 
463 	switch (remcomInBuffer[0]) {
464 	case 'c':
465 	case 's':
466 		/* try to read optional parameter, pc unchanged if no parm */
467 		ptr = &remcomInBuffer[1];
468 		if (kgdb_hex2long(&ptr, &addr))
469 			linux_regs->ip = addr;
470 		/* fall through */
471 	case 'D':
472 	case 'k':
473 		/* clear the trace bit */
474 		linux_regs->flags &= ~X86_EFLAGS_TF;
475 		atomic_set(&kgdb_cpu_doing_single_step, -1);
476 
477 		/* set the trace bit if we're stepping */
478 		if (remcomInBuffer[0] == 's') {
479 			linux_regs->flags |= X86_EFLAGS_TF;
480 			atomic_set(&kgdb_cpu_doing_single_step,
481 				   raw_smp_processor_id());
482 		}
483 
484 		return 0;
485 	}
486 
487 	/* this means that we do not want to exit from the handler: */
488 	return -1;
489 }
490 
491 static inline int
492 single_step_cont(struct pt_regs *regs, struct die_args *args)
493 {
494 	/*
495 	 * Single step exception from kernel space to user space so
496 	 * eat the exception and continue the process:
497 	 */
498 	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
499 			"resuming...\n");
500 	kgdb_arch_handle_exception(args->trapnr, args->signr,
501 				   args->err, "c", "", regs);
502 	/*
503 	 * Reset the BS bit in dr6 (pointed by args->err) to
504 	 * denote completion of processing
505 	 */
506 	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
507 
508 	return NOTIFY_STOP;
509 }
510 
511 static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
512 
513 static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
514 {
515 	int cpu;
516 
517 	switch (cmd) {
518 	case NMI_LOCAL:
519 		if (atomic_read(&kgdb_active) != -1) {
520 			/* KGDB CPU roundup */
521 			cpu = raw_smp_processor_id();
522 			kgdb_nmicallback(cpu, regs);
523 			set_bit(cpu, was_in_debug_nmi);
524 			touch_nmi_watchdog();
525 
526 			return NMI_HANDLED;
527 		}
528 		break;
529 
530 	case NMI_UNKNOWN:
531 		cpu = raw_smp_processor_id();
532 
533 		if (__test_and_clear_bit(cpu, was_in_debug_nmi))
534 			return NMI_HANDLED;
535 
536 		break;
537 	default:
538 		/* do nothing */
539 		break;
540 	}
541 	return NMI_DONE;
542 }
543 
544 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
545 {
546 	struct pt_regs *regs = args->regs;
547 
548 	switch (cmd) {
549 	case DIE_DEBUG:
550 		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
551 			if (user_mode(regs))
552 				return single_step_cont(regs, args);
553 			break;
554 		} else if (test_thread_flag(TIF_SINGLESTEP))
555 			/* This means a user thread is single stepping
556 			 * a system call which should be ignored
557 			 */
558 			return NOTIFY_DONE;
559 		/* fall through */
560 	default:
561 		if (user_mode(regs))
562 			return NOTIFY_DONE;
563 	}
564 
565 	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
566 		return NOTIFY_DONE;
567 
568 	/* Must touch watchdog before return to normal operation */
569 	touch_nmi_watchdog();
570 	return NOTIFY_STOP;
571 }
572 
573 int kgdb_ll_trap(int cmd, const char *str,
574 		 struct pt_regs *regs, long err, int trap, int sig)
575 {
576 	struct die_args args = {
577 		.regs	= regs,
578 		.str	= str,
579 		.err	= err,
580 		.trapnr	= trap,
581 		.signr	= sig,
582 
583 	};
584 
585 	if (!kgdb_io_module_registered)
586 		return NOTIFY_DONE;
587 
588 	return __kgdb_notify(&args, cmd);
589 }
590 
591 static int
592 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
593 {
594 	unsigned long flags;
595 	int ret;
596 
597 	local_irq_save(flags);
598 	ret = __kgdb_notify(ptr, cmd);
599 	local_irq_restore(flags);
600 
601 	return ret;
602 }
603 
604 static struct notifier_block kgdb_notifier = {
605 	.notifier_call	= kgdb_notify,
606 };
607 
608 /**
609  *	kgdb_arch_init - Perform any architecture specific initialization.
610  *
611  *	This function will handle the initialization of any architecture
612  *	specific callbacks.
613  */
614 int kgdb_arch_init(void)
615 {
616 	int retval;
617 
618 	retval = register_die_notifier(&kgdb_notifier);
619 	if (retval)
620 		goto out;
621 
622 	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
623 					0, "kgdb");
624 	if (retval)
625 		goto out1;
626 
627 	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
628 					0, "kgdb");
629 
630 	if (retval)
631 		goto out2;
632 
633 	return retval;
634 
635 out2:
636 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
637 out1:
638 	unregister_die_notifier(&kgdb_notifier);
639 out:
640 	return retval;
641 }
642 
643 static void kgdb_hw_overflow_handler(struct perf_event *event,
644 		struct perf_sample_data *data, struct pt_regs *regs)
645 {
646 	struct task_struct *tsk = current;
647 	int i;
648 
649 	for (i = 0; i < 4; i++)
650 		if (breakinfo[i].enabled)
651 			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
652 }
653 
654 void kgdb_arch_late(void)
655 {
656 	int i, cpu;
657 	struct perf_event_attr attr;
658 	struct perf_event **pevent;
659 
660 	/*
661 	 * Pre-allocate the hw breakpoint structions in the non-atomic
662 	 * portion of kgdb because this operation requires mutexs to
663 	 * complete.
664 	 */
665 	hw_breakpoint_init(&attr);
666 	attr.bp_addr = (unsigned long)kgdb_arch_init;
667 	attr.bp_len = HW_BREAKPOINT_LEN_1;
668 	attr.bp_type = HW_BREAKPOINT_W;
669 	attr.disabled = 1;
670 	for (i = 0; i < HBP_NUM; i++) {
671 		if (breakinfo[i].pev)
672 			continue;
673 		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
674 		if (IS_ERR((void * __force)breakinfo[i].pev)) {
675 			printk(KERN_ERR "kgdb: Could not allocate hw"
676 			       "breakpoints\nDisabling the kernel debugger\n");
677 			breakinfo[i].pev = NULL;
678 			kgdb_arch_exit();
679 			return;
680 		}
681 		for_each_online_cpu(cpu) {
682 			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
683 			pevent[0]->hw.sample_period = 1;
684 			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
685 			if (pevent[0]->destroy != NULL) {
686 				pevent[0]->destroy = NULL;
687 				release_bp_slot(*pevent);
688 			}
689 		}
690 	}
691 }
692 
693 /**
694  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
695  *
696  *	This function will handle the uninitalization of any architecture
697  *	specific callbacks, for dynamic registration and unregistration.
698  */
699 void kgdb_arch_exit(void)
700 {
701 	int i;
702 	for (i = 0; i < 4; i++) {
703 		if (breakinfo[i].pev) {
704 			unregister_wide_hw_breakpoint(breakinfo[i].pev);
705 			breakinfo[i].pev = NULL;
706 		}
707 	}
708 	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
709 	unregister_nmi_handler(NMI_LOCAL, "kgdb");
710 	unregister_die_notifier(&kgdb_notifier);
711 }
712 
713 /**
714  *
715  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
716  *	@exception: Exception vector number
717  *	@regs: Current &struct pt_regs.
718  *
719  *	On some architectures we need to skip a breakpoint exception when
720  *	it occurs after a breakpoint has been removed.
721  *
722  * Skip an int3 exception when it occurs after a breakpoint has been
723  * removed. Backtrack eip by 1 since the int3 would have caused it to
724  * increment by 1.
725  */
726 int kgdb_skipexception(int exception, struct pt_regs *regs)
727 {
728 	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
729 		regs->ip -= 1;
730 		return 1;
731 	}
732 	return 0;
733 }
734 
735 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
736 {
737 	if (exception == 3)
738 		return instruction_pointer(regs) - 1;
739 	return instruction_pointer(regs);
740 }
741 
742 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
743 {
744 	regs->ip = ip;
745 }
746 
747 int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
748 {
749 	int err;
750 	char opc[BREAK_INSTR_SIZE];
751 
752 	bpt->type = BP_BREAKPOINT;
753 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
754 				BREAK_INSTR_SIZE);
755 	if (err)
756 		return err;
757 	err = probe_kernel_write((char *)bpt->bpt_addr,
758 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
759 	if (!err)
760 		return err;
761 	/*
762 	 * It is safe to call text_poke() because normal kernel execution
763 	 * is stopped on all cores, so long as the text_mutex is not locked.
764 	 */
765 	if (mutex_is_locked(&text_mutex))
766 		return -EBUSY;
767 	text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
768 		  BREAK_INSTR_SIZE);
769 	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
770 	if (err)
771 		return err;
772 	if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
773 		return -EINVAL;
774 	bpt->type = BP_POKE_BREAKPOINT;
775 
776 	return err;
777 }
778 
779 int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
780 {
781 	int err;
782 	char opc[BREAK_INSTR_SIZE];
783 
784 	if (bpt->type != BP_POKE_BREAKPOINT)
785 		goto knl_write;
786 	/*
787 	 * It is safe to call text_poke() because normal kernel execution
788 	 * is stopped on all cores, so long as the text_mutex is not locked.
789 	 */
790 	if (mutex_is_locked(&text_mutex))
791 		goto knl_write;
792 	text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
793 	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
794 	if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
795 		goto knl_write;
796 	return err;
797 
798 knl_write:
799 	return probe_kernel_write((char *)bpt->bpt_addr,
800 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
801 }
802 
803 const struct kgdb_arch arch_kgdb_ops = {
804 	/* Breakpoint instruction: */
805 	.gdb_bpt_instr		= { 0xcc },
806 	.flags			= KGDB_HW_BREAKPOINT,
807 	.set_hw_breakpoint	= kgdb_set_hw_break,
808 	.remove_hw_breakpoint	= kgdb_remove_hw_break,
809 	.disable_hw_break	= kgdb_disable_hw_debug,
810 	.remove_all_hw_break	= kgdb_remove_all_hw_break,
811 	.correct_hw_break	= kgdb_correct_hw_break,
812 };
813