xref: /openbmc/linux/arch/x86/kernel/irqinit.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 #include <linux/linkage.h>
2 #include <linux/errno.h>
3 #include <linux/signal.h>
4 #include <linux/sched.h>
5 #include <linux/ioport.h>
6 #include <linux/interrupt.h>
7 #include <linux/timex.h>
8 #include <linux/random.h>
9 #include <linux/kprobes.h>
10 #include <linux/init.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/sysdev.h>
13 #include <linux/bitops.h>
14 #include <linux/acpi.h>
15 #include <linux/io.h>
16 #include <linux/delay.h>
17 
18 #include <asm/atomic.h>
19 #include <asm/system.h>
20 #include <asm/timer.h>
21 #include <asm/hw_irq.h>
22 #include <asm/pgtable.h>
23 #include <asm/desc.h>
24 #include <asm/apic.h>
25 #include <asm/setup.h>
26 #include <asm/i8259.h>
27 #include <asm/traps.h>
28 
29 /*
30  * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
31  * (these are usually mapped to vectors 0x30-0x3f)
32  */
33 
34 /*
35  * The IO-APIC gives us many more interrupt sources. Most of these
36  * are unused but an SMP system is supposed to have enough memory ...
37  * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
38  * across the spectrum, so we really want to be prepared to get all
39  * of these. Plus, more powerful systems might have more than 64
40  * IO-APIC registers.
41  *
42  * (these are usually mapped into the 0x30-0xff vector range)
43  */
44 
45 #ifdef CONFIG_X86_32
46 /*
47  * Note that on a 486, we don't want to do a SIGFPE on an irq13
48  * as the irq is unreliable, and exception 16 works correctly
49  * (ie as explained in the intel literature). On a 386, you
50  * can't use exception 16 due to bad IBM design, so we have to
51  * rely on the less exact irq13.
52  *
53  * Careful.. Not only is IRQ13 unreliable, but it is also
54  * leads to races. IBM designers who came up with it should
55  * be shot.
56  */
57 
58 static irqreturn_t math_error_irq(int cpl, void *dev_id)
59 {
60 	outb(0, 0xF0);
61 	if (ignore_fpu_irq || !boot_cpu_data.hard_math)
62 		return IRQ_NONE;
63 	math_error(get_irq_regs(), 0, 16);
64 	return IRQ_HANDLED;
65 }
66 
67 /*
68  * New motherboards sometimes make IRQ 13 be a PCI interrupt,
69  * so allow interrupt sharing.
70  */
71 static struct irqaction fpu_irq = {
72 	.handler = math_error_irq,
73 	.name = "fpu",
74 };
75 #endif
76 
77 /*
78  * IRQ2 is cascade interrupt to second interrupt controller
79  */
80 static struct irqaction irq2 = {
81 	.handler = no_action,
82 	.name = "cascade",
83 };
84 
85 DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
86 	[0 ... NR_VECTORS - 1] = -1,
87 };
88 
89 int vector_used_by_percpu_irq(unsigned int vector)
90 {
91 	int cpu;
92 
93 	for_each_online_cpu(cpu) {
94 		if (per_cpu(vector_irq, cpu)[vector] != -1)
95 			return 1;
96 	}
97 
98 	return 0;
99 }
100 
101 void __init init_ISA_irqs(void)
102 {
103 	struct irq_chip *chip = legacy_pic->chip;
104 	const char *name = chip->name;
105 	int i;
106 
107 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
108 	init_bsp_APIC();
109 #endif
110 	legacy_pic->init(0);
111 
112 	for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
113 		set_irq_chip_and_handler_name(i, chip, handle_level_irq, name);
114 }
115 
116 void __init init_IRQ(void)
117 {
118 	int i;
119 
120 	/*
121 	 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
122 	 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
123 	 * then this configuration will likely be static after the boot. If
124 	 * these IRQ's are handled by more mordern controllers like IO-APIC,
125 	 * then this vector space can be freed and re-used dynamically as the
126 	 * irq's migrate etc.
127 	 */
128 	for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
129 		per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
130 
131 	x86_init.irqs.intr_init();
132 }
133 
134 /*
135  * Setup the vector to irq mappings.
136  */
137 void setup_vector_irq(int cpu)
138 {
139 #ifndef CONFIG_X86_IO_APIC
140 	int irq;
141 
142 	/*
143 	 * On most of the platforms, legacy PIC delivers the interrupts on the
144 	 * boot cpu. But there are certain platforms where PIC interrupts are
145 	 * delivered to multiple cpu's. If the legacy IRQ is handled by the
146 	 * legacy PIC, for the new cpu that is coming online, setup the static
147 	 * legacy vector to irq mapping:
148 	 */
149 	for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
150 		per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
151 #endif
152 
153 	__setup_vector_irq(cpu);
154 }
155 
156 static void __init smp_intr_init(void)
157 {
158 #ifdef CONFIG_SMP
159 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
160 	/*
161 	 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
162 	 * IPI, driven by wakeup.
163 	 */
164 	alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
165 
166 	/* IPIs for invalidation */
167 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0);
168 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1);
169 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2);
170 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3);
171 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4);
172 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5);
173 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6);
174 	alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7);
175 
176 	/* IPI for generic function call */
177 	alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
178 
179 	/* IPI for generic single function call */
180 	alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
181 			call_function_single_interrupt);
182 
183 	/* Low priority IPI to cleanup after moving an irq */
184 	set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
185 	set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
186 
187 	/* IPI used for rebooting/stopping */
188 	alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
189 #endif
190 #endif /* CONFIG_SMP */
191 }
192 
193 static void __init apic_intr_init(void)
194 {
195 	smp_intr_init();
196 
197 #ifdef CONFIG_X86_THERMAL_VECTOR
198 	alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
199 #endif
200 #ifdef CONFIG_X86_MCE_THRESHOLD
201 	alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
202 #endif
203 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_LOCAL_APIC)
204 	alloc_intr_gate(MCE_SELF_VECTOR, mce_self_interrupt);
205 #endif
206 
207 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
208 	/* self generated IPI for local APIC timer */
209 	alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
210 
211 	/* IPI for X86 platform specific use */
212 	alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
213 
214 	/* IPI vectors for APIC spurious and error interrupts */
215 	alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
216 	alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
217 
218 	/* IRQ work interrupts: */
219 # ifdef CONFIG_IRQ_WORK
220 	alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
221 # endif
222 
223 #endif
224 }
225 
226 void __init native_init_IRQ(void)
227 {
228 	int i;
229 
230 	/* Execute any quirks before the call gates are initialised: */
231 	x86_init.irqs.pre_vector_init();
232 
233 	apic_intr_init();
234 
235 	/*
236 	 * Cover the whole vector space, no vector can escape
237 	 * us. (some of these will be overridden and become
238 	 * 'special' SMP interrupts)
239 	 */
240 	for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
241 		/* IA32_SYSCALL_VECTOR could be used in trap_init already. */
242 		if (!test_bit(i, used_vectors))
243 			set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
244 	}
245 
246 	if (!acpi_ioapic)
247 		setup_irq(2, &irq2);
248 
249 #ifdef CONFIG_X86_32
250 	/*
251 	 * External FPU? Set up irq13 if so, for
252 	 * original braindamaged IBM FERR coupling.
253 	 */
254 	if (boot_cpu_data.hard_math && !cpu_has_fpu)
255 		setup_irq(FPU_IRQ, &fpu_irq);
256 
257 	irq_ctx_init(smp_processor_id());
258 #endif
259 }
260