1 #include <linux/linkage.h> 2 #include <linux/errno.h> 3 #include <linux/signal.h> 4 #include <linux/sched.h> 5 #include <linux/ioport.h> 6 #include <linux/interrupt.h> 7 #include <linux/timex.h> 8 #include <linux/random.h> 9 #include <linux/kprobes.h> 10 #include <linux/init.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/device.h> 13 #include <linux/bitops.h> 14 #include <linux/acpi.h> 15 #include <linux/io.h> 16 #include <linux/delay.h> 17 18 #include <linux/atomic.h> 19 #include <asm/timer.h> 20 #include <asm/hw_irq.h> 21 #include <asm/pgtable.h> 22 #include <asm/desc.h> 23 #include <asm/apic.h> 24 #include <asm/setup.h> 25 #include <asm/i8259.h> 26 #include <asm/traps.h> 27 #include <asm/prom.h> 28 29 /* 30 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts: 31 * (these are usually mapped to vectors 0x30-0x3f) 32 */ 33 34 /* 35 * The IO-APIC gives us many more interrupt sources. Most of these 36 * are unused but an SMP system is supposed to have enough memory ... 37 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all 38 * across the spectrum, so we really want to be prepared to get all 39 * of these. Plus, more powerful systems might have more than 64 40 * IO-APIC registers. 41 * 42 * (these are usually mapped into the 0x30-0xff vector range) 43 */ 44 45 /* 46 * IRQ2 is cascade interrupt to second interrupt controller 47 */ 48 static struct irqaction irq2 = { 49 .handler = no_action, 50 .name = "cascade", 51 .flags = IRQF_NO_THREAD, 52 }; 53 54 DEFINE_PER_CPU(vector_irq_t, vector_irq) = { 55 [0 ... NR_VECTORS - 1] = VECTOR_UNDEFINED, 56 }; 57 58 int vector_used_by_percpu_irq(unsigned int vector) 59 { 60 int cpu; 61 62 for_each_online_cpu(cpu) { 63 if (per_cpu(vector_irq, cpu)[vector] > VECTOR_UNDEFINED) 64 return 1; 65 } 66 67 return 0; 68 } 69 70 void __init init_ISA_irqs(void) 71 { 72 struct irq_chip *chip = legacy_pic->chip; 73 int i; 74 75 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) 76 init_bsp_APIC(); 77 #endif 78 legacy_pic->init(0); 79 80 for (i = 0; i < nr_legacy_irqs(); i++) 81 irq_set_chip_and_handler(i, chip, handle_level_irq); 82 } 83 84 void __init init_IRQ(void) 85 { 86 int i; 87 88 /* 89 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15. 90 * If these IRQ's are handled by legacy interrupt-controllers like PIC, 91 * then this configuration will likely be static after the boot. If 92 * these IRQ's are handled by more mordern controllers like IO-APIC, 93 * then this vector space can be freed and re-used dynamically as the 94 * irq's migrate etc. 95 */ 96 for (i = 0; i < nr_legacy_irqs(); i++) 97 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i; 98 99 x86_init.irqs.intr_init(); 100 } 101 102 /* 103 * Setup the vector to irq mappings. 104 */ 105 void setup_vector_irq(int cpu) 106 { 107 #ifndef CONFIG_X86_IO_APIC 108 int irq; 109 110 /* 111 * On most of the platforms, legacy PIC delivers the interrupts on the 112 * boot cpu. But there are certain platforms where PIC interrupts are 113 * delivered to multiple cpu's. If the legacy IRQ is handled by the 114 * legacy PIC, for the new cpu that is coming online, setup the static 115 * legacy vector to irq mapping: 116 */ 117 for (irq = 0; irq < nr_legacy_irqs(); irq++) 118 per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq; 119 #endif 120 121 __setup_vector_irq(cpu); 122 } 123 124 static void __init smp_intr_init(void) 125 { 126 #ifdef CONFIG_SMP 127 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) 128 /* 129 * The reschedule interrupt is a CPU-to-CPU reschedule-helper 130 * IPI, driven by wakeup. 131 */ 132 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); 133 134 /* IPI for generic function call */ 135 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); 136 137 /* IPI for generic single function call */ 138 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR, 139 call_function_single_interrupt); 140 141 /* Low priority IPI to cleanup after moving an irq */ 142 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt); 143 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors); 144 145 /* IPI used for rebooting/stopping */ 146 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt); 147 #endif 148 #endif /* CONFIG_SMP */ 149 } 150 151 static void __init apic_intr_init(void) 152 { 153 smp_intr_init(); 154 155 #ifdef CONFIG_X86_THERMAL_VECTOR 156 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt); 157 #endif 158 #ifdef CONFIG_X86_MCE_THRESHOLD 159 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt); 160 #endif 161 162 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) 163 /* self generated IPI for local APIC timer */ 164 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt); 165 166 /* IPI for X86 platform specific use */ 167 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi); 168 #ifdef CONFIG_HAVE_KVM 169 /* IPI for KVM to deliver posted interrupt */ 170 alloc_intr_gate(POSTED_INTR_VECTOR, kvm_posted_intr_ipi); 171 #endif 172 173 /* IPI vectors for APIC spurious and error interrupts */ 174 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt); 175 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt); 176 177 /* IRQ work interrupts: */ 178 # ifdef CONFIG_IRQ_WORK 179 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt); 180 # endif 181 182 #endif 183 } 184 185 void __init native_init_IRQ(void) 186 { 187 int i; 188 189 /* Execute any quirks before the call gates are initialised: */ 190 x86_init.irqs.pre_vector_init(); 191 192 apic_intr_init(); 193 194 /* 195 * Cover the whole vector space, no vector can escape 196 * us. (some of these will be overridden and become 197 * 'special' SMP interrupts) 198 */ 199 i = FIRST_EXTERNAL_VECTOR; 200 for_each_clear_bit_from(i, used_vectors, NR_VECTORS) { 201 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */ 202 set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]); 203 } 204 205 if (!acpi_ioapic && !of_ioapic && nr_legacy_irqs()) 206 setup_irq(2, &irq2); 207 208 #ifdef CONFIG_X86_32 209 irq_ctx_init(smp_processor_id()); 210 #endif 211 } 212