1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/idle.h> 18 #include <asm/mce.h> 19 #include <asm/hw_irq.h> 20 21 #define CREATE_TRACE_POINTS 22 #include <asm/trace/irq_vectors.h> 23 24 atomic_t irq_err_count; 25 26 /* Function pointer for generic interrupt vector handling */ 27 void (*x86_platform_ipi_callback)(void) = NULL; 28 29 /* 30 * 'what should we do if we get a hw irq event on an illegal vector'. 31 * each architecture has to answer this themselves. 32 */ 33 void ack_bad_irq(unsigned int irq) 34 { 35 if (printk_ratelimit()) 36 pr_err("unexpected IRQ trap at vector %02x\n", irq); 37 38 /* 39 * Currently unexpected vectors happen only on SMP and APIC. 40 * We _must_ ack these because every local APIC has only N 41 * irq slots per priority level, and a 'hanging, unacked' IRQ 42 * holds up an irq slot - in excessive cases (when multiple 43 * unexpected vectors occur) that might lock up the APIC 44 * completely. 45 * But only ack when the APIC is enabled -AK 46 */ 47 ack_APIC_irq(); 48 } 49 50 #define irq_stats(x) (&per_cpu(irq_stat, x)) 51 /* 52 * /proc/interrupts printing for arch specific interrupts 53 */ 54 int arch_show_interrupts(struct seq_file *p, int prec) 55 { 56 int j; 57 58 seq_printf(p, "%*s: ", prec, "NMI"); 59 for_each_online_cpu(j) 60 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 61 seq_printf(p, " Non-maskable interrupts\n"); 62 #ifdef CONFIG_X86_LOCAL_APIC 63 seq_printf(p, "%*s: ", prec, "LOC"); 64 for_each_online_cpu(j) 65 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 66 seq_printf(p, " Local timer interrupts\n"); 67 68 seq_printf(p, "%*s: ", prec, "SPU"); 69 for_each_online_cpu(j) 70 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 71 seq_printf(p, " Spurious interrupts\n"); 72 seq_printf(p, "%*s: ", prec, "PMI"); 73 for_each_online_cpu(j) 74 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 75 seq_printf(p, " Performance monitoring interrupts\n"); 76 seq_printf(p, "%*s: ", prec, "IWI"); 77 for_each_online_cpu(j) 78 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 79 seq_printf(p, " IRQ work interrupts\n"); 80 seq_printf(p, "%*s: ", prec, "RTR"); 81 for_each_online_cpu(j) 82 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 83 seq_printf(p, " APIC ICR read retries\n"); 84 #endif 85 if (x86_platform_ipi_callback) { 86 seq_printf(p, "%*s: ", prec, "PLT"); 87 for_each_online_cpu(j) 88 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 89 seq_printf(p, " Platform interrupts\n"); 90 } 91 #ifdef CONFIG_SMP 92 seq_printf(p, "%*s: ", prec, "RES"); 93 for_each_online_cpu(j) 94 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 95 seq_printf(p, " Rescheduling interrupts\n"); 96 seq_printf(p, "%*s: ", prec, "CAL"); 97 for_each_online_cpu(j) 98 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count - 99 irq_stats(j)->irq_tlb_count); 100 seq_printf(p, " Function call interrupts\n"); 101 seq_printf(p, "%*s: ", prec, "TLB"); 102 for_each_online_cpu(j) 103 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 104 seq_printf(p, " TLB shootdowns\n"); 105 #endif 106 #ifdef CONFIG_X86_THERMAL_VECTOR 107 seq_printf(p, "%*s: ", prec, "TRM"); 108 for_each_online_cpu(j) 109 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 110 seq_printf(p, " Thermal event interrupts\n"); 111 #endif 112 #ifdef CONFIG_X86_MCE_THRESHOLD 113 seq_printf(p, "%*s: ", prec, "THR"); 114 for_each_online_cpu(j) 115 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 116 seq_printf(p, " Threshold APIC interrupts\n"); 117 #endif 118 #ifdef CONFIG_X86_MCE 119 seq_printf(p, "%*s: ", prec, "MCE"); 120 for_each_online_cpu(j) 121 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 122 seq_printf(p, " Machine check exceptions\n"); 123 seq_printf(p, "%*s: ", prec, "MCP"); 124 for_each_online_cpu(j) 125 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 126 seq_printf(p, " Machine check polls\n"); 127 #endif 128 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 129 #if defined(CONFIG_X86_IO_APIC) 130 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 131 #endif 132 return 0; 133 } 134 135 /* 136 * /proc/stat helpers 137 */ 138 u64 arch_irq_stat_cpu(unsigned int cpu) 139 { 140 u64 sum = irq_stats(cpu)->__nmi_count; 141 142 #ifdef CONFIG_X86_LOCAL_APIC 143 sum += irq_stats(cpu)->apic_timer_irqs; 144 sum += irq_stats(cpu)->irq_spurious_count; 145 sum += irq_stats(cpu)->apic_perf_irqs; 146 sum += irq_stats(cpu)->apic_irq_work_irqs; 147 sum += irq_stats(cpu)->icr_read_retry_count; 148 #endif 149 if (x86_platform_ipi_callback) 150 sum += irq_stats(cpu)->x86_platform_ipis; 151 #ifdef CONFIG_SMP 152 sum += irq_stats(cpu)->irq_resched_count; 153 sum += irq_stats(cpu)->irq_call_count; 154 #endif 155 #ifdef CONFIG_X86_THERMAL_VECTOR 156 sum += irq_stats(cpu)->irq_thermal_count; 157 #endif 158 #ifdef CONFIG_X86_MCE_THRESHOLD 159 sum += irq_stats(cpu)->irq_threshold_count; 160 #endif 161 #ifdef CONFIG_X86_MCE 162 sum += per_cpu(mce_exception_count, cpu); 163 sum += per_cpu(mce_poll_count, cpu); 164 #endif 165 return sum; 166 } 167 168 u64 arch_irq_stat(void) 169 { 170 u64 sum = atomic_read(&irq_err_count); 171 return sum; 172 } 173 174 175 /* 176 * do_IRQ handles all normal device IRQ's (the special 177 * SMP cross-CPU interrupts have their own specific 178 * handlers). 179 */ 180 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 181 { 182 struct pt_regs *old_regs = set_irq_regs(regs); 183 184 /* high bit used in ret_from_ code */ 185 unsigned vector = ~regs->orig_ax; 186 unsigned irq; 187 188 irq_enter(); 189 exit_idle(); 190 191 irq = __this_cpu_read(vector_irq[vector]); 192 193 if (!handle_irq(irq, regs)) { 194 ack_APIC_irq(); 195 196 if (irq != VECTOR_RETRIGGERED) { 197 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n", 198 __func__, smp_processor_id(), 199 vector, irq); 200 } else { 201 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); 202 } 203 } 204 205 irq_exit(); 206 207 set_irq_regs(old_regs); 208 return 1; 209 } 210 211 /* 212 * Handler for X86_PLATFORM_IPI_VECTOR. 213 */ 214 void __smp_x86_platform_ipi(void) 215 { 216 inc_irq_stat(x86_platform_ipis); 217 218 if (x86_platform_ipi_callback) 219 x86_platform_ipi_callback(); 220 } 221 222 __visible void smp_x86_platform_ipi(struct pt_regs *regs) 223 { 224 struct pt_regs *old_regs = set_irq_regs(regs); 225 226 entering_ack_irq(); 227 __smp_x86_platform_ipi(); 228 exiting_irq(); 229 set_irq_regs(old_regs); 230 } 231 232 #ifdef CONFIG_HAVE_KVM 233 /* 234 * Handler for POSTED_INTERRUPT_VECTOR. 235 */ 236 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 237 { 238 struct pt_regs *old_regs = set_irq_regs(regs); 239 240 ack_APIC_irq(); 241 242 irq_enter(); 243 244 exit_idle(); 245 246 inc_irq_stat(kvm_posted_intr_ipis); 247 248 irq_exit(); 249 250 set_irq_regs(old_regs); 251 } 252 #endif 253 254 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs) 255 { 256 struct pt_regs *old_regs = set_irq_regs(regs); 257 258 entering_ack_irq(); 259 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 260 __smp_x86_platform_ipi(); 261 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 262 exiting_irq(); 263 set_irq_regs(old_regs); 264 } 265 266 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 267 268 #ifdef CONFIG_HOTPLUG_CPU 269 270 /* These two declarations are only used in check_irq_vectors_for_cpu_disable() 271 * below, which is protected by stop_machine(). Putting them on the stack 272 * results in a stack frame overflow. Dynamically allocating could result in a 273 * failure so declare these two cpumasks as global. 274 */ 275 static struct cpumask affinity_new, online_new; 276 277 /* 278 * This cpu is going to be removed and its vectors migrated to the remaining 279 * online cpus. Check to see if there are enough vectors in the remaining cpus. 280 * This function is protected by stop_machine(). 281 */ 282 int check_irq_vectors_for_cpu_disable(void) 283 { 284 int irq, cpu; 285 unsigned int this_cpu, vector, this_count, count; 286 struct irq_desc *desc; 287 struct irq_data *data; 288 289 this_cpu = smp_processor_id(); 290 cpumask_copy(&online_new, cpu_online_mask); 291 cpu_clear(this_cpu, online_new); 292 293 this_count = 0; 294 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 295 irq = __this_cpu_read(vector_irq[vector]); 296 if (irq >= 0) { 297 desc = irq_to_desc(irq); 298 data = irq_desc_get_irq_data(desc); 299 cpumask_copy(&affinity_new, data->affinity); 300 cpu_clear(this_cpu, affinity_new); 301 302 /* Do not count inactive or per-cpu irqs. */ 303 if (!irq_has_action(irq) || irqd_is_per_cpu(data)) 304 continue; 305 306 /* 307 * A single irq may be mapped to multiple 308 * cpu's vector_irq[] (for example IOAPIC cluster 309 * mode). In this case we have two 310 * possibilities: 311 * 312 * 1) the resulting affinity mask is empty; that is 313 * this the down'd cpu is the last cpu in the irq's 314 * affinity mask, or 315 * 316 * 2) the resulting affinity mask is no longer 317 * a subset of the online cpus but the affinity 318 * mask is not zero; that is the down'd cpu is the 319 * last online cpu in a user set affinity mask. 320 */ 321 if (cpumask_empty(&affinity_new) || 322 !cpumask_subset(&affinity_new, &online_new)) 323 this_count++; 324 } 325 } 326 327 count = 0; 328 for_each_online_cpu(cpu) { 329 if (cpu == this_cpu) 330 continue; 331 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; 332 vector++) { 333 if (per_cpu(vector_irq, cpu)[vector] < 0) 334 count++; 335 } 336 } 337 338 if (count < this_count) { 339 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 340 this_cpu, this_count, count); 341 return -ERANGE; 342 } 343 return 0; 344 } 345 346 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 347 void fixup_irqs(void) 348 { 349 unsigned int irq, vector; 350 static int warned; 351 struct irq_desc *desc; 352 struct irq_data *data; 353 struct irq_chip *chip; 354 355 for_each_irq_desc(irq, desc) { 356 int break_affinity = 0; 357 int set_affinity = 1; 358 const struct cpumask *affinity; 359 360 if (!desc) 361 continue; 362 if (irq == 2) 363 continue; 364 365 /* interrupt's are disabled at this point */ 366 raw_spin_lock(&desc->lock); 367 368 data = irq_desc_get_irq_data(desc); 369 affinity = data->affinity; 370 if (!irq_has_action(irq) || irqd_is_per_cpu(data) || 371 cpumask_subset(affinity, cpu_online_mask)) { 372 raw_spin_unlock(&desc->lock); 373 continue; 374 } 375 376 /* 377 * Complete the irq move. This cpu is going down and for 378 * non intr-remapping case, we can't wait till this interrupt 379 * arrives at this cpu before completing the irq move. 380 */ 381 irq_force_complete_move(irq); 382 383 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { 384 break_affinity = 1; 385 affinity = cpu_online_mask; 386 } 387 388 chip = irq_data_get_irq_chip(data); 389 if (!irqd_can_move_in_process_context(data) && chip->irq_mask) 390 chip->irq_mask(data); 391 392 if (chip->irq_set_affinity) 393 chip->irq_set_affinity(data, affinity, true); 394 else if (!(warned++)) 395 set_affinity = 0; 396 397 /* 398 * We unmask if the irq was not marked masked by the 399 * core code. That respects the lazy irq disable 400 * behaviour. 401 */ 402 if (!irqd_can_move_in_process_context(data) && 403 !irqd_irq_masked(data) && chip->irq_unmask) 404 chip->irq_unmask(data); 405 406 raw_spin_unlock(&desc->lock); 407 408 if (break_affinity && set_affinity) 409 pr_notice("Broke affinity for irq %i\n", irq); 410 else if (!set_affinity) 411 pr_notice("Cannot set affinity for irq %i\n", irq); 412 } 413 414 /* 415 * We can remove mdelay() and then send spuriuous interrupts to 416 * new cpu targets for all the irqs that were handled previously by 417 * this cpu. While it works, I have seen spurious interrupt messages 418 * (nothing wrong but still...). 419 * 420 * So for now, retain mdelay(1) and check the IRR and then send those 421 * interrupts to new targets as this cpu is already offlined... 422 */ 423 mdelay(1); 424 425 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 426 unsigned int irr; 427 428 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED) 429 continue; 430 431 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 432 if (irr & (1 << (vector % 32))) { 433 irq = __this_cpu_read(vector_irq[vector]); 434 435 desc = irq_to_desc(irq); 436 data = irq_desc_get_irq_data(desc); 437 chip = irq_data_get_irq_chip(data); 438 raw_spin_lock(&desc->lock); 439 if (chip->irq_retrigger) { 440 chip->irq_retrigger(data); 441 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 442 } 443 raw_spin_unlock(&desc->lock); 444 } 445 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 446 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); 447 } 448 } 449 #endif 450