1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/idle.h> 18 #include <asm/mce.h> 19 #include <asm/hw_irq.h> 20 #include <asm/desc.h> 21 22 #define CREATE_TRACE_POINTS 23 #include <asm/trace/irq_vectors.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 26 EXPORT_PER_CPU_SYMBOL(irq_stat); 27 28 DEFINE_PER_CPU(struct pt_regs *, irq_regs); 29 EXPORT_PER_CPU_SYMBOL(irq_regs); 30 31 atomic_t irq_err_count; 32 33 /* Function pointer for generic interrupt vector handling */ 34 void (*x86_platform_ipi_callback)(void) = NULL; 35 36 /* 37 * 'what should we do if we get a hw irq event on an illegal vector'. 38 * each architecture has to answer this themselves. 39 */ 40 void ack_bad_irq(unsigned int irq) 41 { 42 if (printk_ratelimit()) 43 pr_err("unexpected IRQ trap at vector %02x\n", irq); 44 45 /* 46 * Currently unexpected vectors happen only on SMP and APIC. 47 * We _must_ ack these because every local APIC has only N 48 * irq slots per priority level, and a 'hanging, unacked' IRQ 49 * holds up an irq slot - in excessive cases (when multiple 50 * unexpected vectors occur) that might lock up the APIC 51 * completely. 52 * But only ack when the APIC is enabled -AK 53 */ 54 ack_APIC_irq(); 55 } 56 57 #define irq_stats(x) (&per_cpu(irq_stat, x)) 58 /* 59 * /proc/interrupts printing for arch specific interrupts 60 */ 61 int arch_show_interrupts(struct seq_file *p, int prec) 62 { 63 int j; 64 65 seq_printf(p, "%*s: ", prec, "NMI"); 66 for_each_online_cpu(j) 67 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 68 seq_puts(p, " Non-maskable interrupts\n"); 69 #ifdef CONFIG_X86_LOCAL_APIC 70 seq_printf(p, "%*s: ", prec, "LOC"); 71 for_each_online_cpu(j) 72 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 73 seq_puts(p, " Local timer interrupts\n"); 74 75 seq_printf(p, "%*s: ", prec, "SPU"); 76 for_each_online_cpu(j) 77 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 78 seq_puts(p, " Spurious interrupts\n"); 79 seq_printf(p, "%*s: ", prec, "PMI"); 80 for_each_online_cpu(j) 81 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 82 seq_puts(p, " Performance monitoring interrupts\n"); 83 seq_printf(p, "%*s: ", prec, "IWI"); 84 for_each_online_cpu(j) 85 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 86 seq_puts(p, " IRQ work interrupts\n"); 87 seq_printf(p, "%*s: ", prec, "RTR"); 88 for_each_online_cpu(j) 89 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 90 seq_puts(p, " APIC ICR read retries\n"); 91 #endif 92 if (x86_platform_ipi_callback) { 93 seq_printf(p, "%*s: ", prec, "PLT"); 94 for_each_online_cpu(j) 95 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 96 seq_puts(p, " Platform interrupts\n"); 97 } 98 #ifdef CONFIG_SMP 99 seq_printf(p, "%*s: ", prec, "RES"); 100 for_each_online_cpu(j) 101 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 102 seq_puts(p, " Rescheduling interrupts\n"); 103 seq_printf(p, "%*s: ", prec, "CAL"); 104 for_each_online_cpu(j) 105 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 106 seq_puts(p, " Function call interrupts\n"); 107 seq_printf(p, "%*s: ", prec, "TLB"); 108 for_each_online_cpu(j) 109 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 110 seq_puts(p, " TLB shootdowns\n"); 111 #endif 112 #ifdef CONFIG_X86_THERMAL_VECTOR 113 seq_printf(p, "%*s: ", prec, "TRM"); 114 for_each_online_cpu(j) 115 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 116 seq_puts(p, " Thermal event interrupts\n"); 117 #endif 118 #ifdef CONFIG_X86_MCE_THRESHOLD 119 seq_printf(p, "%*s: ", prec, "THR"); 120 for_each_online_cpu(j) 121 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 122 seq_puts(p, " Threshold APIC interrupts\n"); 123 #endif 124 #ifdef CONFIG_X86_MCE_AMD 125 seq_printf(p, "%*s: ", prec, "DFR"); 126 for_each_online_cpu(j) 127 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); 128 seq_puts(p, " Deferred Error APIC interrupts\n"); 129 #endif 130 #ifdef CONFIG_X86_MCE 131 seq_printf(p, "%*s: ", prec, "MCE"); 132 for_each_online_cpu(j) 133 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 134 seq_puts(p, " Machine check exceptions\n"); 135 seq_printf(p, "%*s: ", prec, "MCP"); 136 for_each_online_cpu(j) 137 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 138 seq_puts(p, " Machine check polls\n"); 139 #endif 140 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) 141 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) { 142 seq_printf(p, "%*s: ", prec, "HYP"); 143 for_each_online_cpu(j) 144 seq_printf(p, "%10u ", 145 irq_stats(j)->irq_hv_callback_count); 146 seq_puts(p, " Hypervisor callback interrupts\n"); 147 } 148 #endif 149 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 150 #if defined(CONFIG_X86_IO_APIC) 151 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 152 #endif 153 #ifdef CONFIG_HAVE_KVM 154 seq_printf(p, "%*s: ", prec, "PIN"); 155 for_each_online_cpu(j) 156 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); 157 seq_puts(p, " Posted-interrupt notification event\n"); 158 159 seq_printf(p, "%*s: ", prec, "PIW"); 160 for_each_online_cpu(j) 161 seq_printf(p, "%10u ", 162 irq_stats(j)->kvm_posted_intr_wakeup_ipis); 163 seq_puts(p, " Posted-interrupt wakeup event\n"); 164 #endif 165 return 0; 166 } 167 168 /* 169 * /proc/stat helpers 170 */ 171 u64 arch_irq_stat_cpu(unsigned int cpu) 172 { 173 u64 sum = irq_stats(cpu)->__nmi_count; 174 175 #ifdef CONFIG_X86_LOCAL_APIC 176 sum += irq_stats(cpu)->apic_timer_irqs; 177 sum += irq_stats(cpu)->irq_spurious_count; 178 sum += irq_stats(cpu)->apic_perf_irqs; 179 sum += irq_stats(cpu)->apic_irq_work_irqs; 180 sum += irq_stats(cpu)->icr_read_retry_count; 181 #endif 182 if (x86_platform_ipi_callback) 183 sum += irq_stats(cpu)->x86_platform_ipis; 184 #ifdef CONFIG_SMP 185 sum += irq_stats(cpu)->irq_resched_count; 186 sum += irq_stats(cpu)->irq_call_count; 187 #endif 188 #ifdef CONFIG_X86_THERMAL_VECTOR 189 sum += irq_stats(cpu)->irq_thermal_count; 190 #endif 191 #ifdef CONFIG_X86_MCE_THRESHOLD 192 sum += irq_stats(cpu)->irq_threshold_count; 193 #endif 194 #ifdef CONFIG_X86_MCE 195 sum += per_cpu(mce_exception_count, cpu); 196 sum += per_cpu(mce_poll_count, cpu); 197 #endif 198 return sum; 199 } 200 201 u64 arch_irq_stat(void) 202 { 203 u64 sum = atomic_read(&irq_err_count); 204 return sum; 205 } 206 207 208 /* 209 * do_IRQ handles all normal device IRQ's (the special 210 * SMP cross-CPU interrupts have their own specific 211 * handlers). 212 */ 213 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 214 { 215 struct pt_regs *old_regs = set_irq_regs(regs); 216 struct irq_desc * desc; 217 /* high bit used in ret_from_ code */ 218 unsigned vector = ~regs->orig_ax; 219 220 /* 221 * NB: Unlike exception entries, IRQ entries do not reliably 222 * handle context tracking in the low-level entry code. This is 223 * because syscall entries execute briefly with IRQs on before 224 * updating context tracking state, so we can take an IRQ from 225 * kernel mode with CONTEXT_USER. The low-level entry code only 226 * updates the context if we came from user mode, so we won't 227 * switch to CONTEXT_KERNEL. We'll fix that once the syscall 228 * code is cleaned up enough that we can cleanly defer enabling 229 * IRQs. 230 */ 231 232 entering_irq(); 233 234 /* entering_irq() tells RCU that we're not quiescent. Check it. */ 235 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); 236 237 desc = __this_cpu_read(vector_irq[vector]); 238 239 if (!handle_irq(desc, regs)) { 240 ack_APIC_irq(); 241 242 if (desc != VECTOR_RETRIGGERED) { 243 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n", 244 __func__, smp_processor_id(), 245 vector); 246 } else { 247 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 248 } 249 } 250 251 exiting_irq(); 252 253 set_irq_regs(old_regs); 254 return 1; 255 } 256 257 /* 258 * Handler for X86_PLATFORM_IPI_VECTOR. 259 */ 260 void __smp_x86_platform_ipi(void) 261 { 262 inc_irq_stat(x86_platform_ipis); 263 264 if (x86_platform_ipi_callback) 265 x86_platform_ipi_callback(); 266 } 267 268 __visible void smp_x86_platform_ipi(struct pt_regs *regs) 269 { 270 struct pt_regs *old_regs = set_irq_regs(regs); 271 272 entering_ack_irq(); 273 __smp_x86_platform_ipi(); 274 exiting_irq(); 275 set_irq_regs(old_regs); 276 } 277 278 #ifdef CONFIG_HAVE_KVM 279 static void dummy_handler(void) {} 280 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; 281 282 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) 283 { 284 if (handler) 285 kvm_posted_intr_wakeup_handler = handler; 286 else 287 kvm_posted_intr_wakeup_handler = dummy_handler; 288 } 289 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); 290 291 /* 292 * Handler for POSTED_INTERRUPT_VECTOR. 293 */ 294 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 295 { 296 struct pt_regs *old_regs = set_irq_regs(regs); 297 298 entering_ack_irq(); 299 inc_irq_stat(kvm_posted_intr_ipis); 300 exiting_irq(); 301 set_irq_regs(old_regs); 302 } 303 304 /* 305 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 306 */ 307 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) 308 { 309 struct pt_regs *old_regs = set_irq_regs(regs); 310 311 entering_ack_irq(); 312 inc_irq_stat(kvm_posted_intr_wakeup_ipis); 313 kvm_posted_intr_wakeup_handler(); 314 exiting_irq(); 315 set_irq_regs(old_regs); 316 } 317 #endif 318 319 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs) 320 { 321 struct pt_regs *old_regs = set_irq_regs(regs); 322 323 entering_ack_irq(); 324 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 325 __smp_x86_platform_ipi(); 326 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 327 exiting_irq(); 328 set_irq_regs(old_regs); 329 } 330 331 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 332 333 #ifdef CONFIG_HOTPLUG_CPU 334 335 /* These two declarations are only used in check_irq_vectors_for_cpu_disable() 336 * below, which is protected by stop_machine(). Putting them on the stack 337 * results in a stack frame overflow. Dynamically allocating could result in a 338 * failure so declare these two cpumasks as global. 339 */ 340 static struct cpumask affinity_new, online_new; 341 342 /* 343 * This cpu is going to be removed and its vectors migrated to the remaining 344 * online cpus. Check to see if there are enough vectors in the remaining cpus. 345 * This function is protected by stop_machine(). 346 */ 347 int check_irq_vectors_for_cpu_disable(void) 348 { 349 unsigned int this_cpu, vector, this_count, count; 350 struct irq_desc *desc; 351 struct irq_data *data; 352 int cpu; 353 354 this_cpu = smp_processor_id(); 355 cpumask_copy(&online_new, cpu_online_mask); 356 cpumask_clear_cpu(this_cpu, &online_new); 357 358 this_count = 0; 359 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 360 desc = __this_cpu_read(vector_irq[vector]); 361 if (IS_ERR_OR_NULL(desc)) 362 continue; 363 /* 364 * Protect against concurrent action removal, affinity 365 * changes etc. 366 */ 367 raw_spin_lock(&desc->lock); 368 data = irq_desc_get_irq_data(desc); 369 cpumask_copy(&affinity_new, 370 irq_data_get_affinity_mask(data)); 371 cpumask_clear_cpu(this_cpu, &affinity_new); 372 373 /* Do not count inactive or per-cpu irqs. */ 374 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) { 375 raw_spin_unlock(&desc->lock); 376 continue; 377 } 378 379 raw_spin_unlock(&desc->lock); 380 /* 381 * A single irq may be mapped to multiple cpu's 382 * vector_irq[] (for example IOAPIC cluster mode). In 383 * this case we have two possibilities: 384 * 385 * 1) the resulting affinity mask is empty; that is 386 * this the down'd cpu is the last cpu in the irq's 387 * affinity mask, or 388 * 389 * 2) the resulting affinity mask is no longer a 390 * subset of the online cpus but the affinity mask is 391 * not zero; that is the down'd cpu is the last online 392 * cpu in a user set affinity mask. 393 */ 394 if (cpumask_empty(&affinity_new) || 395 !cpumask_subset(&affinity_new, &online_new)) 396 this_count++; 397 } 398 399 count = 0; 400 for_each_online_cpu(cpu) { 401 if (cpu == this_cpu) 402 continue; 403 /* 404 * We scan from FIRST_EXTERNAL_VECTOR to first system 405 * vector. If the vector is marked in the used vectors 406 * bitmap or an irq is assigned to it, we don't count 407 * it as available. 408 * 409 * As this is an inaccurate snapshot anyway, we can do 410 * this w/o holding vector_lock. 411 */ 412 for (vector = FIRST_EXTERNAL_VECTOR; 413 vector < first_system_vector; vector++) { 414 if (!test_bit(vector, used_vectors) && 415 IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) 416 count++; 417 } 418 } 419 420 if (count < this_count) { 421 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 422 this_cpu, this_count, count); 423 return -ERANGE; 424 } 425 return 0; 426 } 427 428 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 429 void fixup_irqs(void) 430 { 431 unsigned int irq, vector; 432 static int warned; 433 struct irq_desc *desc; 434 struct irq_data *data; 435 struct irq_chip *chip; 436 int ret; 437 438 for_each_irq_desc(irq, desc) { 439 int break_affinity = 0; 440 int set_affinity = 1; 441 const struct cpumask *affinity; 442 443 if (!desc) 444 continue; 445 if (irq == 2) 446 continue; 447 448 /* interrupt's are disabled at this point */ 449 raw_spin_lock(&desc->lock); 450 451 data = irq_desc_get_irq_data(desc); 452 affinity = irq_data_get_affinity_mask(data); 453 if (!irq_has_action(irq) || irqd_is_per_cpu(data) || 454 cpumask_subset(affinity, cpu_online_mask)) { 455 raw_spin_unlock(&desc->lock); 456 continue; 457 } 458 459 /* 460 * Complete the irq move. This cpu is going down and for 461 * non intr-remapping case, we can't wait till this interrupt 462 * arrives at this cpu before completing the irq move. 463 */ 464 irq_force_complete_move(desc); 465 466 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { 467 break_affinity = 1; 468 affinity = cpu_online_mask; 469 } 470 471 chip = irq_data_get_irq_chip(data); 472 /* 473 * The interrupt descriptor might have been cleaned up 474 * already, but it is not yet removed from the radix tree 475 */ 476 if (!chip) { 477 raw_spin_unlock(&desc->lock); 478 continue; 479 } 480 481 if (!irqd_can_move_in_process_context(data) && chip->irq_mask) 482 chip->irq_mask(data); 483 484 if (chip->irq_set_affinity) { 485 ret = chip->irq_set_affinity(data, affinity, true); 486 if (ret == -ENOSPC) 487 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq); 488 } else { 489 if (!(warned++)) 490 set_affinity = 0; 491 } 492 493 /* 494 * We unmask if the irq was not marked masked by the 495 * core code. That respects the lazy irq disable 496 * behaviour. 497 */ 498 if (!irqd_can_move_in_process_context(data) && 499 !irqd_irq_masked(data) && chip->irq_unmask) 500 chip->irq_unmask(data); 501 502 raw_spin_unlock(&desc->lock); 503 504 if (break_affinity && set_affinity) 505 pr_notice("Broke affinity for irq %i\n", irq); 506 else if (!set_affinity) 507 pr_notice("Cannot set affinity for irq %i\n", irq); 508 } 509 510 /* 511 * We can remove mdelay() and then send spuriuous interrupts to 512 * new cpu targets for all the irqs that were handled previously by 513 * this cpu. While it works, I have seen spurious interrupt messages 514 * (nothing wrong but still...). 515 * 516 * So for now, retain mdelay(1) and check the IRR and then send those 517 * interrupts to new targets as this cpu is already offlined... 518 */ 519 mdelay(1); 520 521 /* 522 * We can walk the vector array of this cpu without holding 523 * vector_lock because the cpu is already marked !online, so 524 * nothing else will touch it. 525 */ 526 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 527 unsigned int irr; 528 529 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) 530 continue; 531 532 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 533 if (irr & (1 << (vector % 32))) { 534 desc = __this_cpu_read(vector_irq[vector]); 535 536 raw_spin_lock(&desc->lock); 537 data = irq_desc_get_irq_data(desc); 538 chip = irq_data_get_irq_chip(data); 539 if (chip->irq_retrigger) { 540 chip->irq_retrigger(data); 541 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 542 } 543 raw_spin_unlock(&desc->lock); 544 } 545 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 546 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 547 } 548 } 549 #endif 550