xref: /openbmc/linux/arch/x86/kernel/irq.c (revision e5c86679)
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/mce.h>
18 #include <asm/hw_irq.h>
19 #include <asm/desc.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <asm/trace/irq_vectors.h>
23 
24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
25 EXPORT_PER_CPU_SYMBOL(irq_stat);
26 
27 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
28 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 
30 atomic_t irq_err_count;
31 
32 /* Function pointer for generic interrupt vector handling */
33 void (*x86_platform_ipi_callback)(void) = NULL;
34 
35 /*
36  * 'what should we do if we get a hw irq event on an illegal vector'.
37  * each architecture has to answer this themselves.
38  */
39 void ack_bad_irq(unsigned int irq)
40 {
41 	if (printk_ratelimit())
42 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
43 
44 	/*
45 	 * Currently unexpected vectors happen only on SMP and APIC.
46 	 * We _must_ ack these because every local APIC has only N
47 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
48 	 * holds up an irq slot - in excessive cases (when multiple
49 	 * unexpected vectors occur) that might lock up the APIC
50 	 * completely.
51 	 * But only ack when the APIC is enabled -AK
52 	 */
53 	ack_APIC_irq();
54 }
55 
56 #define irq_stats(x)		(&per_cpu(irq_stat, x))
57 /*
58  * /proc/interrupts printing for arch specific interrupts
59  */
60 int arch_show_interrupts(struct seq_file *p, int prec)
61 {
62 	int j;
63 
64 	seq_printf(p, "%*s: ", prec, "NMI");
65 	for_each_online_cpu(j)
66 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
67 	seq_puts(p, "  Non-maskable interrupts\n");
68 #ifdef CONFIG_X86_LOCAL_APIC
69 	seq_printf(p, "%*s: ", prec, "LOC");
70 	for_each_online_cpu(j)
71 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
72 	seq_puts(p, "  Local timer interrupts\n");
73 
74 	seq_printf(p, "%*s: ", prec, "SPU");
75 	for_each_online_cpu(j)
76 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
77 	seq_puts(p, "  Spurious interrupts\n");
78 	seq_printf(p, "%*s: ", prec, "PMI");
79 	for_each_online_cpu(j)
80 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
81 	seq_puts(p, "  Performance monitoring interrupts\n");
82 	seq_printf(p, "%*s: ", prec, "IWI");
83 	for_each_online_cpu(j)
84 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
85 	seq_puts(p, "  IRQ work interrupts\n");
86 	seq_printf(p, "%*s: ", prec, "RTR");
87 	for_each_online_cpu(j)
88 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
89 	seq_puts(p, "  APIC ICR read retries\n");
90 #endif
91 	if (x86_platform_ipi_callback) {
92 		seq_printf(p, "%*s: ", prec, "PLT");
93 		for_each_online_cpu(j)
94 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
95 		seq_puts(p, "  Platform interrupts\n");
96 	}
97 #ifdef CONFIG_SMP
98 	seq_printf(p, "%*s: ", prec, "RES");
99 	for_each_online_cpu(j)
100 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
101 	seq_puts(p, "  Rescheduling interrupts\n");
102 	seq_printf(p, "%*s: ", prec, "CAL");
103 	for_each_online_cpu(j)
104 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
105 	seq_puts(p, "  Function call interrupts\n");
106 	seq_printf(p, "%*s: ", prec, "TLB");
107 	for_each_online_cpu(j)
108 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
109 	seq_puts(p, "  TLB shootdowns\n");
110 #endif
111 #ifdef CONFIG_X86_THERMAL_VECTOR
112 	seq_printf(p, "%*s: ", prec, "TRM");
113 	for_each_online_cpu(j)
114 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
115 	seq_puts(p, "  Thermal event interrupts\n");
116 #endif
117 #ifdef CONFIG_X86_MCE_THRESHOLD
118 	seq_printf(p, "%*s: ", prec, "THR");
119 	for_each_online_cpu(j)
120 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
121 	seq_puts(p, "  Threshold APIC interrupts\n");
122 #endif
123 #ifdef CONFIG_X86_MCE_AMD
124 	seq_printf(p, "%*s: ", prec, "DFR");
125 	for_each_online_cpu(j)
126 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
127 	seq_puts(p, "  Deferred Error APIC interrupts\n");
128 #endif
129 #ifdef CONFIG_X86_MCE
130 	seq_printf(p, "%*s: ", prec, "MCE");
131 	for_each_online_cpu(j)
132 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
133 	seq_puts(p, "  Machine check exceptions\n");
134 	seq_printf(p, "%*s: ", prec, "MCP");
135 	for_each_online_cpu(j)
136 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
137 	seq_puts(p, "  Machine check polls\n");
138 #endif
139 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
140 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
141 		seq_printf(p, "%*s: ", prec, "HYP");
142 		for_each_online_cpu(j)
143 			seq_printf(p, "%10u ",
144 				   irq_stats(j)->irq_hv_callback_count);
145 		seq_puts(p, "  Hypervisor callback interrupts\n");
146 	}
147 #endif
148 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
149 #if defined(CONFIG_X86_IO_APIC)
150 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
151 #endif
152 #ifdef CONFIG_HAVE_KVM
153 	seq_printf(p, "%*s: ", prec, "PIN");
154 	for_each_online_cpu(j)
155 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
156 	seq_puts(p, "  Posted-interrupt notification event\n");
157 
158 	seq_printf(p, "%*s: ", prec, "PIW");
159 	for_each_online_cpu(j)
160 		seq_printf(p, "%10u ",
161 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
162 	seq_puts(p, "  Posted-interrupt wakeup event\n");
163 #endif
164 	return 0;
165 }
166 
167 /*
168  * /proc/stat helpers
169  */
170 u64 arch_irq_stat_cpu(unsigned int cpu)
171 {
172 	u64 sum = irq_stats(cpu)->__nmi_count;
173 
174 #ifdef CONFIG_X86_LOCAL_APIC
175 	sum += irq_stats(cpu)->apic_timer_irqs;
176 	sum += irq_stats(cpu)->irq_spurious_count;
177 	sum += irq_stats(cpu)->apic_perf_irqs;
178 	sum += irq_stats(cpu)->apic_irq_work_irqs;
179 	sum += irq_stats(cpu)->icr_read_retry_count;
180 #endif
181 	if (x86_platform_ipi_callback)
182 		sum += irq_stats(cpu)->x86_platform_ipis;
183 #ifdef CONFIG_SMP
184 	sum += irq_stats(cpu)->irq_resched_count;
185 	sum += irq_stats(cpu)->irq_call_count;
186 #endif
187 #ifdef CONFIG_X86_THERMAL_VECTOR
188 	sum += irq_stats(cpu)->irq_thermal_count;
189 #endif
190 #ifdef CONFIG_X86_MCE_THRESHOLD
191 	sum += irq_stats(cpu)->irq_threshold_count;
192 #endif
193 #ifdef CONFIG_X86_MCE
194 	sum += per_cpu(mce_exception_count, cpu);
195 	sum += per_cpu(mce_poll_count, cpu);
196 #endif
197 	return sum;
198 }
199 
200 u64 arch_irq_stat(void)
201 {
202 	u64 sum = atomic_read(&irq_err_count);
203 	return sum;
204 }
205 
206 
207 /*
208  * do_IRQ handles all normal device IRQ's (the special
209  * SMP cross-CPU interrupts have their own specific
210  * handlers).
211  */
212 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
213 {
214 	struct pt_regs *old_regs = set_irq_regs(regs);
215 	struct irq_desc * desc;
216 	/* high bit used in ret_from_ code  */
217 	unsigned vector = ~regs->orig_ax;
218 
219 	/*
220 	 * NB: Unlike exception entries, IRQ entries do not reliably
221 	 * handle context tracking in the low-level entry code.  This is
222 	 * because syscall entries execute briefly with IRQs on before
223 	 * updating context tracking state, so we can take an IRQ from
224 	 * kernel mode with CONTEXT_USER.  The low-level entry code only
225 	 * updates the context if we came from user mode, so we won't
226 	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
227 	 * code is cleaned up enough that we can cleanly defer enabling
228 	 * IRQs.
229 	 */
230 
231 	entering_irq();
232 
233 	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
234 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
235 
236 	desc = __this_cpu_read(vector_irq[vector]);
237 
238 	if (!handle_irq(desc, regs)) {
239 		ack_APIC_irq();
240 
241 		if (desc != VECTOR_RETRIGGERED) {
242 			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
243 					     __func__, smp_processor_id(),
244 					     vector);
245 		} else {
246 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
247 		}
248 	}
249 
250 	exiting_irq();
251 
252 	set_irq_regs(old_regs);
253 	return 1;
254 }
255 
256 /*
257  * Handler for X86_PLATFORM_IPI_VECTOR.
258  */
259 void __smp_x86_platform_ipi(void)
260 {
261 	inc_irq_stat(x86_platform_ipis);
262 
263 	if (x86_platform_ipi_callback)
264 		x86_platform_ipi_callback();
265 }
266 
267 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
268 {
269 	struct pt_regs *old_regs = set_irq_regs(regs);
270 
271 	entering_ack_irq();
272 	__smp_x86_platform_ipi();
273 	exiting_irq();
274 	set_irq_regs(old_regs);
275 }
276 
277 #ifdef CONFIG_HAVE_KVM
278 static void dummy_handler(void) {}
279 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
280 
281 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
282 {
283 	if (handler)
284 		kvm_posted_intr_wakeup_handler = handler;
285 	else
286 		kvm_posted_intr_wakeup_handler = dummy_handler;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
289 
290 /*
291  * Handler for POSTED_INTERRUPT_VECTOR.
292  */
293 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
294 {
295 	struct pt_regs *old_regs = set_irq_regs(regs);
296 
297 	entering_ack_irq();
298 	inc_irq_stat(kvm_posted_intr_ipis);
299 	exiting_irq();
300 	set_irq_regs(old_regs);
301 }
302 
303 /*
304  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
305  */
306 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
307 {
308 	struct pt_regs *old_regs = set_irq_regs(regs);
309 
310 	entering_ack_irq();
311 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
312 	kvm_posted_intr_wakeup_handler();
313 	exiting_irq();
314 	set_irq_regs(old_regs);
315 }
316 #endif
317 
318 __visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs)
319 {
320 	struct pt_regs *old_regs = set_irq_regs(regs);
321 
322 	entering_ack_irq();
323 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
324 	__smp_x86_platform_ipi();
325 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
326 	exiting_irq();
327 	set_irq_regs(old_regs);
328 }
329 
330 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
331 
332 #ifdef CONFIG_HOTPLUG_CPU
333 
334 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
335  * below, which is protected by stop_machine().  Putting them on the stack
336  * results in a stack frame overflow.  Dynamically allocating could result in a
337  * failure so declare these two cpumasks as global.
338  */
339 static struct cpumask affinity_new, online_new;
340 
341 /*
342  * This cpu is going to be removed and its vectors migrated to the remaining
343  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
344  * This function is protected by stop_machine().
345  */
346 int check_irq_vectors_for_cpu_disable(void)
347 {
348 	unsigned int this_cpu, vector, this_count, count;
349 	struct irq_desc *desc;
350 	struct irq_data *data;
351 	int cpu;
352 
353 	this_cpu = smp_processor_id();
354 	cpumask_copy(&online_new, cpu_online_mask);
355 	cpumask_clear_cpu(this_cpu, &online_new);
356 
357 	this_count = 0;
358 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
359 		desc = __this_cpu_read(vector_irq[vector]);
360 		if (IS_ERR_OR_NULL(desc))
361 			continue;
362 		/*
363 		 * Protect against concurrent action removal, affinity
364 		 * changes etc.
365 		 */
366 		raw_spin_lock(&desc->lock);
367 		data = irq_desc_get_irq_data(desc);
368 		cpumask_copy(&affinity_new,
369 			     irq_data_get_affinity_mask(data));
370 		cpumask_clear_cpu(this_cpu, &affinity_new);
371 
372 		/* Do not count inactive or per-cpu irqs. */
373 		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
374 			raw_spin_unlock(&desc->lock);
375 			continue;
376 		}
377 
378 		raw_spin_unlock(&desc->lock);
379 		/*
380 		 * A single irq may be mapped to multiple cpu's
381 		 * vector_irq[] (for example IOAPIC cluster mode).  In
382 		 * this case we have two possibilities:
383 		 *
384 		 * 1) the resulting affinity mask is empty; that is
385 		 * this the down'd cpu is the last cpu in the irq's
386 		 * affinity mask, or
387 		 *
388 		 * 2) the resulting affinity mask is no longer a
389 		 * subset of the online cpus but the affinity mask is
390 		 * not zero; that is the down'd cpu is the last online
391 		 * cpu in a user set affinity mask.
392 		 */
393 		if (cpumask_empty(&affinity_new) ||
394 		    !cpumask_subset(&affinity_new, &online_new))
395 			this_count++;
396 	}
397 
398 	count = 0;
399 	for_each_online_cpu(cpu) {
400 		if (cpu == this_cpu)
401 			continue;
402 		/*
403 		 * We scan from FIRST_EXTERNAL_VECTOR to first system
404 		 * vector. If the vector is marked in the used vectors
405 		 * bitmap or an irq is assigned to it, we don't count
406 		 * it as available.
407 		 *
408 		 * As this is an inaccurate snapshot anyway, we can do
409 		 * this w/o holding vector_lock.
410 		 */
411 		for (vector = FIRST_EXTERNAL_VECTOR;
412 		     vector < first_system_vector; vector++) {
413 			if (!test_bit(vector, used_vectors) &&
414 			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
415 			    count++;
416 		}
417 	}
418 
419 	if (count < this_count) {
420 		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
421 			this_cpu, this_count, count);
422 		return -ERANGE;
423 	}
424 	return 0;
425 }
426 
427 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
428 void fixup_irqs(void)
429 {
430 	unsigned int irq, vector;
431 	static int warned;
432 	struct irq_desc *desc;
433 	struct irq_data *data;
434 	struct irq_chip *chip;
435 	int ret;
436 
437 	for_each_irq_desc(irq, desc) {
438 		int break_affinity = 0;
439 		int set_affinity = 1;
440 		const struct cpumask *affinity;
441 
442 		if (!desc)
443 			continue;
444 		if (irq == 2)
445 			continue;
446 
447 		/* interrupt's are disabled at this point */
448 		raw_spin_lock(&desc->lock);
449 
450 		data = irq_desc_get_irq_data(desc);
451 		affinity = irq_data_get_affinity_mask(data);
452 		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
453 		    cpumask_subset(affinity, cpu_online_mask)) {
454 			raw_spin_unlock(&desc->lock);
455 			continue;
456 		}
457 
458 		/*
459 		 * Complete the irq move. This cpu is going down and for
460 		 * non intr-remapping case, we can't wait till this interrupt
461 		 * arrives at this cpu before completing the irq move.
462 		 */
463 		irq_force_complete_move(desc);
464 
465 		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
466 			break_affinity = 1;
467 			affinity = cpu_online_mask;
468 		}
469 
470 		chip = irq_data_get_irq_chip(data);
471 		/*
472 		 * The interrupt descriptor might have been cleaned up
473 		 * already, but it is not yet removed from the radix tree
474 		 */
475 		if (!chip) {
476 			raw_spin_unlock(&desc->lock);
477 			continue;
478 		}
479 
480 		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
481 			chip->irq_mask(data);
482 
483 		if (chip->irq_set_affinity) {
484 			ret = chip->irq_set_affinity(data, affinity, true);
485 			if (ret == -ENOSPC)
486 				pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
487 		} else {
488 			if (!(warned++))
489 				set_affinity = 0;
490 		}
491 
492 		/*
493 		 * We unmask if the irq was not marked masked by the
494 		 * core code. That respects the lazy irq disable
495 		 * behaviour.
496 		 */
497 		if (!irqd_can_move_in_process_context(data) &&
498 		    !irqd_irq_masked(data) && chip->irq_unmask)
499 			chip->irq_unmask(data);
500 
501 		raw_spin_unlock(&desc->lock);
502 
503 		if (break_affinity && set_affinity)
504 			pr_notice("Broke affinity for irq %i\n", irq);
505 		else if (!set_affinity)
506 			pr_notice("Cannot set affinity for irq %i\n", irq);
507 	}
508 
509 	/*
510 	 * We can remove mdelay() and then send spuriuous interrupts to
511 	 * new cpu targets for all the irqs that were handled previously by
512 	 * this cpu. While it works, I have seen spurious interrupt messages
513 	 * (nothing wrong but still...).
514 	 *
515 	 * So for now, retain mdelay(1) and check the IRR and then send those
516 	 * interrupts to new targets as this cpu is already offlined...
517 	 */
518 	mdelay(1);
519 
520 	/*
521 	 * We can walk the vector array of this cpu without holding
522 	 * vector_lock because the cpu is already marked !online, so
523 	 * nothing else will touch it.
524 	 */
525 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
526 		unsigned int irr;
527 
528 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
529 			continue;
530 
531 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
532 		if (irr  & (1 << (vector % 32))) {
533 			desc = __this_cpu_read(vector_irq[vector]);
534 
535 			raw_spin_lock(&desc->lock);
536 			data = irq_desc_get_irq_data(desc);
537 			chip = irq_data_get_irq_chip(data);
538 			if (chip->irq_retrigger) {
539 				chip->irq_retrigger(data);
540 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
541 			}
542 			raw_spin_unlock(&desc->lock);
543 		}
544 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
545 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
546 	}
547 }
548 #endif
549