xref: /openbmc/linux/arch/x86/kernel/irq.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/mce.h>
18 #include <asm/hw_irq.h>
19 #include <asm/desc.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <asm/trace/irq_vectors.h>
23 
24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
25 EXPORT_PER_CPU_SYMBOL(irq_stat);
26 
27 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
28 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 
30 atomic_t irq_err_count;
31 
32 /*
33  * 'what should we do if we get a hw irq event on an illegal vector'.
34  * each architecture has to answer this themselves.
35  */
36 void ack_bad_irq(unsigned int irq)
37 {
38 	if (printk_ratelimit())
39 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
40 
41 	/*
42 	 * Currently unexpected vectors happen only on SMP and APIC.
43 	 * We _must_ ack these because every local APIC has only N
44 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
45 	 * holds up an irq slot - in excessive cases (when multiple
46 	 * unexpected vectors occur) that might lock up the APIC
47 	 * completely.
48 	 * But only ack when the APIC is enabled -AK
49 	 */
50 	ack_APIC_irq();
51 }
52 
53 #define irq_stats(x)		(&per_cpu(irq_stat, x))
54 /*
55  * /proc/interrupts printing for arch specific interrupts
56  */
57 int arch_show_interrupts(struct seq_file *p, int prec)
58 {
59 	int j;
60 
61 	seq_printf(p, "%*s: ", prec, "NMI");
62 	for_each_online_cpu(j)
63 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
64 	seq_puts(p, "  Non-maskable interrupts\n");
65 #ifdef CONFIG_X86_LOCAL_APIC
66 	seq_printf(p, "%*s: ", prec, "LOC");
67 	for_each_online_cpu(j)
68 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
69 	seq_puts(p, "  Local timer interrupts\n");
70 
71 	seq_printf(p, "%*s: ", prec, "SPU");
72 	for_each_online_cpu(j)
73 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
74 	seq_puts(p, "  Spurious interrupts\n");
75 	seq_printf(p, "%*s: ", prec, "PMI");
76 	for_each_online_cpu(j)
77 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
78 	seq_puts(p, "  Performance monitoring interrupts\n");
79 	seq_printf(p, "%*s: ", prec, "IWI");
80 	for_each_online_cpu(j)
81 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
82 	seq_puts(p, "  IRQ work interrupts\n");
83 	seq_printf(p, "%*s: ", prec, "RTR");
84 	for_each_online_cpu(j)
85 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
86 	seq_puts(p, "  APIC ICR read retries\n");
87 	if (x86_platform_ipi_callback) {
88 		seq_printf(p, "%*s: ", prec, "PLT");
89 		for_each_online_cpu(j)
90 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
91 		seq_puts(p, "  Platform interrupts\n");
92 	}
93 #endif
94 #ifdef CONFIG_SMP
95 	seq_printf(p, "%*s: ", prec, "RES");
96 	for_each_online_cpu(j)
97 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
98 	seq_puts(p, "  Rescheduling interrupts\n");
99 	seq_printf(p, "%*s: ", prec, "CAL");
100 	for_each_online_cpu(j)
101 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
102 	seq_puts(p, "  Function call interrupts\n");
103 	seq_printf(p, "%*s: ", prec, "TLB");
104 	for_each_online_cpu(j)
105 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
106 	seq_puts(p, "  TLB shootdowns\n");
107 #endif
108 #ifdef CONFIG_X86_THERMAL_VECTOR
109 	seq_printf(p, "%*s: ", prec, "TRM");
110 	for_each_online_cpu(j)
111 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
112 	seq_puts(p, "  Thermal event interrupts\n");
113 #endif
114 #ifdef CONFIG_X86_MCE_THRESHOLD
115 	seq_printf(p, "%*s: ", prec, "THR");
116 	for_each_online_cpu(j)
117 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
118 	seq_puts(p, "  Threshold APIC interrupts\n");
119 #endif
120 #ifdef CONFIG_X86_MCE_AMD
121 	seq_printf(p, "%*s: ", prec, "DFR");
122 	for_each_online_cpu(j)
123 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
124 	seq_puts(p, "  Deferred Error APIC interrupts\n");
125 #endif
126 #ifdef CONFIG_X86_MCE
127 	seq_printf(p, "%*s: ", prec, "MCE");
128 	for_each_online_cpu(j)
129 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
130 	seq_puts(p, "  Machine check exceptions\n");
131 	seq_printf(p, "%*s: ", prec, "MCP");
132 	for_each_online_cpu(j)
133 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
134 	seq_puts(p, "  Machine check polls\n");
135 #endif
136 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
137 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
138 		seq_printf(p, "%*s: ", prec, "HYP");
139 		for_each_online_cpu(j)
140 			seq_printf(p, "%10u ",
141 				   irq_stats(j)->irq_hv_callback_count);
142 		seq_puts(p, "  Hypervisor callback interrupts\n");
143 	}
144 #endif
145 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
146 #if defined(CONFIG_X86_IO_APIC)
147 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
148 #endif
149 #ifdef CONFIG_HAVE_KVM
150 	seq_printf(p, "%*s: ", prec, "PIN");
151 	for_each_online_cpu(j)
152 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
153 	seq_puts(p, "  Posted-interrupt notification event\n");
154 
155 	seq_printf(p, "%*s: ", prec, "NPI");
156 	for_each_online_cpu(j)
157 		seq_printf(p, "%10u ",
158 			   irq_stats(j)->kvm_posted_intr_nested_ipis);
159 	seq_puts(p, "  Nested posted-interrupt event\n");
160 
161 	seq_printf(p, "%*s: ", prec, "PIW");
162 	for_each_online_cpu(j)
163 		seq_printf(p, "%10u ",
164 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
165 	seq_puts(p, "  Posted-interrupt wakeup event\n");
166 #endif
167 	return 0;
168 }
169 
170 /*
171  * /proc/stat helpers
172  */
173 u64 arch_irq_stat_cpu(unsigned int cpu)
174 {
175 	u64 sum = irq_stats(cpu)->__nmi_count;
176 
177 #ifdef CONFIG_X86_LOCAL_APIC
178 	sum += irq_stats(cpu)->apic_timer_irqs;
179 	sum += irq_stats(cpu)->irq_spurious_count;
180 	sum += irq_stats(cpu)->apic_perf_irqs;
181 	sum += irq_stats(cpu)->apic_irq_work_irqs;
182 	sum += irq_stats(cpu)->icr_read_retry_count;
183 	if (x86_platform_ipi_callback)
184 		sum += irq_stats(cpu)->x86_platform_ipis;
185 #endif
186 #ifdef CONFIG_SMP
187 	sum += irq_stats(cpu)->irq_resched_count;
188 	sum += irq_stats(cpu)->irq_call_count;
189 #endif
190 #ifdef CONFIG_X86_THERMAL_VECTOR
191 	sum += irq_stats(cpu)->irq_thermal_count;
192 #endif
193 #ifdef CONFIG_X86_MCE_THRESHOLD
194 	sum += irq_stats(cpu)->irq_threshold_count;
195 #endif
196 #ifdef CONFIG_X86_MCE
197 	sum += per_cpu(mce_exception_count, cpu);
198 	sum += per_cpu(mce_poll_count, cpu);
199 #endif
200 	return sum;
201 }
202 
203 u64 arch_irq_stat(void)
204 {
205 	u64 sum = atomic_read(&irq_err_count);
206 	return sum;
207 }
208 
209 
210 /*
211  * do_IRQ handles all normal device IRQ's (the special
212  * SMP cross-CPU interrupts have their own specific
213  * handlers).
214  */
215 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
216 {
217 	struct pt_regs *old_regs = set_irq_regs(regs);
218 	struct irq_desc * desc;
219 	/* high bit used in ret_from_ code  */
220 	unsigned vector = ~regs->orig_ax;
221 
222 	/*
223 	 * NB: Unlike exception entries, IRQ entries do not reliably
224 	 * handle context tracking in the low-level entry code.  This is
225 	 * because syscall entries execute briefly with IRQs on before
226 	 * updating context tracking state, so we can take an IRQ from
227 	 * kernel mode with CONTEXT_USER.  The low-level entry code only
228 	 * updates the context if we came from user mode, so we won't
229 	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
230 	 * code is cleaned up enough that we can cleanly defer enabling
231 	 * IRQs.
232 	 */
233 
234 	entering_irq();
235 
236 	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
237 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
238 
239 	desc = __this_cpu_read(vector_irq[vector]);
240 
241 	if (!handle_irq(desc, regs)) {
242 		ack_APIC_irq();
243 
244 		if (desc != VECTOR_RETRIGGERED) {
245 			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
246 					     __func__, smp_processor_id(),
247 					     vector);
248 		} else {
249 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
250 		}
251 	}
252 
253 	exiting_irq();
254 
255 	set_irq_regs(old_regs);
256 	return 1;
257 }
258 
259 #ifdef CONFIG_X86_LOCAL_APIC
260 /* Function pointer for generic interrupt vector handling */
261 void (*x86_platform_ipi_callback)(void) = NULL;
262 /*
263  * Handler for X86_PLATFORM_IPI_VECTOR.
264  */
265 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
266 {
267 	struct pt_regs *old_regs = set_irq_regs(regs);
268 
269 	entering_ack_irq();
270 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
271 	inc_irq_stat(x86_platform_ipis);
272 	if (x86_platform_ipi_callback)
273 		x86_platform_ipi_callback();
274 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
275 	exiting_irq();
276 	set_irq_regs(old_regs);
277 }
278 #endif
279 
280 #ifdef CONFIG_HAVE_KVM
281 static void dummy_handler(void) {}
282 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
283 
284 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
285 {
286 	if (handler)
287 		kvm_posted_intr_wakeup_handler = handler;
288 	else
289 		kvm_posted_intr_wakeup_handler = dummy_handler;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
292 
293 /*
294  * Handler for POSTED_INTERRUPT_VECTOR.
295  */
296 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
297 {
298 	struct pt_regs *old_regs = set_irq_regs(regs);
299 
300 	entering_ack_irq();
301 	inc_irq_stat(kvm_posted_intr_ipis);
302 	exiting_irq();
303 	set_irq_regs(old_regs);
304 }
305 
306 /*
307  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
308  */
309 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
310 {
311 	struct pt_regs *old_regs = set_irq_regs(regs);
312 
313 	entering_ack_irq();
314 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
315 	kvm_posted_intr_wakeup_handler();
316 	exiting_irq();
317 	set_irq_regs(old_regs);
318 }
319 
320 /*
321  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
322  */
323 __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
324 {
325 	struct pt_regs *old_regs = set_irq_regs(regs);
326 
327 	entering_ack_irq();
328 	inc_irq_stat(kvm_posted_intr_nested_ipis);
329 	exiting_irq();
330 	set_irq_regs(old_regs);
331 }
332 #endif
333 
334 
335 #ifdef CONFIG_HOTPLUG_CPU
336 
337 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
338  * below, which is protected by stop_machine().  Putting them on the stack
339  * results in a stack frame overflow.  Dynamically allocating could result in a
340  * failure so declare these two cpumasks as global.
341  */
342 static struct cpumask affinity_new, online_new;
343 
344 /*
345  * This cpu is going to be removed and its vectors migrated to the remaining
346  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
347  * This function is protected by stop_machine().
348  */
349 int check_irq_vectors_for_cpu_disable(void)
350 {
351 	unsigned int this_cpu, vector, this_count, count;
352 	struct irq_desc *desc;
353 	struct irq_data *data;
354 	int cpu;
355 
356 	this_cpu = smp_processor_id();
357 	cpumask_copy(&online_new, cpu_online_mask);
358 	cpumask_clear_cpu(this_cpu, &online_new);
359 
360 	this_count = 0;
361 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
362 		desc = __this_cpu_read(vector_irq[vector]);
363 		if (IS_ERR_OR_NULL(desc))
364 			continue;
365 		/*
366 		 * Protect against concurrent action removal, affinity
367 		 * changes etc.
368 		 */
369 		raw_spin_lock(&desc->lock);
370 		data = irq_desc_get_irq_data(desc);
371 		cpumask_copy(&affinity_new,
372 			     irq_data_get_affinity_mask(data));
373 		cpumask_clear_cpu(this_cpu, &affinity_new);
374 
375 		/* Do not count inactive or per-cpu irqs. */
376 		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
377 			raw_spin_unlock(&desc->lock);
378 			continue;
379 		}
380 
381 		raw_spin_unlock(&desc->lock);
382 		/*
383 		 * A single irq may be mapped to multiple cpu's
384 		 * vector_irq[] (for example IOAPIC cluster mode).  In
385 		 * this case we have two possibilities:
386 		 *
387 		 * 1) the resulting affinity mask is empty; that is
388 		 * this the down'd cpu is the last cpu in the irq's
389 		 * affinity mask, or
390 		 *
391 		 * 2) the resulting affinity mask is no longer a
392 		 * subset of the online cpus but the affinity mask is
393 		 * not zero; that is the down'd cpu is the last online
394 		 * cpu in a user set affinity mask.
395 		 */
396 		if (cpumask_empty(&affinity_new) ||
397 		    !cpumask_subset(&affinity_new, &online_new))
398 			this_count++;
399 	}
400 	/* No need to check any further. */
401 	if (!this_count)
402 		return 0;
403 
404 	count = 0;
405 	for_each_online_cpu(cpu) {
406 		if (cpu == this_cpu)
407 			continue;
408 		/*
409 		 * We scan from FIRST_EXTERNAL_VECTOR to first system
410 		 * vector. If the vector is marked in the used vectors
411 		 * bitmap or an irq is assigned to it, we don't count
412 		 * it as available.
413 		 *
414 		 * As this is an inaccurate snapshot anyway, we can do
415 		 * this w/o holding vector_lock.
416 		 */
417 		for (vector = FIRST_EXTERNAL_VECTOR;
418 		     vector < FIRST_SYSTEM_VECTOR; vector++) {
419 			if (!test_bit(vector, used_vectors) &&
420 			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
421 				if (++count == this_count)
422 					return 0;
423 			}
424 		}
425 	}
426 
427 	if (count < this_count) {
428 		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
429 			this_cpu, this_count, count);
430 		return -ERANGE;
431 	}
432 	return 0;
433 }
434 
435 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
436 void fixup_irqs(void)
437 {
438 	unsigned int irr, vector;
439 	struct irq_desc *desc;
440 	struct irq_data *data;
441 	struct irq_chip *chip;
442 
443 	irq_migrate_all_off_this_cpu();
444 
445 	/*
446 	 * We can remove mdelay() and then send spuriuous interrupts to
447 	 * new cpu targets for all the irqs that were handled previously by
448 	 * this cpu. While it works, I have seen spurious interrupt messages
449 	 * (nothing wrong but still...).
450 	 *
451 	 * So for now, retain mdelay(1) and check the IRR and then send those
452 	 * interrupts to new targets as this cpu is already offlined...
453 	 */
454 	mdelay(1);
455 
456 	/*
457 	 * We can walk the vector array of this cpu without holding
458 	 * vector_lock because the cpu is already marked !online, so
459 	 * nothing else will touch it.
460 	 */
461 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
462 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
463 			continue;
464 
465 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
466 		if (irr  & (1 << (vector % 32))) {
467 			desc = __this_cpu_read(vector_irq[vector]);
468 
469 			raw_spin_lock(&desc->lock);
470 			data = irq_desc_get_irq_data(desc);
471 			chip = irq_data_get_irq_chip(data);
472 			if (chip->irq_retrigger) {
473 				chip->irq_retrigger(data);
474 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
475 			}
476 			raw_spin_unlock(&desc->lock);
477 		}
478 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
479 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
480 	}
481 }
482 #endif
483