1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/mce.h> 18 #include <asm/hw_irq.h> 19 #include <asm/desc.h> 20 21 #define CREATE_TRACE_POINTS 22 #include <asm/trace/irq_vectors.h> 23 24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 25 EXPORT_PER_CPU_SYMBOL(irq_stat); 26 27 DEFINE_PER_CPU(struct pt_regs *, irq_regs); 28 EXPORT_PER_CPU_SYMBOL(irq_regs); 29 30 atomic_t irq_err_count; 31 32 /* Function pointer for generic interrupt vector handling */ 33 void (*x86_platform_ipi_callback)(void) = NULL; 34 35 /* 36 * 'what should we do if we get a hw irq event on an illegal vector'. 37 * each architecture has to answer this themselves. 38 */ 39 void ack_bad_irq(unsigned int irq) 40 { 41 if (printk_ratelimit()) 42 pr_err("unexpected IRQ trap at vector %02x\n", irq); 43 44 /* 45 * Currently unexpected vectors happen only on SMP and APIC. 46 * We _must_ ack these because every local APIC has only N 47 * irq slots per priority level, and a 'hanging, unacked' IRQ 48 * holds up an irq slot - in excessive cases (when multiple 49 * unexpected vectors occur) that might lock up the APIC 50 * completely. 51 * But only ack when the APIC is enabled -AK 52 */ 53 ack_APIC_irq(); 54 } 55 56 #define irq_stats(x) (&per_cpu(irq_stat, x)) 57 /* 58 * /proc/interrupts printing for arch specific interrupts 59 */ 60 int arch_show_interrupts(struct seq_file *p, int prec) 61 { 62 int j; 63 64 seq_printf(p, "%*s: ", prec, "NMI"); 65 for_each_online_cpu(j) 66 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 67 seq_puts(p, " Non-maskable interrupts\n"); 68 #ifdef CONFIG_X86_LOCAL_APIC 69 seq_printf(p, "%*s: ", prec, "LOC"); 70 for_each_online_cpu(j) 71 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 72 seq_puts(p, " Local timer interrupts\n"); 73 74 seq_printf(p, "%*s: ", prec, "SPU"); 75 for_each_online_cpu(j) 76 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 77 seq_puts(p, " Spurious interrupts\n"); 78 seq_printf(p, "%*s: ", prec, "PMI"); 79 for_each_online_cpu(j) 80 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 81 seq_puts(p, " Performance monitoring interrupts\n"); 82 seq_printf(p, "%*s: ", prec, "IWI"); 83 for_each_online_cpu(j) 84 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 85 seq_puts(p, " IRQ work interrupts\n"); 86 seq_printf(p, "%*s: ", prec, "RTR"); 87 for_each_online_cpu(j) 88 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 89 seq_puts(p, " APIC ICR read retries\n"); 90 #endif 91 if (x86_platform_ipi_callback) { 92 seq_printf(p, "%*s: ", prec, "PLT"); 93 for_each_online_cpu(j) 94 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 95 seq_puts(p, " Platform interrupts\n"); 96 } 97 #ifdef CONFIG_SMP 98 seq_printf(p, "%*s: ", prec, "RES"); 99 for_each_online_cpu(j) 100 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 101 seq_puts(p, " Rescheduling interrupts\n"); 102 seq_printf(p, "%*s: ", prec, "CAL"); 103 for_each_online_cpu(j) 104 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 105 seq_puts(p, " Function call interrupts\n"); 106 seq_printf(p, "%*s: ", prec, "TLB"); 107 for_each_online_cpu(j) 108 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 109 seq_puts(p, " TLB shootdowns\n"); 110 #endif 111 #ifdef CONFIG_X86_THERMAL_VECTOR 112 seq_printf(p, "%*s: ", prec, "TRM"); 113 for_each_online_cpu(j) 114 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 115 seq_puts(p, " Thermal event interrupts\n"); 116 #endif 117 #ifdef CONFIG_X86_MCE_THRESHOLD 118 seq_printf(p, "%*s: ", prec, "THR"); 119 for_each_online_cpu(j) 120 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 121 seq_puts(p, " Threshold APIC interrupts\n"); 122 #endif 123 #ifdef CONFIG_X86_MCE_AMD 124 seq_printf(p, "%*s: ", prec, "DFR"); 125 for_each_online_cpu(j) 126 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); 127 seq_puts(p, " Deferred Error APIC interrupts\n"); 128 #endif 129 #ifdef CONFIG_X86_MCE 130 seq_printf(p, "%*s: ", prec, "MCE"); 131 for_each_online_cpu(j) 132 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 133 seq_puts(p, " Machine check exceptions\n"); 134 seq_printf(p, "%*s: ", prec, "MCP"); 135 for_each_online_cpu(j) 136 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 137 seq_puts(p, " Machine check polls\n"); 138 #endif 139 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) 140 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) { 141 seq_printf(p, "%*s: ", prec, "HYP"); 142 for_each_online_cpu(j) 143 seq_printf(p, "%10u ", 144 irq_stats(j)->irq_hv_callback_count); 145 seq_puts(p, " Hypervisor callback interrupts\n"); 146 } 147 #endif 148 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 149 #if defined(CONFIG_X86_IO_APIC) 150 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 151 #endif 152 #ifdef CONFIG_HAVE_KVM 153 seq_printf(p, "%*s: ", prec, "PIN"); 154 for_each_online_cpu(j) 155 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); 156 seq_puts(p, " Posted-interrupt notification event\n"); 157 158 seq_printf(p, "%*s: ", prec, "NPI"); 159 for_each_online_cpu(j) 160 seq_printf(p, "%10u ", 161 irq_stats(j)->kvm_posted_intr_nested_ipis); 162 seq_puts(p, " Nested posted-interrupt event\n"); 163 164 seq_printf(p, "%*s: ", prec, "PIW"); 165 for_each_online_cpu(j) 166 seq_printf(p, "%10u ", 167 irq_stats(j)->kvm_posted_intr_wakeup_ipis); 168 seq_puts(p, " Posted-interrupt wakeup event\n"); 169 #endif 170 return 0; 171 } 172 173 /* 174 * /proc/stat helpers 175 */ 176 u64 arch_irq_stat_cpu(unsigned int cpu) 177 { 178 u64 sum = irq_stats(cpu)->__nmi_count; 179 180 #ifdef CONFIG_X86_LOCAL_APIC 181 sum += irq_stats(cpu)->apic_timer_irqs; 182 sum += irq_stats(cpu)->irq_spurious_count; 183 sum += irq_stats(cpu)->apic_perf_irqs; 184 sum += irq_stats(cpu)->apic_irq_work_irqs; 185 sum += irq_stats(cpu)->icr_read_retry_count; 186 #endif 187 if (x86_platform_ipi_callback) 188 sum += irq_stats(cpu)->x86_platform_ipis; 189 #ifdef CONFIG_SMP 190 sum += irq_stats(cpu)->irq_resched_count; 191 sum += irq_stats(cpu)->irq_call_count; 192 #endif 193 #ifdef CONFIG_X86_THERMAL_VECTOR 194 sum += irq_stats(cpu)->irq_thermal_count; 195 #endif 196 #ifdef CONFIG_X86_MCE_THRESHOLD 197 sum += irq_stats(cpu)->irq_threshold_count; 198 #endif 199 #ifdef CONFIG_X86_MCE 200 sum += per_cpu(mce_exception_count, cpu); 201 sum += per_cpu(mce_poll_count, cpu); 202 #endif 203 return sum; 204 } 205 206 u64 arch_irq_stat(void) 207 { 208 u64 sum = atomic_read(&irq_err_count); 209 return sum; 210 } 211 212 213 /* 214 * do_IRQ handles all normal device IRQ's (the special 215 * SMP cross-CPU interrupts have their own specific 216 * handlers). 217 */ 218 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 219 { 220 struct pt_regs *old_regs = set_irq_regs(regs); 221 struct irq_desc * desc; 222 /* high bit used in ret_from_ code */ 223 unsigned vector = ~regs->orig_ax; 224 225 /* 226 * NB: Unlike exception entries, IRQ entries do not reliably 227 * handle context tracking in the low-level entry code. This is 228 * because syscall entries execute briefly with IRQs on before 229 * updating context tracking state, so we can take an IRQ from 230 * kernel mode with CONTEXT_USER. The low-level entry code only 231 * updates the context if we came from user mode, so we won't 232 * switch to CONTEXT_KERNEL. We'll fix that once the syscall 233 * code is cleaned up enough that we can cleanly defer enabling 234 * IRQs. 235 */ 236 237 entering_irq(); 238 239 /* entering_irq() tells RCU that we're not quiescent. Check it. */ 240 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); 241 242 desc = __this_cpu_read(vector_irq[vector]); 243 244 if (!handle_irq(desc, regs)) { 245 ack_APIC_irq(); 246 247 if (desc != VECTOR_RETRIGGERED) { 248 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n", 249 __func__, smp_processor_id(), 250 vector); 251 } else { 252 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 253 } 254 } 255 256 exiting_irq(); 257 258 set_irq_regs(old_regs); 259 return 1; 260 } 261 262 /* 263 * Handler for X86_PLATFORM_IPI_VECTOR. 264 */ 265 void __smp_x86_platform_ipi(void) 266 { 267 inc_irq_stat(x86_platform_ipis); 268 269 if (x86_platform_ipi_callback) 270 x86_platform_ipi_callback(); 271 } 272 273 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs) 274 { 275 struct pt_regs *old_regs = set_irq_regs(regs); 276 277 entering_ack_irq(); 278 __smp_x86_platform_ipi(); 279 exiting_irq(); 280 set_irq_regs(old_regs); 281 } 282 283 #ifdef CONFIG_HAVE_KVM 284 static void dummy_handler(void) {} 285 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; 286 287 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) 288 { 289 if (handler) 290 kvm_posted_intr_wakeup_handler = handler; 291 else 292 kvm_posted_intr_wakeup_handler = dummy_handler; 293 } 294 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); 295 296 /* 297 * Handler for POSTED_INTERRUPT_VECTOR. 298 */ 299 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 300 { 301 struct pt_regs *old_regs = set_irq_regs(regs); 302 303 entering_ack_irq(); 304 inc_irq_stat(kvm_posted_intr_ipis); 305 exiting_irq(); 306 set_irq_regs(old_regs); 307 } 308 309 /* 310 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 311 */ 312 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) 313 { 314 struct pt_regs *old_regs = set_irq_regs(regs); 315 316 entering_ack_irq(); 317 inc_irq_stat(kvm_posted_intr_wakeup_ipis); 318 kvm_posted_intr_wakeup_handler(); 319 exiting_irq(); 320 set_irq_regs(old_regs); 321 } 322 323 /* 324 * Handler for POSTED_INTERRUPT_NESTED_VECTOR. 325 */ 326 __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs) 327 { 328 struct pt_regs *old_regs = set_irq_regs(regs); 329 330 entering_ack_irq(); 331 inc_irq_stat(kvm_posted_intr_nested_ipis); 332 exiting_irq(); 333 set_irq_regs(old_regs); 334 } 335 #endif 336 337 __visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs) 338 { 339 struct pt_regs *old_regs = set_irq_regs(regs); 340 341 entering_ack_irq(); 342 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 343 __smp_x86_platform_ipi(); 344 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 345 exiting_irq(); 346 set_irq_regs(old_regs); 347 } 348 349 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 350 351 #ifdef CONFIG_HOTPLUG_CPU 352 353 /* These two declarations are only used in check_irq_vectors_for_cpu_disable() 354 * below, which is protected by stop_machine(). Putting them on the stack 355 * results in a stack frame overflow. Dynamically allocating could result in a 356 * failure so declare these two cpumasks as global. 357 */ 358 static struct cpumask affinity_new, online_new; 359 360 /* 361 * This cpu is going to be removed and its vectors migrated to the remaining 362 * online cpus. Check to see if there are enough vectors in the remaining cpus. 363 * This function is protected by stop_machine(). 364 */ 365 int check_irq_vectors_for_cpu_disable(void) 366 { 367 unsigned int this_cpu, vector, this_count, count; 368 struct irq_desc *desc; 369 struct irq_data *data; 370 int cpu; 371 372 this_cpu = smp_processor_id(); 373 cpumask_copy(&online_new, cpu_online_mask); 374 cpumask_clear_cpu(this_cpu, &online_new); 375 376 this_count = 0; 377 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 378 desc = __this_cpu_read(vector_irq[vector]); 379 if (IS_ERR_OR_NULL(desc)) 380 continue; 381 /* 382 * Protect against concurrent action removal, affinity 383 * changes etc. 384 */ 385 raw_spin_lock(&desc->lock); 386 data = irq_desc_get_irq_data(desc); 387 cpumask_copy(&affinity_new, 388 irq_data_get_affinity_mask(data)); 389 cpumask_clear_cpu(this_cpu, &affinity_new); 390 391 /* Do not count inactive or per-cpu irqs. */ 392 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) { 393 raw_spin_unlock(&desc->lock); 394 continue; 395 } 396 397 raw_spin_unlock(&desc->lock); 398 /* 399 * A single irq may be mapped to multiple cpu's 400 * vector_irq[] (for example IOAPIC cluster mode). In 401 * this case we have two possibilities: 402 * 403 * 1) the resulting affinity mask is empty; that is 404 * this the down'd cpu is the last cpu in the irq's 405 * affinity mask, or 406 * 407 * 2) the resulting affinity mask is no longer a 408 * subset of the online cpus but the affinity mask is 409 * not zero; that is the down'd cpu is the last online 410 * cpu in a user set affinity mask. 411 */ 412 if (cpumask_empty(&affinity_new) || 413 !cpumask_subset(&affinity_new, &online_new)) 414 this_count++; 415 } 416 /* No need to check any further. */ 417 if (!this_count) 418 return 0; 419 420 count = 0; 421 for_each_online_cpu(cpu) { 422 if (cpu == this_cpu) 423 continue; 424 /* 425 * We scan from FIRST_EXTERNAL_VECTOR to first system 426 * vector. If the vector is marked in the used vectors 427 * bitmap or an irq is assigned to it, we don't count 428 * it as available. 429 * 430 * As this is an inaccurate snapshot anyway, we can do 431 * this w/o holding vector_lock. 432 */ 433 for (vector = FIRST_EXTERNAL_VECTOR; 434 vector < first_system_vector; vector++) { 435 if (!test_bit(vector, used_vectors) && 436 IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) { 437 if (++count == this_count) 438 return 0; 439 } 440 } 441 } 442 443 if (count < this_count) { 444 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 445 this_cpu, this_count, count); 446 return -ERANGE; 447 } 448 return 0; 449 } 450 451 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 452 void fixup_irqs(void) 453 { 454 unsigned int irr, vector; 455 struct irq_desc *desc; 456 struct irq_data *data; 457 struct irq_chip *chip; 458 459 irq_migrate_all_off_this_cpu(); 460 461 /* 462 * We can remove mdelay() and then send spuriuous interrupts to 463 * new cpu targets for all the irqs that were handled previously by 464 * this cpu. While it works, I have seen spurious interrupt messages 465 * (nothing wrong but still...). 466 * 467 * So for now, retain mdelay(1) and check the IRR and then send those 468 * interrupts to new targets as this cpu is already offlined... 469 */ 470 mdelay(1); 471 472 /* 473 * We can walk the vector array of this cpu without holding 474 * vector_lock because the cpu is already marked !online, so 475 * nothing else will touch it. 476 */ 477 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 478 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) 479 continue; 480 481 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 482 if (irr & (1 << (vector % 32))) { 483 desc = __this_cpu_read(vector_irq[vector]); 484 485 raw_spin_lock(&desc->lock); 486 data = irq_desc_get_irq_data(desc); 487 chip = irq_data_get_irq_chip(data); 488 if (chip->irq_retrigger) { 489 chip->irq_retrigger(data); 490 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 491 } 492 raw_spin_unlock(&desc->lock); 493 } 494 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 495 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 496 } 497 } 498 #endif 499