xref: /openbmc/linux/arch/x86/kernel/irq.c (revision a977d045)
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/mce.h>
18 #include <asm/hw_irq.h>
19 #include <asm/desc.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <asm/trace/irq_vectors.h>
23 
24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
25 EXPORT_PER_CPU_SYMBOL(irq_stat);
26 
27 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
28 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 
30 atomic_t irq_err_count;
31 
32 /* Function pointer for generic interrupt vector handling */
33 void (*x86_platform_ipi_callback)(void) = NULL;
34 
35 /*
36  * 'what should we do if we get a hw irq event on an illegal vector'.
37  * each architecture has to answer this themselves.
38  */
39 void ack_bad_irq(unsigned int irq)
40 {
41 	if (printk_ratelimit())
42 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
43 
44 	/*
45 	 * Currently unexpected vectors happen only on SMP and APIC.
46 	 * We _must_ ack these because every local APIC has only N
47 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
48 	 * holds up an irq slot - in excessive cases (when multiple
49 	 * unexpected vectors occur) that might lock up the APIC
50 	 * completely.
51 	 * But only ack when the APIC is enabled -AK
52 	 */
53 	ack_APIC_irq();
54 }
55 
56 #define irq_stats(x)		(&per_cpu(irq_stat, x))
57 /*
58  * /proc/interrupts printing for arch specific interrupts
59  */
60 int arch_show_interrupts(struct seq_file *p, int prec)
61 {
62 	int j;
63 
64 	seq_printf(p, "%*s: ", prec, "NMI");
65 	for_each_online_cpu(j)
66 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
67 	seq_puts(p, "  Non-maskable interrupts\n");
68 #ifdef CONFIG_X86_LOCAL_APIC
69 	seq_printf(p, "%*s: ", prec, "LOC");
70 	for_each_online_cpu(j)
71 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
72 	seq_puts(p, "  Local timer interrupts\n");
73 
74 	seq_printf(p, "%*s: ", prec, "SPU");
75 	for_each_online_cpu(j)
76 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
77 	seq_puts(p, "  Spurious interrupts\n");
78 	seq_printf(p, "%*s: ", prec, "PMI");
79 	for_each_online_cpu(j)
80 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
81 	seq_puts(p, "  Performance monitoring interrupts\n");
82 	seq_printf(p, "%*s: ", prec, "IWI");
83 	for_each_online_cpu(j)
84 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
85 	seq_puts(p, "  IRQ work interrupts\n");
86 	seq_printf(p, "%*s: ", prec, "RTR");
87 	for_each_online_cpu(j)
88 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
89 	seq_puts(p, "  APIC ICR read retries\n");
90 #endif
91 	if (x86_platform_ipi_callback) {
92 		seq_printf(p, "%*s: ", prec, "PLT");
93 		for_each_online_cpu(j)
94 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
95 		seq_puts(p, "  Platform interrupts\n");
96 	}
97 #ifdef CONFIG_SMP
98 	seq_printf(p, "%*s: ", prec, "RES");
99 	for_each_online_cpu(j)
100 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
101 	seq_puts(p, "  Rescheduling interrupts\n");
102 	seq_printf(p, "%*s: ", prec, "CAL");
103 	for_each_online_cpu(j)
104 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
105 	seq_puts(p, "  Function call interrupts\n");
106 	seq_printf(p, "%*s: ", prec, "TLB");
107 	for_each_online_cpu(j)
108 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
109 	seq_puts(p, "  TLB shootdowns\n");
110 #endif
111 #ifdef CONFIG_X86_THERMAL_VECTOR
112 	seq_printf(p, "%*s: ", prec, "TRM");
113 	for_each_online_cpu(j)
114 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
115 	seq_puts(p, "  Thermal event interrupts\n");
116 #endif
117 #ifdef CONFIG_X86_MCE_THRESHOLD
118 	seq_printf(p, "%*s: ", prec, "THR");
119 	for_each_online_cpu(j)
120 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
121 	seq_puts(p, "  Threshold APIC interrupts\n");
122 #endif
123 #ifdef CONFIG_X86_MCE_AMD
124 	seq_printf(p, "%*s: ", prec, "DFR");
125 	for_each_online_cpu(j)
126 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
127 	seq_puts(p, "  Deferred Error APIC interrupts\n");
128 #endif
129 #ifdef CONFIG_X86_MCE
130 	seq_printf(p, "%*s: ", prec, "MCE");
131 	for_each_online_cpu(j)
132 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
133 	seq_puts(p, "  Machine check exceptions\n");
134 	seq_printf(p, "%*s: ", prec, "MCP");
135 	for_each_online_cpu(j)
136 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
137 	seq_puts(p, "  Machine check polls\n");
138 #endif
139 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
140 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
141 		seq_printf(p, "%*s: ", prec, "HYP");
142 		for_each_online_cpu(j)
143 			seq_printf(p, "%10u ",
144 				   irq_stats(j)->irq_hv_callback_count);
145 		seq_puts(p, "  Hypervisor callback interrupts\n");
146 	}
147 #endif
148 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
149 #if defined(CONFIG_X86_IO_APIC)
150 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
151 #endif
152 #ifdef CONFIG_HAVE_KVM
153 	seq_printf(p, "%*s: ", prec, "PIN");
154 	for_each_online_cpu(j)
155 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
156 	seq_puts(p, "  Posted-interrupt notification event\n");
157 
158 	seq_printf(p, "%*s: ", prec, "NPI");
159 	for_each_online_cpu(j)
160 		seq_printf(p, "%10u ",
161 			   irq_stats(j)->kvm_posted_intr_nested_ipis);
162 	seq_puts(p, "  Nested posted-interrupt event\n");
163 
164 	seq_printf(p, "%*s: ", prec, "PIW");
165 	for_each_online_cpu(j)
166 		seq_printf(p, "%10u ",
167 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
168 	seq_puts(p, "  Posted-interrupt wakeup event\n");
169 #endif
170 	return 0;
171 }
172 
173 /*
174  * /proc/stat helpers
175  */
176 u64 arch_irq_stat_cpu(unsigned int cpu)
177 {
178 	u64 sum = irq_stats(cpu)->__nmi_count;
179 
180 #ifdef CONFIG_X86_LOCAL_APIC
181 	sum += irq_stats(cpu)->apic_timer_irqs;
182 	sum += irq_stats(cpu)->irq_spurious_count;
183 	sum += irq_stats(cpu)->apic_perf_irqs;
184 	sum += irq_stats(cpu)->apic_irq_work_irqs;
185 	sum += irq_stats(cpu)->icr_read_retry_count;
186 #endif
187 	if (x86_platform_ipi_callback)
188 		sum += irq_stats(cpu)->x86_platform_ipis;
189 #ifdef CONFIG_SMP
190 	sum += irq_stats(cpu)->irq_resched_count;
191 	sum += irq_stats(cpu)->irq_call_count;
192 #endif
193 #ifdef CONFIG_X86_THERMAL_VECTOR
194 	sum += irq_stats(cpu)->irq_thermal_count;
195 #endif
196 #ifdef CONFIG_X86_MCE_THRESHOLD
197 	sum += irq_stats(cpu)->irq_threshold_count;
198 #endif
199 #ifdef CONFIG_X86_MCE
200 	sum += per_cpu(mce_exception_count, cpu);
201 	sum += per_cpu(mce_poll_count, cpu);
202 #endif
203 	return sum;
204 }
205 
206 u64 arch_irq_stat(void)
207 {
208 	u64 sum = atomic_read(&irq_err_count);
209 	return sum;
210 }
211 
212 
213 /*
214  * do_IRQ handles all normal device IRQ's (the special
215  * SMP cross-CPU interrupts have their own specific
216  * handlers).
217  */
218 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
219 {
220 	struct pt_regs *old_regs = set_irq_regs(regs);
221 	struct irq_desc * desc;
222 	/* high bit used in ret_from_ code  */
223 	unsigned vector = ~regs->orig_ax;
224 
225 	/*
226 	 * NB: Unlike exception entries, IRQ entries do not reliably
227 	 * handle context tracking in the low-level entry code.  This is
228 	 * because syscall entries execute briefly with IRQs on before
229 	 * updating context tracking state, so we can take an IRQ from
230 	 * kernel mode with CONTEXT_USER.  The low-level entry code only
231 	 * updates the context if we came from user mode, so we won't
232 	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
233 	 * code is cleaned up enough that we can cleanly defer enabling
234 	 * IRQs.
235 	 */
236 
237 	entering_irq();
238 
239 	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
240 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
241 
242 	desc = __this_cpu_read(vector_irq[vector]);
243 
244 	if (!handle_irq(desc, regs)) {
245 		ack_APIC_irq();
246 
247 		if (desc != VECTOR_RETRIGGERED) {
248 			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
249 					     __func__, smp_processor_id(),
250 					     vector);
251 		} else {
252 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
253 		}
254 	}
255 
256 	exiting_irq();
257 
258 	set_irq_regs(old_regs);
259 	return 1;
260 }
261 
262 /*
263  * Handler for X86_PLATFORM_IPI_VECTOR.
264  */
265 void __smp_x86_platform_ipi(void)
266 {
267 	inc_irq_stat(x86_platform_ipis);
268 
269 	if (x86_platform_ipi_callback)
270 		x86_platform_ipi_callback();
271 }
272 
273 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
274 {
275 	struct pt_regs *old_regs = set_irq_regs(regs);
276 
277 	entering_ack_irq();
278 	__smp_x86_platform_ipi();
279 	exiting_irq();
280 	set_irq_regs(old_regs);
281 }
282 
283 #ifdef CONFIG_HAVE_KVM
284 static void dummy_handler(void) {}
285 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
286 
287 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
288 {
289 	if (handler)
290 		kvm_posted_intr_wakeup_handler = handler;
291 	else
292 		kvm_posted_intr_wakeup_handler = dummy_handler;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
295 
296 /*
297  * Handler for POSTED_INTERRUPT_VECTOR.
298  */
299 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
300 {
301 	struct pt_regs *old_regs = set_irq_regs(regs);
302 
303 	entering_ack_irq();
304 	inc_irq_stat(kvm_posted_intr_ipis);
305 	exiting_irq();
306 	set_irq_regs(old_regs);
307 }
308 
309 /*
310  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
311  */
312 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
313 {
314 	struct pt_regs *old_regs = set_irq_regs(regs);
315 
316 	entering_ack_irq();
317 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
318 	kvm_posted_intr_wakeup_handler();
319 	exiting_irq();
320 	set_irq_regs(old_regs);
321 }
322 
323 /*
324  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
325  */
326 __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
327 {
328 	struct pt_regs *old_regs = set_irq_regs(regs);
329 
330 	entering_ack_irq();
331 	inc_irq_stat(kvm_posted_intr_nested_ipis);
332 	exiting_irq();
333 	set_irq_regs(old_regs);
334 }
335 #endif
336 
337 __visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs)
338 {
339 	struct pt_regs *old_regs = set_irq_regs(regs);
340 
341 	entering_ack_irq();
342 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
343 	__smp_x86_platform_ipi();
344 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
345 	exiting_irq();
346 	set_irq_regs(old_regs);
347 }
348 
349 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
350 
351 #ifdef CONFIG_HOTPLUG_CPU
352 
353 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
354  * below, which is protected by stop_machine().  Putting them on the stack
355  * results in a stack frame overflow.  Dynamically allocating could result in a
356  * failure so declare these two cpumasks as global.
357  */
358 static struct cpumask affinity_new, online_new;
359 
360 /*
361  * This cpu is going to be removed and its vectors migrated to the remaining
362  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
363  * This function is protected by stop_machine().
364  */
365 int check_irq_vectors_for_cpu_disable(void)
366 {
367 	unsigned int this_cpu, vector, this_count, count;
368 	struct irq_desc *desc;
369 	struct irq_data *data;
370 	int cpu;
371 
372 	this_cpu = smp_processor_id();
373 	cpumask_copy(&online_new, cpu_online_mask);
374 	cpumask_clear_cpu(this_cpu, &online_new);
375 
376 	this_count = 0;
377 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
378 		desc = __this_cpu_read(vector_irq[vector]);
379 		if (IS_ERR_OR_NULL(desc))
380 			continue;
381 		/*
382 		 * Protect against concurrent action removal, affinity
383 		 * changes etc.
384 		 */
385 		raw_spin_lock(&desc->lock);
386 		data = irq_desc_get_irq_data(desc);
387 		cpumask_copy(&affinity_new,
388 			     irq_data_get_affinity_mask(data));
389 		cpumask_clear_cpu(this_cpu, &affinity_new);
390 
391 		/* Do not count inactive or per-cpu irqs. */
392 		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
393 			raw_spin_unlock(&desc->lock);
394 			continue;
395 		}
396 
397 		raw_spin_unlock(&desc->lock);
398 		/*
399 		 * A single irq may be mapped to multiple cpu's
400 		 * vector_irq[] (for example IOAPIC cluster mode).  In
401 		 * this case we have two possibilities:
402 		 *
403 		 * 1) the resulting affinity mask is empty; that is
404 		 * this the down'd cpu is the last cpu in the irq's
405 		 * affinity mask, or
406 		 *
407 		 * 2) the resulting affinity mask is no longer a
408 		 * subset of the online cpus but the affinity mask is
409 		 * not zero; that is the down'd cpu is the last online
410 		 * cpu in a user set affinity mask.
411 		 */
412 		if (cpumask_empty(&affinity_new) ||
413 		    !cpumask_subset(&affinity_new, &online_new))
414 			this_count++;
415 	}
416 	/* No need to check any further. */
417 	if (!this_count)
418 		return 0;
419 
420 	count = 0;
421 	for_each_online_cpu(cpu) {
422 		if (cpu == this_cpu)
423 			continue;
424 		/*
425 		 * We scan from FIRST_EXTERNAL_VECTOR to first system
426 		 * vector. If the vector is marked in the used vectors
427 		 * bitmap or an irq is assigned to it, we don't count
428 		 * it as available.
429 		 *
430 		 * As this is an inaccurate snapshot anyway, we can do
431 		 * this w/o holding vector_lock.
432 		 */
433 		for (vector = FIRST_EXTERNAL_VECTOR;
434 		     vector < first_system_vector; vector++) {
435 			if (!test_bit(vector, used_vectors) &&
436 			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
437 				if (++count == this_count)
438 					return 0;
439 			}
440 		}
441 	}
442 
443 	if (count < this_count) {
444 		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
445 			this_cpu, this_count, count);
446 		return -ERANGE;
447 	}
448 	return 0;
449 }
450 
451 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
452 void fixup_irqs(void)
453 {
454 	unsigned int irr, vector;
455 	struct irq_desc *desc;
456 	struct irq_data *data;
457 	struct irq_chip *chip;
458 
459 	irq_migrate_all_off_this_cpu();
460 
461 	/*
462 	 * We can remove mdelay() and then send spuriuous interrupts to
463 	 * new cpu targets for all the irqs that were handled previously by
464 	 * this cpu. While it works, I have seen spurious interrupt messages
465 	 * (nothing wrong but still...).
466 	 *
467 	 * So for now, retain mdelay(1) and check the IRR and then send those
468 	 * interrupts to new targets as this cpu is already offlined...
469 	 */
470 	mdelay(1);
471 
472 	/*
473 	 * We can walk the vector array of this cpu without holding
474 	 * vector_lock because the cpu is already marked !online, so
475 	 * nothing else will touch it.
476 	 */
477 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
478 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
479 			continue;
480 
481 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
482 		if (irr  & (1 << (vector % 32))) {
483 			desc = __this_cpu_read(vector_irq[vector]);
484 
485 			raw_spin_lock(&desc->lock);
486 			data = irq_desc_get_irq_data(desc);
487 			chip = irq_data_get_irq_chip(data);
488 			if (chip->irq_retrigger) {
489 				chip->irq_retrigger(data);
490 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
491 			}
492 			raw_spin_unlock(&desc->lock);
493 		}
494 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
495 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
496 	}
497 }
498 #endif
499