1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/idle.h> 18 #include <asm/mce.h> 19 #include <asm/hw_irq.h> 20 21 atomic_t irq_err_count; 22 23 /* Function pointer for generic interrupt vector handling */ 24 void (*x86_platform_ipi_callback)(void) = NULL; 25 26 /* 27 * 'what should we do if we get a hw irq event on an illegal vector'. 28 * each architecture has to answer this themselves. 29 */ 30 void ack_bad_irq(unsigned int irq) 31 { 32 if (printk_ratelimit()) 33 pr_err("unexpected IRQ trap at vector %02x\n", irq); 34 35 /* 36 * Currently unexpected vectors happen only on SMP and APIC. 37 * We _must_ ack these because every local APIC has only N 38 * irq slots per priority level, and a 'hanging, unacked' IRQ 39 * holds up an irq slot - in excessive cases (when multiple 40 * unexpected vectors occur) that might lock up the APIC 41 * completely. 42 * But only ack when the APIC is enabled -AK 43 */ 44 ack_APIC_irq(); 45 } 46 47 #define irq_stats(x) (&per_cpu(irq_stat, x)) 48 /* 49 * /proc/interrupts printing for arch specific interrupts 50 */ 51 int arch_show_interrupts(struct seq_file *p, int prec) 52 { 53 int j; 54 55 seq_printf(p, "%*s: ", prec, "NMI"); 56 for_each_online_cpu(j) 57 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 58 seq_printf(p, " Non-maskable interrupts\n"); 59 #ifdef CONFIG_X86_LOCAL_APIC 60 seq_printf(p, "%*s: ", prec, "LOC"); 61 for_each_online_cpu(j) 62 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 63 seq_printf(p, " Local timer interrupts\n"); 64 65 seq_printf(p, "%*s: ", prec, "SPU"); 66 for_each_online_cpu(j) 67 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 68 seq_printf(p, " Spurious interrupts\n"); 69 seq_printf(p, "%*s: ", prec, "PMI"); 70 for_each_online_cpu(j) 71 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 72 seq_printf(p, " Performance monitoring interrupts\n"); 73 seq_printf(p, "%*s: ", prec, "IWI"); 74 for_each_online_cpu(j) 75 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 76 seq_printf(p, " IRQ work interrupts\n"); 77 seq_printf(p, "%*s: ", prec, "RTR"); 78 for_each_online_cpu(j) 79 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 80 seq_printf(p, " APIC ICR read retries\n"); 81 #endif 82 if (x86_platform_ipi_callback) { 83 seq_printf(p, "%*s: ", prec, "PLT"); 84 for_each_online_cpu(j) 85 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 86 seq_printf(p, " Platform interrupts\n"); 87 } 88 #ifdef CONFIG_SMP 89 seq_printf(p, "%*s: ", prec, "RES"); 90 for_each_online_cpu(j) 91 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 92 seq_printf(p, " Rescheduling interrupts\n"); 93 seq_printf(p, "%*s: ", prec, "CAL"); 94 for_each_online_cpu(j) 95 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 96 seq_printf(p, " Function call interrupts\n"); 97 seq_printf(p, "%*s: ", prec, "TLB"); 98 for_each_online_cpu(j) 99 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 100 seq_printf(p, " TLB shootdowns\n"); 101 #endif 102 #ifdef CONFIG_X86_THERMAL_VECTOR 103 seq_printf(p, "%*s: ", prec, "TRM"); 104 for_each_online_cpu(j) 105 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 106 seq_printf(p, " Thermal event interrupts\n"); 107 #endif 108 #ifdef CONFIG_X86_MCE_THRESHOLD 109 seq_printf(p, "%*s: ", prec, "THR"); 110 for_each_online_cpu(j) 111 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 112 seq_printf(p, " Threshold APIC interrupts\n"); 113 #endif 114 #ifdef CONFIG_X86_MCE 115 seq_printf(p, "%*s: ", prec, "MCE"); 116 for_each_online_cpu(j) 117 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 118 seq_printf(p, " Machine check exceptions\n"); 119 seq_printf(p, "%*s: ", prec, "MCP"); 120 for_each_online_cpu(j) 121 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 122 seq_printf(p, " Machine check polls\n"); 123 #endif 124 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 125 #if defined(CONFIG_X86_IO_APIC) 126 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 127 #endif 128 return 0; 129 } 130 131 /* 132 * /proc/stat helpers 133 */ 134 u64 arch_irq_stat_cpu(unsigned int cpu) 135 { 136 u64 sum = irq_stats(cpu)->__nmi_count; 137 138 #ifdef CONFIG_X86_LOCAL_APIC 139 sum += irq_stats(cpu)->apic_timer_irqs; 140 sum += irq_stats(cpu)->irq_spurious_count; 141 sum += irq_stats(cpu)->apic_perf_irqs; 142 sum += irq_stats(cpu)->apic_irq_work_irqs; 143 sum += irq_stats(cpu)->icr_read_retry_count; 144 #endif 145 if (x86_platform_ipi_callback) 146 sum += irq_stats(cpu)->x86_platform_ipis; 147 #ifdef CONFIG_SMP 148 sum += irq_stats(cpu)->irq_resched_count; 149 sum += irq_stats(cpu)->irq_call_count; 150 sum += irq_stats(cpu)->irq_tlb_count; 151 #endif 152 #ifdef CONFIG_X86_THERMAL_VECTOR 153 sum += irq_stats(cpu)->irq_thermal_count; 154 #endif 155 #ifdef CONFIG_X86_MCE_THRESHOLD 156 sum += irq_stats(cpu)->irq_threshold_count; 157 #endif 158 #ifdef CONFIG_X86_MCE 159 sum += per_cpu(mce_exception_count, cpu); 160 sum += per_cpu(mce_poll_count, cpu); 161 #endif 162 return sum; 163 } 164 165 u64 arch_irq_stat(void) 166 { 167 u64 sum = atomic_read(&irq_err_count); 168 169 #ifdef CONFIG_X86_IO_APIC 170 sum += atomic_read(&irq_mis_count); 171 #endif 172 return sum; 173 } 174 175 176 /* 177 * do_IRQ handles all normal device IRQ's (the special 178 * SMP cross-CPU interrupts have their own specific 179 * handlers). 180 */ 181 unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 182 { 183 struct pt_regs *old_regs = set_irq_regs(regs); 184 185 /* high bit used in ret_from_ code */ 186 unsigned vector = ~regs->orig_ax; 187 unsigned irq; 188 189 irq_enter(); 190 exit_idle(); 191 192 irq = __this_cpu_read(vector_irq[vector]); 193 194 if (!handle_irq(irq, regs)) { 195 ack_APIC_irq(); 196 197 if (printk_ratelimit()) 198 pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n", 199 __func__, smp_processor_id(), vector, irq); 200 } 201 202 irq_exit(); 203 204 set_irq_regs(old_regs); 205 return 1; 206 } 207 208 /* 209 * Handler for X86_PLATFORM_IPI_VECTOR. 210 */ 211 void smp_x86_platform_ipi(struct pt_regs *regs) 212 { 213 struct pt_regs *old_regs = set_irq_regs(regs); 214 215 ack_APIC_irq(); 216 217 irq_enter(); 218 219 exit_idle(); 220 221 inc_irq_stat(x86_platform_ipis); 222 223 if (x86_platform_ipi_callback) 224 x86_platform_ipi_callback(); 225 226 irq_exit(); 227 228 set_irq_regs(old_regs); 229 } 230 231 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 232 233 #ifdef CONFIG_HOTPLUG_CPU 234 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 235 void fixup_irqs(void) 236 { 237 unsigned int irq, vector; 238 static int warned; 239 struct irq_desc *desc; 240 struct irq_data *data; 241 struct irq_chip *chip; 242 243 for_each_irq_desc(irq, desc) { 244 int break_affinity = 0; 245 int set_affinity = 1; 246 const struct cpumask *affinity; 247 248 if (!desc) 249 continue; 250 if (irq == 2) 251 continue; 252 253 /* interrupt's are disabled at this point */ 254 raw_spin_lock(&desc->lock); 255 256 data = irq_desc_get_irq_data(desc); 257 affinity = data->affinity; 258 if (!irq_has_action(irq) || irqd_is_per_cpu(data) || 259 cpumask_subset(affinity, cpu_online_mask)) { 260 raw_spin_unlock(&desc->lock); 261 continue; 262 } 263 264 /* 265 * Complete the irq move. This cpu is going down and for 266 * non intr-remapping case, we can't wait till this interrupt 267 * arrives at this cpu before completing the irq move. 268 */ 269 irq_force_complete_move(irq); 270 271 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { 272 break_affinity = 1; 273 affinity = cpu_online_mask; 274 } 275 276 chip = irq_data_get_irq_chip(data); 277 if (!irqd_can_move_in_process_context(data) && chip->irq_mask) 278 chip->irq_mask(data); 279 280 if (chip->irq_set_affinity) 281 chip->irq_set_affinity(data, affinity, true); 282 else if (!(warned++)) 283 set_affinity = 0; 284 285 /* 286 * We unmask if the irq was not marked masked by the 287 * core code. That respects the lazy irq disable 288 * behaviour. 289 */ 290 if (!irqd_can_move_in_process_context(data) && 291 !irqd_irq_masked(data) && chip->irq_unmask) 292 chip->irq_unmask(data); 293 294 raw_spin_unlock(&desc->lock); 295 296 if (break_affinity && set_affinity) 297 pr_notice("Broke affinity for irq %i\n", irq); 298 else if (!set_affinity) 299 pr_notice("Cannot set affinity for irq %i\n", irq); 300 } 301 302 /* 303 * We can remove mdelay() and then send spuriuous interrupts to 304 * new cpu targets for all the irqs that were handled previously by 305 * this cpu. While it works, I have seen spurious interrupt messages 306 * (nothing wrong but still...). 307 * 308 * So for now, retain mdelay(1) and check the IRR and then send those 309 * interrupts to new targets as this cpu is already offlined... 310 */ 311 mdelay(1); 312 313 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 314 unsigned int irr; 315 316 if (__this_cpu_read(vector_irq[vector]) < 0) 317 continue; 318 319 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 320 if (irr & (1 << (vector % 32))) { 321 irq = __this_cpu_read(vector_irq[vector]); 322 323 desc = irq_to_desc(irq); 324 data = irq_desc_get_irq_data(desc); 325 chip = irq_data_get_irq_chip(data); 326 raw_spin_lock(&desc->lock); 327 if (chip->irq_retrigger) 328 chip->irq_retrigger(data); 329 raw_spin_unlock(&desc->lock); 330 } 331 __this_cpu_write(vector_irq[vector], -1); 332 } 333 } 334 #endif 335